delve/pkg/proc/linutil/regs_amd64_arch.go

432 lines
11 KiB
Go
Raw Normal View History

package linutil
import (
"bytes"
"encoding/binary"
"fmt"
"golang.org/x/arch/x86/x86asm"
"github.com/go-delve/delve/pkg/proc"
)
// AMD64Registers implements the proc.Registers interface for the native/linux
// backend and core/linux backends, on AMD64.
type AMD64Registers struct {
Regs *AMD64PtraceRegs
Fpregs []proc.Register
Fpregset *AMD64Xstate
loadFpRegs func(*AMD64Registers) error
}
func NewAMD64Registers(regs *AMD64PtraceRegs, loadFpRegs func(*AMD64Registers) error) *AMD64Registers {
return &AMD64Registers{Regs: regs, loadFpRegs: loadFpRegs}
}
// AMD64PtraceRegs is the struct used by the linux kernel to return the
// general purpose registers for AMD64 CPUs.
type AMD64PtraceRegs struct {
R15 uint64
R14 uint64
R13 uint64
R12 uint64
Rbp uint64
Rbx uint64
R11 uint64
R10 uint64
R9 uint64
R8 uint64
Rax uint64
Rcx uint64
Rdx uint64
Rsi uint64
Rdi uint64
Orig_rax uint64
Rip uint64
Cs uint64
Eflags uint64
Rsp uint64
Ss uint64
Fs_base uint64
Gs_base uint64
Ds uint64
Es uint64
Fs uint64
Gs uint64
}
// Slice returns the registers as a list of (name, value) pairs.
func (r *AMD64Registers) Slice(floatingPoint bool) ([]proc.Register, error) {
var regs = []struct {
k string
v uint64
}{
{"Rip", r.Regs.Rip},
{"Rsp", r.Regs.Rsp},
{"Rax", r.Regs.Rax},
{"Rbx", r.Regs.Rbx},
{"Rcx", r.Regs.Rcx},
{"Rdx", r.Regs.Rdx},
{"Rdi", r.Regs.Rdi},
{"Rsi", r.Regs.Rsi},
{"Rbp", r.Regs.Rbp},
{"R8", r.Regs.R8},
{"R9", r.Regs.R9},
{"R10", r.Regs.R10},
{"R11", r.Regs.R11},
{"R12", r.Regs.R12},
{"R13", r.Regs.R13},
{"R14", r.Regs.R14},
{"R15", r.Regs.R15},
{"Orig_rax", r.Regs.Orig_rax},
{"Cs", r.Regs.Cs},
{"Rflags", r.Regs.Eflags},
{"Ss", r.Regs.Ss},
{"Fs_base", r.Regs.Fs_base},
{"Gs_base", r.Regs.Gs_base},
{"Ds", r.Regs.Ds},
{"Es", r.Regs.Es},
{"Fs", r.Regs.Fs},
{"Gs", r.Regs.Gs},
}
out := make([]proc.Register, 0, len(regs)+len(r.Fpregs))
for _, reg := range regs {
out = proc.AppendUint64Register(out, reg.k, reg.v)
}
var floatLoadError error
if floatingPoint {
if r.loadFpRegs != nil {
floatLoadError = r.loadFpRegs(r)
r.loadFpRegs = nil
}
out = append(out, r.Fpregs...)
}
return out, floatLoadError
}
// PC returns the value of RIP register.
func (r *AMD64Registers) PC() uint64 {
return r.Regs.Rip
}
// SP returns the value of RSP register.
func (r *AMD64Registers) SP() uint64 {
return r.Regs.Rsp
}
func (r *AMD64Registers) BP() uint64 {
return r.Regs.Rbp
}
// TLS returns the address of the thread local storage memory segment.
func (r *AMD64Registers) TLS() uint64 {
return r.Regs.Fs_base
}
// GAddr returns the address of the G variable if it is known, 0 and false
// otherwise.
func (r *AMD64Registers) GAddr() (uint64, bool) {
return 0, false
}
// Get returns the value of the n-th register (in x86asm order).
func (r *AMD64Registers) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000000ff
mask16 = 0x0000ffff
mask32 = 0xffffffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.Regs.Rax & mask8, nil
case x86asm.CL:
return r.Regs.Rcx & mask8, nil
case x86asm.DL:
return r.Regs.Rdx & mask8, nil
case x86asm.BL:
return r.Regs.Rbx & mask8, nil
case x86asm.AH:
return (r.Regs.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.Regs.Rcx >> 8) & mask8, nil
case x86asm.DH:
return (r.Regs.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.Regs.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.Regs.Rsp & mask8, nil
case x86asm.BPB:
return r.Regs.Rbp & mask8, nil
case x86asm.SIB:
return r.Regs.Rsi & mask8, nil
case x86asm.DIB:
return r.Regs.Rdi & mask8, nil
case x86asm.R8B:
return r.Regs.R8 & mask8, nil
case x86asm.R9B:
return r.Regs.R9 & mask8, nil
case x86asm.R10B:
return r.Regs.R10 & mask8, nil
case x86asm.R11B:
return r.Regs.R11 & mask8, nil
case x86asm.R12B:
return r.Regs.R12 & mask8, nil
case x86asm.R13B:
return r.Regs.R13 & mask8, nil
case x86asm.R14B:
return r.Regs.R14 & mask8, nil
case x86asm.R15B:
return r.Regs.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.Regs.Rax & mask16, nil
case x86asm.CX:
return r.Regs.Rcx & mask16, nil
case x86asm.DX:
return r.Regs.Rdx & mask16, nil
case x86asm.BX:
return r.Regs.Rbx & mask16, nil
case x86asm.SP:
return r.Regs.Rsp & mask16, nil
case x86asm.BP:
return r.Regs.Rbp & mask16, nil
case x86asm.SI:
return r.Regs.Rsi & mask16, nil
case x86asm.DI:
return r.Regs.Rdi & mask16, nil
case x86asm.R8W:
return r.Regs.R8 & mask16, nil
case x86asm.R9W:
return r.Regs.R9 & mask16, nil
case x86asm.R10W:
return r.Regs.R10 & mask16, nil
case x86asm.R11W:
return r.Regs.R11 & mask16, nil
case x86asm.R12W:
return r.Regs.R12 & mask16, nil
case x86asm.R13W:
return r.Regs.R13 & mask16, nil
case x86asm.R14W:
return r.Regs.R14 & mask16, nil
case x86asm.R15W:
return r.Regs.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.Regs.Rax & mask32, nil
case x86asm.ECX:
return r.Regs.Rcx & mask32, nil
case x86asm.EDX:
return r.Regs.Rdx & mask32, nil
case x86asm.EBX:
return r.Regs.Rbx & mask32, nil
case x86asm.ESP:
return r.Regs.Rsp & mask32, nil
case x86asm.EBP:
return r.Regs.Rbp & mask32, nil
case x86asm.ESI:
return r.Regs.Rsi & mask32, nil
case x86asm.EDI:
return r.Regs.Rdi & mask32, nil
case x86asm.R8L:
return r.Regs.R8 & mask32, nil
case x86asm.R9L:
return r.Regs.R9 & mask32, nil
case x86asm.R10L:
return r.Regs.R10 & mask32, nil
case x86asm.R11L:
return r.Regs.R11 & mask32, nil
case x86asm.R12L:
return r.Regs.R12 & mask32, nil
case x86asm.R13L:
return r.Regs.R13 & mask32, nil
case x86asm.R14L:
return r.Regs.R14 & mask32, nil
case x86asm.R15L:
return r.Regs.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.Regs.Rax, nil
case x86asm.RCX:
return r.Regs.Rcx, nil
case x86asm.RDX:
return r.Regs.Rdx, nil
case x86asm.RBX:
return r.Regs.Rbx, nil
case x86asm.RSP:
return r.Regs.Rsp, nil
case x86asm.RBP:
return r.Regs.Rbp, nil
case x86asm.RSI:
return r.Regs.Rsi, nil
case x86asm.RDI:
return r.Regs.Rdi, nil
case x86asm.R8:
return r.Regs.R8, nil
case x86asm.R9:
return r.Regs.R9, nil
case x86asm.R10:
return r.Regs.R10, nil
case x86asm.R11:
return r.Regs.R11, nil
case x86asm.R12:
return r.Regs.R12, nil
case x86asm.R13:
return r.Regs.R13, nil
case x86asm.R14:
return r.Regs.R14, nil
case x86asm.R15:
return r.Regs.R15, nil
}
return 0, proc.ErrUnknownRegister
}
2020-08-24 17:19:50 +00:00
// Copy returns a copy of these registers that is guaranteed not to change.
func (r *AMD64Registers) Copy() (proc.Registers, error) {
if r.loadFpRegs != nil {
err := r.loadFpRegs(r)
r.loadFpRegs = nil
if err != nil {
return nil, err
}
}
var rr AMD64Registers
rr.Regs = &AMD64PtraceRegs{}
rr.Fpregset = &AMD64Xstate{}
*(rr.Regs) = *(r.Regs)
if r.Fpregset != nil {
*(rr.Fpregset) = *(r.Fpregset)
}
if r.Fpregs != nil {
rr.Fpregs = make([]proc.Register, len(r.Fpregs))
copy(rr.Fpregs, r.Fpregs)
}
return &rr, nil
}
// AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type AMD64PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developers
// Manual, Volume 1: Basic Architecture.
type AMD64Xstate struct {
AMD64PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
Avx512State bool // contains AVX512 state
ZmmSpace [512]byte
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xsave *AMD64Xstate) Decode() (regs []proc.Register) {
// x87 registers
regs = proc.AppendUint64Register(regs, "CW", uint64(xsave.Cwd))
regs = proc.AppendUint64Register(regs, "SW", uint64(xsave.Swd))
regs = proc.AppendUint64Register(regs, "TW", uint64(xsave.Ftw))
regs = proc.AppendUint64Register(regs, "FOP", uint64(xsave.Fop))
regs = proc.AppendUint64Register(regs, "FIP", xsave.Rip)
regs = proc.AppendUint64Register(regs, "FDP", xsave.Rdp)
for i := 0; i < len(xsave.StSpace); i += 4 {
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, uint64(xsave.StSpace[i+1])<<32|uint64(xsave.StSpace[i]))
binary.Write(&buf, binary.LittleEndian, uint16(xsave.StSpace[i+2]))
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ST(%d)", i/4), buf.Bytes())
}
// SSE registers
regs = proc.AppendUint64Register(regs, "MXCSR", uint64(xsave.Mxcsr))
regs = proc.AppendUint64Register(regs, "MXCSR_MASK", uint64(xsave.MxcrMask))
for i := 0; i < len(xsave.XmmSpace); i += 16 {
n := i / 16
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("XMM%d", n), xsave.XmmSpace[i:i+16])
if xsave.AvxState {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("YMM%d", n), xsave.YmmSpace[i:i+16])
if xsave.Avx512State {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ZMM%d", n), xsave.ZmmSpace[n*32:(n+1)*32])
}
}
}
return
}
const (
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
_XSAVE_AVX512_ZMM_REGION_START = 1152
)
// LinuxX86XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developers Manual, Volume 1: Basic Architecture.
func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, &regset.AMD64PtraceFpRegs); err != nil {
return err
}
}
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := binary.LittleEndian.Uint64(xsaveheader[0:8])
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if xstate_bv&(1<<2) == 0 {
// AVX state not present
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
if xstate_bv&(1<<6) == 0 {
// AVX512 state not present
return nil
}
avx512state := xstateargs[_XSAVE_AVX512_ZMM_REGION_START:]
regset.Avx512State = true
copy(regset.ZmmSpace[:], avx512state[:len(regset.ZmmSpace)])
// TODO(aarzilli): if xstate_bv&(1<<7) is set then xstateargs[1664:2688]
// contains ZMM16 through ZMM31, those aren't just the higher 256bits, it's
// the full register so each is 64 bytes (512bits)
return nil
}