delve/proctl/threads.go

316 lines
7.5 KiB
Go
Raw Normal View History

2014-12-08 23:40:59 +00:00
package proctl
import (
"bytes"
"encoding/binary"
"fmt"
"syscall"
"github.com/derekparker/delve/dwarf/frame"
)
// ThreadContext represents a single thread of execution in the
// traced program.
type ThreadContext struct {
Id int
Process *DebuggedProcess
Status *syscall.WaitStatus
}
type Registers interface {
PC() uint64
SP() uint64
SetPC(int, uint64) error
2014-12-08 23:40:59 +00:00
}
// Obtains register values from the debugged process.
func (thread *ThreadContext) Registers() (Registers, error) {
regs, err := registers(thread.Id)
2014-12-08 23:40:59 +00:00
if err != nil {
return nil, fmt.Errorf("could not get registers %s", err)
}
return regs, nil
2014-12-08 23:40:59 +00:00
}
// Returns the current PC for this thread id.
func (thread *ThreadContext) CurrentPC() (uint64, error) {
regs, err := thread.Registers()
if err != nil {
return 0, err
}
return regs.PC(), nil
}
// PrintInfo prints out the thread status
// including: PC, tid, file, line, and function.
func (thread *ThreadContext) PrintInfo() error {
pc, err := thread.CurrentPC()
if err != nil {
return err
}
f, l, fn := thread.Process.GoSymTable.PCToLine(pc)
if fn != nil {
fmt.Printf("Thread %d at %#v %s:%d %s\n", thread.Id, pc, f, l, fn.Name)
} else {
fmt.Printf("Thread %d at %#v\n", thread.Id, pc)
}
return nil
}
// Sets a software breakpoint at addr, and stores it in the process wide
// break point table. Setting a break point must be thread specific due to
// ptrace actions needing the thread to be in a signal-delivery-stop in order
// to initiate any ptrace command. Otherwise, it really doesn't matter
// as we're only dealing with threads.
func (thread *ThreadContext) Break(addr uint64) (*BreakPoint, error) {
2014-12-08 23:40:59 +00:00
var (
int3 = []byte{0xCC}
f, l, fn = thread.Process.GoSymTable.PCToLine(uint64(addr))
originalData = make([]byte, 1)
)
if fn == nil {
return nil, InvalidAddressError{address: addr}
}
_, err := readMemory(thread.Id, uintptr(addr), originalData)
2014-12-08 23:40:59 +00:00
if err != nil {
fmt.Println("PEEK ERR")
return nil, err
}
if bytes.Equal(originalData, int3) {
return nil, BreakPointExistsError{f, l, addr}
}
_, err = writeMemory(thread.Id, uintptr(addr), int3)
2014-12-08 23:40:59 +00:00
if err != nil {
fmt.Println("POKE ERR")
return nil, err
}
breakpointIDCounter++
2014-12-08 23:40:59 +00:00
breakpoint := &BreakPoint{
FunctionName: fn.Name,
File: f,
Line: l,
Addr: addr,
2014-12-08 23:40:59 +00:00
OriginalData: originalData,
ID: breakpointIDCounter,
2014-12-08 23:40:59 +00:00
}
thread.Process.BreakPoints[addr] = breakpoint
2014-12-08 23:40:59 +00:00
return breakpoint, nil
}
// Clears a software breakpoint, and removes it from the process level
// break point table.
func (thread *ThreadContext) Clear(addr uint64) (*BreakPoint, error) {
bp, ok := thread.Process.BreakPoints[addr]
2014-12-08 23:40:59 +00:00
if !ok {
return nil, fmt.Errorf("No breakpoint currently set for %#v", addr)
2014-12-08 23:40:59 +00:00
}
if _, err := writeMemory(thread.Id, uintptr(bp.Addr), bp.OriginalData); err != nil {
2014-12-08 23:40:59 +00:00
return nil, fmt.Errorf("could not clear breakpoint %s", err)
}
delete(thread.Process.BreakPoints, addr)
2014-12-08 23:40:59 +00:00
return bp, nil
}
func (thread *ThreadContext) Continue() error {
// Check whether we are stopped at a breakpoint, and
// if so, single step over it before continuing.
regs, err := thread.Registers()
if err != nil {
return fmt.Errorf("could not get registers %s", err)
}
if _, ok := thread.Process.BreakPoints[regs.PC()-1]; ok {
err := thread.Step()
if err != nil {
return fmt.Errorf("could not step %s", err)
}
}
return syscall.PtraceCont(thread.Id, 0)
}
// Single steps this thread a single instruction, ensuring that
// we correctly handle the likely case that we are at a breakpoint.
func (thread *ThreadContext) Step() (err error) {
regs, err := thread.Registers()
if err != nil {
return err
}
bp, ok := thread.Process.BreakPoints[regs.PC()-1]
if ok {
// Clear the breakpoint so that we can continue execution.
_, err = thread.Clear(bp.Addr)
if err != nil {
return err
}
// Reset program counter to our restored instruction.
err = regs.SetPC(thread.Id, bp.Addr)
2014-12-08 23:40:59 +00:00
if err != nil {
return fmt.Errorf("could not set registers %s", err)
}
// Restore breakpoint now that we have passed it.
defer func() {
_, err = thread.Break(bp.Addr)
2014-12-08 23:40:59 +00:00
}()
}
err = syscall.PtraceSingleStep(thread.Id)
if err != nil {
return fmt.Errorf("step failed: %s", err.Error())
}
_, _, err = wait(thread.Id, 0)
if err != nil {
return err
}
return nil
}
// Step to next source line. Next will step over functions,
// and will follow through to the return address of a function.
// Next is implemented on the thread context, however during the
// course of this function running, it's very likely that the
// goroutine our M is executing will switch to another M, therefore
// this function cannot assume all execution will happen on this thread
// in the traced process.
func (thread *ThreadContext) Next() (err error) {
pc, err := thread.CurrentPC()
if err != nil {
return err
}
2014-12-29 02:48:58 +00:00
if bp, ok := thread.Process.BreakPoints[pc-1]; ok {
pc = bp.Addr
2014-12-08 23:40:59 +00:00
}
fde, err := thread.Process.FrameEntries.FDEForPC(pc)
if err != nil {
return err
}
2014-12-29 02:48:58 +00:00
_, l, _ := thread.Process.GoSymTable.PCToLine(pc)
2014-12-08 23:40:59 +00:00
ret := thread.ReturnAddressFromOffset(fde.ReturnAddressOffset(pc))
for {
2014-12-29 02:48:58 +00:00
if err = thread.Step(); err != nil {
return err
}
if pc, err = thread.CurrentPC(); err != nil {
2014-12-08 23:40:59 +00:00
return err
}
if !fde.Cover(pc) && pc != ret {
2014-12-29 02:48:58 +00:00
if err := thread.continueToReturnAddress(pc, fde); err != nil {
2014-12-08 23:40:59 +00:00
if _, ok := err.(InvalidAddressError); !ok {
return err
}
}
2014-12-29 02:48:58 +00:00
if pc, err = thread.CurrentPC(); err != nil {
return err
}
2014-12-08 23:40:59 +00:00
}
2014-12-29 02:48:58 +00:00
if _, nl, _ := thread.Process.GoSymTable.PCToLine(pc); nl != l {
2014-12-08 23:40:59 +00:00
break
}
}
return nil
}
func (thread *ThreadContext) continueToReturnAddress(pc uint64, fde *frame.FrameDescriptionEntry) error {
for !fde.Cover(pc) {
// Our offset here is be 0 because we
// have stepped into the first instruction
// of this function. Therefore the function
// has not had a chance to modify its' stack
// and change our offset.
addr := thread.ReturnAddressFromOffset(0)
bp, err := thread.Break(addr)
2014-12-08 23:40:59 +00:00
if err != nil {
if _, ok := err.(BreakPointExistsError); !ok {
return err
}
}
bp.temp = true
// Ensure we cleanup after ourselves no matter what.
defer thread.clearTempBreakpoint(bp.Addr)
for {
err = thread.Continue()
if err != nil {
return err
}
// We wait on -1 here because once we continue this
// thread, it's very possible the scheduler could of
// change the goroutine context on us, we there is
// no guarantee that waiting on this tid will ever
// return.
wpid, _, err := trapWait(thread.Process, -1, 0)
if err != nil {
return err
}
if wpid != thread.Id {
thread = thread.Process.Threads[wpid]
}
pc, _ = thread.CurrentPC()
if (pc - 1) == bp.Addr {
break
}
}
}
return nil
}
// Takes an offset from RSP and returns the address of the
// instruction the currect function is going to return to.
func (thread *ThreadContext) ReturnAddressFromOffset(offset int64) uint64 {
regs, err := thread.Registers()
if err != nil {
panic("Could not obtain register values")
}
retaddr := int64(regs.SP()) + offset
2014-12-08 23:40:59 +00:00
data := make([]byte, 8)
readMemory(thread.Id, uintptr(retaddr), data)
2014-12-08 23:40:59 +00:00
return binary.LittleEndian.Uint64(data)
}
func (thread *ThreadContext) clearTempBreakpoint(pc uint64) error {
if bp, ok := thread.Process.BreakPoints[pc]; ok {
_, err := thread.Clear(bp.Addr)
if err != nil {
return err
}
// Reset program counter to our restored instruction.
regs, err := thread.Registers()
if err != nil {
return err
}
return regs.SetPC(thread.Id, bp.Addr)
2014-12-08 23:40:59 +00:00
}
return nil
}