delve/pkg/proc/bininfo.go

849 lines
24 KiB
Go
Raw Normal View History

package proc
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"sort"
"strings"
"sync"
"time"
"github.com/derekparker/delve/pkg/dwarf/frame"
"github.com/derekparker/delve/pkg/dwarf/godwarf"
"github.com/derekparker/delve/pkg/dwarf/line"
"github.com/derekparker/delve/pkg/dwarf/op"
"github.com/derekparker/delve/pkg/dwarf/reader"
"github.com/derekparker/delve/pkg/goversion"
)
// BinaryInfo holds information on the binary being executed.
type BinaryInfo struct {
lastModified time.Time // Time the executable of this process was last modified
GOOS string
closer io.Closer
sepDebugCloser io.Closer
// Maps package names to package paths, needed to lookup types inside DWARF info
packageMap map[string]string
Arch Arch
dwarf *dwarf.Data
frameEntries frame.FrameDescriptionEntries
loclist loclistReader
compileUnits []*compileUnit
types map[string]dwarf.Offset
packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address
gStructOffset uint64
// Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point
Functions []Function
// Sources is a list of all source files found in debug_line.
Sources []string
// LookupFunc maps function names to a description of the function.
LookupFunc map[string]*Function
typeCache map[dwarf.Offset]godwarf.Type
loadModuleDataOnce sync.Once
moduleData []moduleData
nameOfRuntimeType map[uintptr]nameOfRuntimeTypeEntry
// runtimeTypeToDIE maps between the offset of a runtime._type in
// runtime.moduledata.types and the offset of the DIE in debug_info. This
// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
// which was added in go 1.11.
runtimeTypeToDIE map[uint64]runtimeTypeDIE
// consts[off] lists all the constants with the type defined at offset off.
consts constantsMap
loadErrMu sync.Mutex
loadErr error
dwarfReader *dwarf.Reader
}
// ErrUnsupportedLinuxArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedLinuxArch = errors.New("unsupported architecture - only linux/amd64 is supported")
// ErrUnsupportedWindowsArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedWindowsArch = errors.New("unsupported architecture of windows/386 - only windows/amd64 is supported")
// ErrUnsupportedDarwinArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedDarwinArch = errors.New("unsupported architecture - only darwin/amd64 is supported")
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)
type compileUnit struct {
Name string // univocal name for non-go compile units
LowPC, HighPC uint64
entry *dwarf.Entry // debug_info entry describing this compile unit
isgo bool // true if this is the go compile unit
lineInfo *line.DebugLineInfo // debug_line segment associated with this compile unit
concreteInlinedFns []inlinedFn // list of concrete inlined functions within this compile unit
optimized bool // this compile unit is optimized
producer string // producer attribute
startOffset, endOffset dwarf.Offset // interval of offsets contained in this compile unit
}
type partialUnitConstant struct {
name string
typ dwarf.Offset
value int64
}
type partialUnit struct {
entry *dwarf.Entry
types map[string]dwarf.Offset
variables []packageVar
constants []partialUnitConstant
functions []Function
}
// inlinedFn represents a concrete inlined function, e.g.
// an entry for the generated code of an inlined function.
type inlinedFn struct {
Name string // Name of the function that was inlined
LowPC, HighPC uint64 // Address range of the generated inlined instructions
CallFile string // File of the call site of the inlined function
CallLine int64 // Line of the call site of the inlined function
Parent *Function // The function that contains this inlined function
}
// Function describes a function in the target program.
type Function struct {
Name string
Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc
offset dwarf.Offset
cu *compileUnit
}
// PackageName returns the package part of the symbol name,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) PackageName() string {
return packageName(fn.Name)
}
func packageName(name string) string {
pathend := strings.LastIndex(name, "/")
if pathend < 0 {
pathend = 0
}
if i := strings.Index(name[pathend:], "."); i != -1 {
return name[:pathend+i]
}
return ""
}
// ReceiverName returns the receiver type name of this symbol,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) ReceiverName() string {
pathend := strings.LastIndex(fn.Name, "/")
if pathend < 0 {
pathend = 0
}
l := strings.Index(fn.Name[pathend:], ".")
r := strings.LastIndex(fn.Name[pathend:], ".")
if l == -1 || r == -1 || l == r {
return ""
}
return fn.Name[pathend+l+1 : pathend+r]
}
// BaseName returns the symbol name without the package or receiver name.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) BaseName() string {
if i := strings.LastIndex(fn.Name, "."); i != -1 {
return fn.Name[i+1:]
}
return fn.Name
}
// Optimized returns true if the function was optimized by the compiler.
func (fn *Function) Optimized() bool {
return fn.cu.optimized
}
type constantsMap map[dwarf.Offset]*constantType
type constantType struct {
initialized bool
values []constantValue
}
type constantValue struct {
name string
fullName string
value int64
singleBit bool
}
// packageVar represents a package-level variable (or a C global variable).
// If a global variable does not have an address (for example it's stored in
// a register, or non-contiguously) addr will be 0.
type packageVar struct {
name string
offset dwarf.Offset
addr uint64
}
type loclistReader struct {
data []byte
cur int
ptrSz int
}
func (rdr *loclistReader) Seek(off int) {
rdr.cur = off
}
func (rdr *loclistReader) read(sz int) []byte {
r := rdr.data[rdr.cur : rdr.cur+sz]
rdr.cur += sz
return r
}
func (rdr *loclistReader) oneAddr() uint64 {
switch rdr.ptrSz {
case 4:
addr := binary.LittleEndian.Uint32(rdr.read(rdr.ptrSz))
if addr == ^uint32(0) {
return ^uint64(0)
}
return uint64(addr)
case 8:
addr := uint64(binary.LittleEndian.Uint64(rdr.read(rdr.ptrSz)))
return addr
default:
panic("bad address size")
}
}
func (rdr *loclistReader) Next(e *loclistEntry) bool {
e.lowpc = rdr.oneAddr()
e.highpc = rdr.oneAddr()
if e.lowpc == 0 && e.highpc == 0 {
return false
}
if e.BaseAddressSelection() {
e.instr = nil
return true
}
instrlen := binary.LittleEndian.Uint16(rdr.read(2))
e.instr = rdr.read(int(instrlen))
return true
}
type loclistEntry struct {
lowpc, highpc uint64
instr []byte
}
type runtimeTypeDIE struct {
offset dwarf.Offset
kind int64
}
func (e *loclistEntry) BaseAddressSelection() bool {
return e.lowpc == ^uint64(0)
}
type buildIDHeader struct {
Namesz uint32
Descsz uint32
Type uint32
}
// NewBinaryInfo returns an initialized but unloaded BinaryInfo struct.
func NewBinaryInfo(goos, goarch string) *BinaryInfo {
r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uintptr]nameOfRuntimeTypeEntry), typeCache: make(map[dwarf.Offset]godwarf.Type)}
// TODO: find better way to determine proc arch (perhaps use executable file info).
switch goarch {
case "amd64":
r.Arch = AMD64Arch(goos)
}
return r
}
// LoadBinaryInfo will load and store the information from the binary at 'path'.
// It is expected this will be called in parallel with other initialization steps
// so a sync.WaitGroup must be provided.
func (bi *BinaryInfo) LoadBinaryInfo(path string, wg *sync.WaitGroup) error {
fi, err := os.Stat(path)
if err == nil {
bi.lastModified = fi.ModTime()
}
switch bi.GOOS {
case "linux":
return bi.LoadBinaryInfoElf(path, wg)
case "windows":
return bi.LoadBinaryInfoPE(path, wg)
case "darwin":
return bi.LoadBinaryInfoMacho(path, wg)
}
return errors.New("unsupported operating system")
}
// GStructOffset returns the offset of the G
// struct in thread local storage.
func (bi *BinaryInfo) GStructOffset() uint64 {
return bi.gStructOffset
}
// LastModified returns the last modified time of the binary.
func (bi *BinaryInfo) LastModified() time.Time {
return bi.lastModified
}
// DwarfReader returns a reader for the dwarf data
func (bi *BinaryInfo) DwarfReader() *reader.Reader {
return reader.New(bi.dwarf)
}
// Types returns list of types present in the debugged program.
func (bi *BinaryInfo) Types() ([]string, error) {
types := make([]string, 0, len(bi.types))
for k := range bi.types {
types = append(types, k)
}
return types, nil
}
// PCToLine converts an instruction address to a file/line/function.
func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) {
fn := bi.PCToFunc(pc)
if fn == nil {
return "", 0, nil
}
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc)
return f, ln, fn
}
// LineToPC converts a file:line into a memory address.
func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pc uint64, fn *Function, err error) {
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] != nil {
pc = cu.lineInfo.LineToPC(filename, lineno)
if pc == 0 {
// Check to see if this file:line belongs to the call site
// of an inlined function.
for _, ifn := range cu.concreteInlinedFns {
if strings.Contains(ifn.CallFile, filename) && ifn.CallLine == int64(lineno) {
pc = ifn.LowPC
fn = ifn.Parent
return
}
}
}
fn = bi.PCToFunc(pc)
if fn != nil {
return
}
}
}
err = fmt.Errorf("could not find %s:%d", filename, lineno)
return
}
proc: support inlining Go 1.10 added inlined calls to debug_info, this commit adds support for DW_TAG_inlined_call to delve, both for stack traces (where inlined calls will appear as normal stack frames) and to correct the behavior of next, step and stepout. The calls to Next and Frame of stackIterator continue to work unchanged and only return real stack frames, after reading each line appendInlinedCalls is called to unpacked all the inlined calls that involve the current PC. The fake stack frames produced by appendInlinedCalls are distinguished from real stack frames by having the Inlined attribute set to true. Also their Current and Call locations are treated differently. The Call location will be changed to represent the position inside the inlined call, while the Current location will always reference the real stack frame. This is done because: * next, step and stepout need to access the debug_info entry of the real function they are stepping through * we are already manipulating Call in different ways while Current is just what we read from the call stack The strategy remains mostly the same, we disassemble the function and we set a breakpoint on each instruction corresponding to a different file:line. The function in question will be the one corresponding to the first real (i.e. non-inlined) stack frame. * If the current function contains inlined calls, 'next' will not set any breakpoints on instructions that belong to inlined calls. We do not do this for 'step'. * If we are inside an inlined call that makes other inlined functions, 'next' will not set any breakpoints that belong to inlined calls that are children of the current inlined call. * If the current function is inlined the breakpoint on the return address won't be set, because inlined frames don't have a return address. * The code we use for stepout doesn't work at all if we are inside an inlined call, instead we call 'next' but instruct it to remove all PCs belonging to the current inlined call.
2017-11-13 15:54:08 +00:00
// AllPCsForFileLine returns all PC addresses for the given filename:lineno.
func (bi *BinaryInfo) AllPCsForFileLine(filename string, lineno int) []uint64 {
r := make([]uint64, 0, 1)
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] != nil {
r = append(r, cu.lineInfo.AllPCsForFileLine(filename, lineno)...)
}
}
return r
}
// PCToFunc returns the function containing the given PC address
func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
i := sort.Search(len(bi.Functions), func(i int) bool {
fn := bi.Functions[i]
return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End)
})
if i != len(bi.Functions) {
fn := &bi.Functions[i]
if fn.Entry <= pc && pc < fn.End {
return fn
}
}
return nil
}
// Close closes all internal readers.
func (bi *BinaryInfo) Close() error {
if bi.sepDebugCloser != nil {
bi.sepDebugCloser.Close()
}
return bi.closer.Close()
}
func (bi *BinaryInfo) setLoadError(fmtstr string, args ...interface{}) {
bi.loadErrMu.Lock()
bi.loadErr = fmt.Errorf(fmtstr, args...)
bi.loadErrMu.Unlock()
}
// LoadError returns any internal load error.
func (bi *BinaryInfo) LoadError() error {
return bi.loadErr
}
type nilCloser struct{}
func (c *nilCloser) Close() error { return nil }
// LoadFromData creates a new BinaryInfo object using the specified data.
// This is used for debugging BinaryInfo, you should use LoadBinary instead.
func (bi *BinaryInfo) LoadFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) {
bi.closer = (*nilCloser)(nil)
bi.sepDebugCloser = (*nilCloser)(nil)
bi.dwarf = dwdata
if debugFrameBytes != nil {
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes))
}
bi.loclistInit(debugLocBytes)
bi.loadDebugInfoMaps(debugLineBytes, nil, nil)
}
func (bi *BinaryInfo) loclistInit(data []byte) {
bi.loclist.data = data
bi.loclist.ptrSz = bi.Arch.PtrSize()
}
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
a := entry.Val(attr)
if a == nil {
return nil, "", fmt.Errorf("no location attribute %s", attr)
}
if instr, ok := a.([]byte); ok {
var descr bytes.Buffer
fmt.Fprintf(&descr, "[block] ")
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
off, ok := a.(int64)
if !ok {
return nil, "", fmt.Errorf("could not interpret location attribute %s", attr)
}
if bi.loclist.data == nil {
return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x (no debug_loc section found)", off, pc)
}
instr := bi.loclistEntry(off, pc)
if instr == nil {
return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc)
}
var descr bytes.Buffer
fmt.Fprintf(&descr, "[%#x:%#x] ", off, pc)
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
// Location returns the location described by attribute attr of entry.
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
instr, descr, err := bi.locationExpr(entry, attr, pc)
if err != nil {
return 0, nil, "", err
}
addr, pieces, err := op.ExecuteStackProgram(regs, instr)
return addr, pieces, descr, err
}
// loclistEntry returns the loclist entry in the loclist starting at off,
// for address pc.
func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte {
var base uint64
if cu := bi.findCompileUnit(pc); cu != nil {
base = cu.LowPC
}
bi.loclist.Seek(int(off))
var e loclistEntry
for bi.loclist.Next(&e) {
if e.BaseAddressSelection() {
base = e.highpc
continue
}
if pc >= e.lowpc+base && pc < e.highpc+base {
return e.instr
}
}
return nil
}
// findCompileUnit returns the compile unit containing address pc.
func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit {
for _, cu := range bi.compileUnits {
if pc >= cu.LowPC && pc < cu.HighPC {
return cu
}
}
return nil
}
func (bi *BinaryInfo) findCompileUnitForOffset(off dwarf.Offset) *compileUnit {
for _, cu := range bi.compileUnits {
if off >= cu.startOffset && off < cu.endOffset {
return cu
}
}
return nil
}
// Producer returns the value of DW_AT_producer.
func (bi *BinaryInfo) Producer() string {
for _, cu := range bi.compileUnits {
if cu.isgo && cu.producer != "" {
return cu.producer
}
}
return ""
}
// Type returns the Dwarf type entry at `offset`.
func (bi *BinaryInfo) Type(offset dwarf.Offset) (godwarf.Type, error) {
return godwarf.ReadType(bi.dwarf, offset, bi.typeCache)
}
// ELF ///////////////////////////////////////////////////////////////
// ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no
// build-id note on the binary, so LoadBinaryInfoElf will return
// the error message coming from elfFile.DWARF() instead.
type ErrNoBuildIDNote struct{}
func (e *ErrNoBuildIDNote) Error() string {
return "can't find build-id note on binary"
}
// openSeparateDebugInfo searches for a file containing the separate
// debug info for the binary using the "build ID" method as described
// in GDB's documentation [1], and if found returns two handles, one
// for the bare file, and another for its corresponding elf.File.
// [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
func (bi *BinaryInfo) openSeparateDebugInfo(exe *elf.File) (*os.File, *elf.File, error) {
buildid := exe.Section(".note.gnu.build-id")
if buildid == nil {
return nil, nil, &ErrNoBuildIDNote{}
}
br := buildid.Open()
bh := new(buildIDHeader)
if err := binary.Read(br, binary.LittleEndian, bh); err != nil {
return nil, nil, errors.New("can't read build-id header: " + err.Error())
}
name := make([]byte, bh.Namesz)
if err := binary.Read(br, binary.LittleEndian, name); err != nil {
return nil, nil, errors.New("can't read build-id name: " + err.Error())
}
if strings.TrimSpace(string(name)) != "GNU\x00" {
return nil, nil, errors.New("invalid build-id signature")
}
descBinary := make([]byte, bh.Descsz)
if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil {
return nil, nil, errors.New("can't read build-id desc: " + err.Error())
}
desc := hex.EncodeToString(descBinary)
debugPath := fmt.Sprintf("/usr/lib/debug/.build-id/%s/%s.debug", desc[:2], desc[2:])
sepFile, err := os.OpenFile(debugPath, 0, os.ModePerm)
if err != nil {
return nil, nil, errors.New("can't open separate debug file: " + err.Error())
}
elfFile, err := elf.NewFile(sepFile)
if err != nil {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugPath, err.Error())
}
if elfFile.Machine != elf.EM_X86_64 {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugPath, ErrUnsupportedLinuxArch.Error())
}
return sepFile, elfFile, nil
}
// LoadBinaryInfoElf specifically loads information from an ELF binary.
func (bi *BinaryInfo) LoadBinaryInfoElf(path string, wg *sync.WaitGroup) error {
exe, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return err
}
bi.closer = exe
elfFile, err := elf.NewFile(exe)
if err != nil {
return err
}
if elfFile.Machine != elf.EM_X86_64 {
return ErrUnsupportedLinuxArch
}
dwarfFile := elfFile
bi.dwarf, err = elfFile.DWARF()
if err != nil {
var sepFile *os.File
var serr error
sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(elfFile)
if serr != nil {
if _, ok := serr.(*ErrNoBuildIDNote); ok {
return err
}
return serr
}
bi.sepDebugCloser = sepFile
bi.dwarf, err = dwarfFile.DWARF()
if err != nil {
return err
}
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(3)
go bi.parseDebugFrameElf(dwarfFile, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, nil)
go bi.setGStructOffsetElf(dwarfFile, wg)
return nil
}
func (bi *BinaryInfo) parseDebugFrameElf(exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameData, err := godwarf.GetDebugSectionElf(exe, "frame")
if err != nil {
bi.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoData, err := godwarf.GetDebugSectionElf(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameData, frame.DwarfEndian(debugInfoData))
}
func (bi *BinaryInfo) setGStructOffsetElf(exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
// This is a bit arcane. Essentially:
// - If the program is pure Go, it can do whatever it wants, and puts the G
// pointer at %fs-8.
// - Otherwise, Go asks the external linker to place the G pointer by
// emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen
// offset in libc's TLS block.
symbols, err := exe.Symbols()
if err != nil {
bi.setLoadError("could not parse ELF symbols: %v", err)
return
}
var tlsg *elf.Symbol
for _, symbol := range symbols {
if symbol.Name == "runtime.tlsg" {
s := symbol
tlsg = &s
break
}
}
if tlsg == nil {
bi.gStructOffset = ^uint64(8) + 1 // -8
return
}
var tls *elf.Prog
for _, prog := range exe.Progs {
if prog.Type == elf.PT_TLS {
tls = prog
break
}
}
// The TLS register points to the end of the TLS block, which is
// tls.Memsz long. runtime.tlsg is an offset from the beginning of that block.
bi.gStructOffset = ^(tls.Memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value
}
// PE ////////////////////////////////////////////////////////////////
// LoadBinaryInfoPE specifically loads information from a PE binary.
func (bi *BinaryInfo) LoadBinaryInfoPE(path string, wg *sync.WaitGroup) error {
peFile, closer, err := openExecutablePathPE(path)
if err != nil {
return err
}
bi.closer = closer
if peFile.Machine != pe.IMAGE_FILE_MACHINE_AMD64 {
return ErrUnsupportedWindowsArch
}
bi.dwarf, err = peFile.DWARF()
if err != nil {
return err
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(2)
go bi.parseDebugFramePE(peFile, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, nil)
// Use ArbitraryUserPointer (0x28) as pointer to pointer
// to G struct per:
// https://golang.org/src/runtime/cgo/gcc_windows_amd64.c
bi.gStructOffset = 0x28
return nil
}
func openExecutablePathPE(path string) (*pe.File, io.Closer, error) {
f, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return nil, nil, err
}
peFile, err := pe.NewFile(f)
if err != nil {
f.Close()
return nil, nil, err
}
return peFile, f, nil
}
func (bi *BinaryInfo) parseDebugFramePE(exe *pe.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame")
if err != nil {
bi.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionPE(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes))
}
// Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go
func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) {
for _, s := range f.Symbols {
if s.Name != name {
continue
}
if s.SectionNumber <= 0 {
return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber)
}
if len(f.Sections) < int(s.SectionNumber) {
return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections))
}
return s, nil
}
return nil, fmt.Errorf("no %s symbol found", name)
}
// MACH-O ////////////////////////////////////////////////////////////
// LoadBinaryInfoMacho specifically loads information from a Mach-O binary.
func (bi *BinaryInfo) LoadBinaryInfoMacho(path string, wg *sync.WaitGroup) error {
exe, err := macho.Open(path)
if err != nil {
return err
}
bi.closer = exe
if exe.Cpu != macho.CpuAmd64 {
return ErrUnsupportedDarwinArch
}
bi.dwarf, err = exe.DWARF()
if err != nil {
return err
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(2)
go bi.parseDebugFrameMacho(exe, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, bi.setGStructOffsetMacho)
return nil
}
func (bi *BinaryInfo) setGStructOffsetMacho() {
// In go1.11 it's 0x30, before 0x8a0, see:
// https://github.com/golang/go/issues/23617
// and go commit b3a854c733257c5249c3435ffcee194f8439676a
producer := bi.Producer()
if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
bi.gStructOffset = 0x30
return
}
bi.gStructOffset = 0x8a0
}
func (bi *BinaryInfo) parseDebugFrameMacho(exe *macho.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionMacho(exe, "frame")
if err != nil {
bi.setLoadError("could not get __debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes))
}