Disassemble command

Implements #368
This commit is contained in:
aarzilli 2016-02-06 07:00:48 +01:00 committed by Derek Parker
parent b370e20cd5
commit e7a9a3ea9a
26 changed files with 14830 additions and 3 deletions

4
Godeps/Godeps.json generated

@ -62,6 +62,10 @@
{
"ImportPath": "gopkg.in/yaml.v2",
"Rev": "53feefa2559fb8dfa8d81baad31be332c97d6c77"
},
{
"ImportPath": "rsc.io/x86/x86asm",
"Rev": "01d8f0379593fd888e08a4c4057d69f5765ab2e4"
}
]
}

@ -25,5 +25,7 @@ func main() {
fmt.Println("inline", s)
}
runtime.Breakpoint()
fn1("test")
afunction("test")
fmt.Println(fn1, fn2, fn3, o)
}

64
proc/disasm.go Normal file

@ -0,0 +1,64 @@
package proc
type AsmInstruction struct {
Loc Location
DestLoc *Location
Bytes []byte
Breakpoint bool
AtPC bool
Inst *ArchInst
}
type AssemblyFlavour int
const (
GNUFlavour = AssemblyFlavour(iota)
IntelFlavour
)
// Disassemble disassembles target memory between startPC and endPC
// If currentGoroutine is set and thread is stopped at a CALL instruction Disassemble will evaluate the argument of the CALL instruction using the thread's registers
// Be aware that the Bytes field of each returned instruction is a slice of a larger array of size endPC - startPC
func (thread *Thread) Disassemble(startPC, endPC uint64, currentGoroutine bool) ([]AsmInstruction, error) {
if thread.dbp.exited {
return nil, &ProcessExitedError{}
}
mem, err := thread.readMemory(uintptr(startPC), int(endPC-startPC))
if err != nil {
return nil, err
}
r := make([]AsmInstruction, 0, len(mem)/15)
pc := startPC
regs, _ := thread.Registers()
var curpc uint64
if regs != nil {
curpc = regs.PC()
}
for len(mem) > 0 {
bp, atbp := thread.dbp.Breakpoints[pc]
if atbp {
for i := range bp.OriginalData {
mem[i] = bp.OriginalData[i]
}
}
file, line, fn := thread.dbp.PCToLine(pc)
loc := Location{PC: pc, File: file, Line: line, Fn: fn}
inst, err := asmDecode(mem, pc)
if err == nil {
atpc := currentGoroutine && (curpc == pc)
destloc := thread.resolveCallArg(inst, atpc, regs)
r = append(r, AsmInstruction{Loc: loc, DestLoc: destloc, Bytes: mem[:inst.Len], Breakpoint: atbp, AtPC: atpc, Inst: inst})
pc += uint64(inst.Size())
mem = mem[inst.Size():]
} else {
r = append(r, AsmInstruction{Loc: loc, Bytes: mem[:1], Breakpoint: atbp, Inst: nil})
pc++
mem = mem[1:]
}
}
return r, nil
}

113
proc/disasm_amd64.go Normal file

@ -0,0 +1,113 @@
package proc
import (
"encoding/binary"
"rsc.io/x86/x86asm"
)
type ArchInst x86asm.Inst
func asmDecode(mem []byte, pc uint64) (*ArchInst, error) {
inst, err := x86asm.Decode(mem, 64)
if err != nil {
return nil, err
}
patchPCRel(pc, &inst)
r := ArchInst(inst)
return &r, nil
}
func (inst *ArchInst) Size() int {
return inst.Len
}
// converts PC relative arguments to absolute addresses
func patchPCRel(pc uint64, inst *x86asm.Inst) {
for i := range inst.Args {
rel, isrel := inst.Args[i].(x86asm.Rel)
if isrel {
inst.Args[i] = x86asm.Imm(int64(pc) + int64(rel) + int64(inst.Len))
}
}
return
}
func (inst *AsmInstruction) Text(flavour AssemblyFlavour) string {
if inst.Inst == nil {
return "?"
}
var text string
switch flavour {
case GNUFlavour:
text = x86asm.GNUSyntax(x86asm.Inst(*inst.Inst))
case IntelFlavour:
fallthrough
default:
text = x86asm.IntelSyntax(x86asm.Inst(*inst.Inst))
}
if inst.IsCall() && inst.DestLoc != nil && inst.DestLoc.Fn != nil {
text += " " + inst.DestLoc.Fn.Name
}
return text
}
func (inst *AsmInstruction) IsCall() bool {
return inst.Inst.Op == x86asm.CALL || inst.Inst.Op == x86asm.LCALL
}
func (thread *Thread) resolveCallArg(inst *ArchInst, currentGoroutine bool, regs Registers) *Location {
if inst.Op != x86asm.CALL && inst.Op != x86asm.LCALL {
return nil
}
var pc uint64
var err error
switch arg := inst.Args[0].(type) {
case x86asm.Imm:
pc = uint64(arg)
case x86asm.Reg:
if !currentGoroutine || regs == nil {
return nil
}
pc, err = regs.Get(int(arg))
if err != nil {
return nil
}
case x86asm.Mem:
if !currentGoroutine || regs == nil {
return nil
}
if arg.Segment != 0 {
return nil
}
regs, err := thread.Registers()
if err != nil {
return nil
}
base, err1 := regs.Get(int(arg.Base))
index, err2 := regs.Get(int(arg.Index))
if err1 != nil || err2 != nil {
return nil
}
addr := uintptr(int64(base) + int64(index*uint64(arg.Scale)) + arg.Disp)
//TODO: should this always be 64 bits instead of inst.MemBytes?
pcbytes, err := thread.readMemory(addr, inst.MemBytes)
if err != nil {
return nil
}
pc = binary.LittleEndian.Uint64(pcbytes)
default:
return nil
}
file, line, fn := thread.dbp.PCToLine(pc)
if fn == nil {
return nil
}
return &Location{PC: pc, File: file, Line: line, Fn: fn}
}

@ -1,6 +1,7 @@
package proc
import "fmt"
import "errors"
// Registers is an interface for a generic register type. The
// interface encapsulates the generic values / actions
@ -11,10 +12,13 @@ type Registers interface {
SP() uint64
CX() uint64
TLS() uint64
Get(int) (uint64, error)
SetPC(*Thread, uint64) error
String() string
}
var UnknownRegisterError = errors.New("unknown register")
// Registers obtains register values from the debugged process.
func (t *Thread) Registers() (Registers, error) {
regs, err := registers(t)

@ -5,6 +5,7 @@ import "C"
import (
"bytes"
"fmt"
"rsc.io/x86/x86asm"
)
// Regs represents CPU registers on an AMD64 processor.
@ -101,6 +102,163 @@ func (r *Regs) SetPC(thread *Thread, pc uint64) error {
return nil
}
func (r *Regs) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.rax & mask8, nil
case x86asm.CL:
return r.rcx & mask8, nil
case x86asm.DL:
return r.rdx & mask8, nil
case x86asm.BL:
return r.rbx & mask8, nil
case x86asm.AH:
return (r.rax >> 8) & mask8, nil
case x86asm.CH:
return (r.rax >> 8) & mask8, nil
case x86asm.DH:
return (r.rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.rsp & mask8, nil
case x86asm.BPB:
return r.rbp & mask8, nil
case x86asm.SIB:
return r.rsi & mask8, nil
case x86asm.DIB:
return r.rdi & mask8, nil
case x86asm.R8B:
return r.r8 & mask8, nil
case x86asm.R9B:
return r.r9 & mask8, nil
case x86asm.R10B:
return r.r10 & mask8, nil
case x86asm.R11B:
return r.r11 & mask8, nil
case x86asm.R12B:
return r.r12 & mask8, nil
case x86asm.R13B:
return r.r13 & mask8, nil
case x86asm.R14B:
return r.r14 & mask8, nil
case x86asm.R15B:
return r.r15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.rax & mask16, nil
case x86asm.CX:
return r.rcx & mask16, nil
case x86asm.DX:
return r.rdx & mask16, nil
case x86asm.BX:
return r.rbx & mask16, nil
case x86asm.SP:
return r.rsp & mask16, nil
case x86asm.BP:
return r.rbp & mask16, nil
case x86asm.SI:
return r.rsi & mask16, nil
case x86asm.DI:
return r.rdi & mask16, nil
case x86asm.R8W:
return r.r8 & mask16, nil
case x86asm.R9W:
return r.r9 & mask16, nil
case x86asm.R10W:
return r.r10 & mask16, nil
case x86asm.R11W:
return r.r11 & mask16, nil
case x86asm.R12W:
return r.r12 & mask16, nil
case x86asm.R13W:
return r.r13 & mask16, nil
case x86asm.R14W:
return r.r14 & mask16, nil
case x86asm.R15W:
return r.r15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.rax & mask32, nil
case x86asm.ECX:
return r.rcx & mask32, nil
case x86asm.EDX:
return r.rdx & mask32, nil
case x86asm.EBX:
return r.rbx & mask32, nil
case x86asm.ESP:
return r.rsp & mask32, nil
case x86asm.EBP:
return r.rbp & mask32, nil
case x86asm.ESI:
return r.rsi & mask32, nil
case x86asm.EDI:
return r.rdi & mask32, nil
case x86asm.R8L:
return r.r8 & mask32, nil
case x86asm.R9L:
return r.r9 & mask32, nil
case x86asm.R10L:
return r.r10 & mask32, nil
case x86asm.R11L:
return r.r11 & mask32, nil
case x86asm.R12L:
return r.r12 & mask32, nil
case x86asm.R13L:
return r.r13 & mask32, nil
case x86asm.R14L:
return r.r14 & mask32, nil
case x86asm.R15L:
return r.r15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.rax, nil
case x86asm.RCX:
return r.rcx, nil
case x86asm.RDX:
return r.rdx, nil
case x86asm.RBX:
return r.rbx, nil
case x86asm.RSP:
return r.rsp, nil
case x86asm.RBP:
return r.rbp, nil
case x86asm.RSI:
return r.rsi, nil
case x86asm.RDI:
return r.rdi, nil
case x86asm.R8:
return r.r8, nil
case x86asm.R9:
return r.r9, nil
case x86asm.R10:
return r.r10, nil
case x86asm.R11:
return r.r11, nil
case x86asm.R12:
return r.r12, nil
case x86asm.R13:
return r.r13, nil
case x86asm.R14:
return r.r14, nil
case x86asm.R15:
return r.r15, nil
}
return 0, UnknownRegisterError
}
func registers(thread *Thread) (Registers, error) {
var state C.x86_thread_state64_t
var identity C.thread_identifier_info_data_t

@ -3,6 +3,7 @@ package proc
import "fmt"
import "bytes"
import sys "golang.org/x/sys/unix"
import "rsc.io/x86/x86asm"
// Regs is a wrapper for sys.PtraceRegs.
type Regs struct {
@ -77,6 +78,163 @@ func (r *Regs) SetPC(thread *Thread, pc uint64) (err error) {
return
}
func (r *Regs) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.regs.Rax & mask8, nil
case x86asm.CL:
return r.regs.Rcx & mask8, nil
case x86asm.DL:
return r.regs.Rdx & mask8, nil
case x86asm.BL:
return r.regs.Rbx & mask8, nil
case x86asm.AH:
return (r.regs.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.regs.Rax >> 8) & mask8, nil
case x86asm.DH:
return (r.regs.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.regs.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.regs.Rsp & mask8, nil
case x86asm.BPB:
return r.regs.Rbp & mask8, nil
case x86asm.SIB:
return r.regs.Rsi & mask8, nil
case x86asm.DIB:
return r.regs.Rdi & mask8, nil
case x86asm.R8B:
return r.regs.R8 & mask8, nil
case x86asm.R9B:
return r.regs.R9 & mask8, nil
case x86asm.R10B:
return r.regs.R10 & mask8, nil
case x86asm.R11B:
return r.regs.R11 & mask8, nil
case x86asm.R12B:
return r.regs.R12 & mask8, nil
case x86asm.R13B:
return r.regs.R13 & mask8, nil
case x86asm.R14B:
return r.regs.R14 & mask8, nil
case x86asm.R15B:
return r.regs.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.regs.Rax & mask16, nil
case x86asm.CX:
return r.regs.Rcx & mask16, nil
case x86asm.DX:
return r.regs.Rdx & mask16, nil
case x86asm.BX:
return r.regs.Rbx & mask16, nil
case x86asm.SP:
return r.regs.Rsp & mask16, nil
case x86asm.BP:
return r.regs.Rbp & mask16, nil
case x86asm.SI:
return r.regs.Rsi & mask16, nil
case x86asm.DI:
return r.regs.Rdi & mask16, nil
case x86asm.R8W:
return r.regs.R8 & mask16, nil
case x86asm.R9W:
return r.regs.R9 & mask16, nil
case x86asm.R10W:
return r.regs.R10 & mask16, nil
case x86asm.R11W:
return r.regs.R11 & mask16, nil
case x86asm.R12W:
return r.regs.R12 & mask16, nil
case x86asm.R13W:
return r.regs.R13 & mask16, nil
case x86asm.R14W:
return r.regs.R14 & mask16, nil
case x86asm.R15W:
return r.regs.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.regs.Rax & mask32, nil
case x86asm.ECX:
return r.regs.Rcx & mask32, nil
case x86asm.EDX:
return r.regs.Rdx & mask32, nil
case x86asm.EBX:
return r.regs.Rbx & mask32, nil
case x86asm.ESP:
return r.regs.Rsp & mask32, nil
case x86asm.EBP:
return r.regs.Rbp & mask32, nil
case x86asm.ESI:
return r.regs.Rsi & mask32, nil
case x86asm.EDI:
return r.regs.Rdi & mask32, nil
case x86asm.R8L:
return r.regs.R8 & mask32, nil
case x86asm.R9L:
return r.regs.R9 & mask32, nil
case x86asm.R10L:
return r.regs.R10 & mask32, nil
case x86asm.R11L:
return r.regs.R11 & mask32, nil
case x86asm.R12L:
return r.regs.R12 & mask32, nil
case x86asm.R13L:
return r.regs.R13 & mask32, nil
case x86asm.R14L:
return r.regs.R14 & mask32, nil
case x86asm.R15L:
return r.regs.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.regs.Rax, nil
case x86asm.RCX:
return r.regs.Rcx, nil
case x86asm.RDX:
return r.regs.Rdx, nil
case x86asm.RBX:
return r.regs.Rbx, nil
case x86asm.RSP:
return r.regs.Rsp, nil
case x86asm.RBP:
return r.regs.Rbp, nil
case x86asm.RSI:
return r.regs.Rsi, nil
case x86asm.RDI:
return r.regs.Rdi, nil
case x86asm.R8:
return r.regs.R8, nil
case x86asm.R9:
return r.regs.R9, nil
case x86asm.R10:
return r.regs.R10, nil
case x86asm.R11:
return r.regs.R11, nil
case x86asm.R12:
return r.regs.R12, nil
case x86asm.R13:
return r.regs.R13, nil
case x86asm.R14:
return r.regs.R14, nil
case x86asm.R15:
return r.regs.R15, nil
}
return 0, UnknownRegisterError
}
func registers(thread *Thread) (Registers, error) {
var (
regs sys.PtraceRegs

@ -7,6 +7,7 @@ import (
"fmt"
"syscall"
"unsafe"
"rsc.io/x86/x86asm"
)
// Regs represents CPU registers on an AMD64 processor.
@ -114,6 +115,163 @@ func (r *Regs) SetPC(thread *Thread, pc uint64) error {
return nil
}
func (r *Regs) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.rax & mask8, nil
case x86asm.CL:
return r.rcx & mask8, nil
case x86asm.DL:
return r.rdx & mask8, nil
case x86asm.BL:
return r.rbx & mask8, nil
case x86asm.AH:
return (r.rax >> 8) & mask8, nil
case x86asm.CH:
return (r.rax >> 8) & mask8, nil
case x86asm.DH:
return (r.rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.rsp & mask8, nil
case x86asm.BPB:
return r.rbp & mask8, nil
case x86asm.SIB:
return r.rsi & mask8, nil
case x86asm.DIB:
return r.rdi & mask8, nil
case x86asm.R8B:
return r.r8 & mask8, nil
case x86asm.R9B:
return r.r9 & mask8, nil
case x86asm.R10B:
return r.r10 & mask8, nil
case x86asm.R11B:
return r.r11 & mask8, nil
case x86asm.R12B:
return r.r12 & mask8, nil
case x86asm.R13B:
return r.r13 & mask8, nil
case x86asm.R14B:
return r.r14 & mask8, nil
case x86asm.R15B:
return r.r15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.rax & mask16, nil
case x86asm.CX:
return r.rcx & mask16, nil
case x86asm.DX:
return r.rdx & mask16, nil
case x86asm.BX:
return r.rbx & mask16, nil
case x86asm.SP:
return r.rsp & mask16, nil
case x86asm.BP:
return r.rbp & mask16, nil
case x86asm.SI:
return r.rsi & mask16, nil
case x86asm.DI:
return r.rdi & mask16, nil
case x86asm.R8W:
return r.r8 & mask16, nil
case x86asm.R9W:
return r.r9 & mask16, nil
case x86asm.R10W:
return r.r10 & mask16, nil
case x86asm.R11W:
return r.r11 & mask16, nil
case x86asm.R12W:
return r.r12 & mask16, nil
case x86asm.R13W:
return r.r13 & mask16, nil
case x86asm.R14W:
return r.r14 & mask16, nil
case x86asm.R15W:
return r.r15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.rax & mask32, nil
case x86asm.ECX:
return r.rcx & mask32, nil
case x86asm.EDX:
return r.rdx & mask32, nil
case x86asm.EBX:
return r.rbx & mask32, nil
case x86asm.ESP:
return r.rsp & mask32, nil
case x86asm.EBP:
return r.rbp & mask32, nil
case x86asm.ESI:
return r.rsi & mask32, nil
case x86asm.EDI:
return r.rdi & mask32, nil
case x86asm.R8L:
return r.r8 & mask32, nil
case x86asm.R9L:
return r.r9 & mask32, nil
case x86asm.R10L:
return r.r10 & mask32, nil
case x86asm.R11L:
return r.r11 & mask32, nil
case x86asm.R12L:
return r.r12 & mask32, nil
case x86asm.R13L:
return r.r13 & mask32, nil
case x86asm.R14L:
return r.r14 & mask32, nil
case x86asm.R15L:
return r.r15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.rax, nil
case x86asm.RCX:
return r.rcx, nil
case x86asm.RDX:
return r.rdx, nil
case x86asm.RBX:
return r.rbx, nil
case x86asm.RSP:
return r.rsp, nil
case x86asm.RBP:
return r.rbp, nil
case x86asm.RSI:
return r.rsi, nil
case x86asm.RDI:
return r.rdi, nil
case x86asm.R8:
return r.r8, nil
case x86asm.R9:
return r.r9, nil
case x86asm.R10:
return r.r10, nil
case x86asm.R11:
return r.r11, nil
case x86asm.R12:
return r.r12, nil
case x86asm.R13:
return r.r13, nil
case x86asm.R14:
return r.r14, nil
case x86asm.R15:
return r.r15, nil
}
return 0, UnknownRegisterError
}
func registers(thread *Thread) (Registers, error) {
var context C.CONTEXT

@ -193,3 +193,19 @@ func ConvertLocation(loc proc.Location) Location {
Function: ConvertFunction(loc.Fn),
}
}
func ConvertAsmInstruction(inst proc.AsmInstruction, text string) AsmInstruction {
var destloc *Location
if inst.DestLoc != nil {
r := ConvertLocation(*inst.DestLoc)
destloc = &r
}
return AsmInstruction{
Loc: ConvertLocation(inst.Loc),
DestLoc: destloc,
Text: text,
Bytes: inst.Bytes,
Breakpoint: inst.Breakpoint,
AtPC: inst.AtPC,
}
}

@ -1,6 +1,9 @@
package api
import "reflect"
import (
"github.com/derekparker/delve/proc"
"reflect"
)
// DebuggerState represents the current context of the debugger.
type DebuggerState struct {
@ -197,3 +200,28 @@ const (
// Halt suspends the process.
Halt = "halt"
)
type AssemblyFlavour int
const (
GNUFlavour = AssemblyFlavour(proc.GNUFlavour)
IntelFlavour = AssemblyFlavour(proc.IntelFlavour)
)
// AsmInstruction represents one assembly instruction at some address
type AsmInstruction struct {
// Loc is the location of this instruction
Loc Location
// Destination of CALL instructions
DestLoc *Location
// Text is the formatted representation of the instruction
Text string
// Bytes is the instruction as read from memory
Bytes []byte
// If Breakpoint is true a breakpoint is set at this instruction
Breakpoint bool
// In AtPC is true this is the instruction the current thread is stopped at
AtPC bool
}
type AsmInstructions []AsmInstruction

@ -90,4 +90,9 @@ type Client interface {
// * *<address> returns the location corresponding to the specified address
// NOTE: this function does not actually set breakpoints.
FindLocation(scope api.EvalScope, loc string) ([]api.Location, error)
// Disassemble code between startPC and endPC
DisassembleRange(scope api.EvalScope, startPC, endPC uint64, flavour api.AssemblyFlavour) (api.AsmInstructions, error)
// Disassemble code of the function containing PC
DisassemblePC(scope api.EvalScope, pc uint64, flavour api.AssemblyFlavour) (api.AsmInstructions, error)
}

@ -575,3 +575,41 @@ func (d *Debugger) FindLocation(scope api.EvalScope, locStr string) ([]api.Locat
}
return locs, err
}
// Disassembles code between startPC and endPC
// if endPC == 0 it will find the function containing startPC and disassemble the whole function
func (d *Debugger) Disassemble(scope api.EvalScope, startPC, endPC uint64, flavour api.AssemblyFlavour) (api.AsmInstructions, error) {
if endPC == 0 {
_, _, fn := d.process.PCToLine(startPC)
if fn == nil {
return nil, fmt.Errorf("Address 0x%x does not belong to any function", startPC)
}
startPC = fn.Entry
endPC = fn.End
}
s, err := d.process.ConvertEvalScope(scope.GoroutineID, scope.Frame)
if err != nil {
return nil, err
}
currentGoroutine := true
if scope.GoroutineID != -1 {
g, _ := s.Thread.GetG()
if g == nil || g.ID != scope.GoroutineID {
currentGoroutine = false
}
}
insts, err := s.Thread.Disassemble(startPC, endPC, currentGoroutine)
if err != nil {
return nil, err
}
disass := make(api.AsmInstructions, len(insts))
for i := range insts {
disass[i] = api.ConvertAsmInstruction(insts[i], insts[i].Text(proc.AssemblyFlavour(flavour)))
}
return disass, nil
}

@ -2,10 +2,10 @@ package debugger
import (
"fmt"
sys "golang.org/x/sys/unix"
"io/ioutil"
"os"
"syscall"
sys "golang.org/x/sys/unix"
)
func attachErrorMessage(pid int, err error) error {

@ -246,6 +246,20 @@ func (c *RPCClient) FindLocation(scope api.EvalScope, loc string) ([]api.Locatio
return answer, err
}
// Disassemble code between startPC and endPC
func (c *RPCClient) DisassembleRange(scope api.EvalScope, startPC, endPC uint64, flavour api.AssemblyFlavour) (api.AsmInstructions, error) {
var r api.AsmInstructions
err := c.call("Disassemble", DisassembleRequest{scope, startPC, endPC, flavour}, &r)
return r, err
}
// Disassemble function containing pc
func (c *RPCClient) DisassemblePC(scope api.EvalScope, pc uint64, flavour api.AssemblyFlavour) (api.AsmInstructions, error) {
var r api.AsmInstructions
err := c.call("Disassemble", DisassembleRequest{scope, pc, 0, flavour}, &r)
return r, err
}
func (c *RPCClient) url(path string) string {
return fmt.Sprintf("http://%s%s", c.addr, path)
}

@ -322,3 +322,15 @@ func (c *RPCServer) FindLocation(args FindLocationArgs, answer *[]api.Location)
*answer, err = c.debugger.FindLocation(args.Scope, args.Loc)
return err
}
type DisassembleRequest struct {
Scope api.EvalScope
StartPC, EndPC uint64
Flavour api.AssemblyFlavour
}
func (c *RPCServer) Disassemble(args DisassembleRequest, answer *api.AsmInstructions) error {
var err error
*answer, err = c.debugger.Disassemble(args.Scope, args.StartPC, args.EndPC, args.Flavour)
return err
}

@ -835,6 +835,122 @@ func TestIssue355(t *testing.T) {
assertError(err, t, "Stacktrace()")
_, err = c.FindLocation(api.EvalScope{gid, 0}, "+1")
assertError(err, t, "FindLocation()")
_, err = c.DisassemblePC(api.EvalScope{-1, 0}, 0x40100, api.IntelFlavour)
assertError(err, t, "DisassemblePC()")
})
}
func getCurinstr(d3 api.AsmInstructions) *api.AsmInstruction {
for i := range d3 {
if d3[i].AtPC {
return &d3[i]
}
}
return nil
}
func TestDisasm(t *testing.T) {
// Tests that disassembling by PC, range, and current PC all yeld similar results
// Tests that disassembly by current PC will return a disassembly containing the instruction at PC
// Tests that stepping on a calculated CALL instruction will yield a disassembly that contains the
// effective destination of the CALL instruction
withTestClient("locationsprog2", t, func(c service.Client) {
ch := c.Continue()
state := <-ch
assertNoError(state.Err, t, "Continue()")
locs, err := c.FindLocation(api.EvalScope{-1, 0}, "main.main")
assertNoError(err, t, "FindLocation()")
if len(locs) != 1 {
t.Fatalf("wrong number of locations for main.main: %d", len(locs))
}
d1, err := c.DisassemblePC(api.EvalScope{-1, 0}, locs[0].PC, api.IntelFlavour)
assertNoError(err, t, "DisassemblePC()")
if len(d1) < 2 {
t.Fatalf("wrong size of disassembly: %d", len(d1))
}
pcstart := d1[0].Loc.PC
pcend := d1[len(d1)-1].Loc.PC + uint64(len(d1[len(d1)-1].Bytes))
d2, err := c.DisassembleRange(api.EvalScope{-1, 0}, pcstart, pcend, api.IntelFlavour)
assertNoError(err, t, "DisassembleRange()")
if len(d1) != len(d2) {
t.Logf("d1: %v", d1)
t.Logf("d2: %v", d2)
t.Fatal("mismatched length between disassemble pc and disassemble range")
}
d3, err := c.DisassemblePC(api.EvalScope{-1, 0}, state.CurrentThread.PC, api.IntelFlavour)
assertNoError(err, t, "DisassemblePC() - second call")
if len(d1) != len(d3) {
t.Logf("d1: %v", d1)
t.Logf("d3: %v", d3)
t.Fatal("mismatched length between the two calls of disassemble pc")
}
// look for static call to afunction() on line 29
found := false
for i := range d3 {
if d3[i].Loc.Line == 29 && strings.HasPrefix(d3[i].Text, "call") && d3[i].DestLoc != nil && d3[i].DestLoc.Function != nil && d3[i].DestLoc.Function.Name == "main.afunction" {
found = true
break
}
}
if !found {
t.Fatal("Could not find call to main.afunction on line 29")
}
haspc := false
for i := range d3 {
if d3[i].AtPC {
haspc = true
break
}
}
if !haspc {
t.Logf("d3: %v", d3)
t.Fatal("PC instruction not found")
}
startinstr := getCurinstr(d3)
count := 0
for {
if count > 20 {
t.Fatal("too many step instructions executed without finding a call instruction")
}
state, err := c.StepInstruction()
assertNoError(err, t, fmt.Sprintf("StepInstruction() %d", count))
d3, err = c.DisassemblePC(api.EvalScope{-1, 0}, state.CurrentThread.PC, api.IntelFlavour)
assertNoError(err, t, fmt.Sprintf("StepInstruction() %d", count))
curinstr := getCurinstr(d3)
if curinstr == nil {
t.Fatalf("Could not find current instruction %d", count)
}
if curinstr.Loc.Line != startinstr.Loc.Line {
t.Fatal("Calling StepInstruction() repeatedly did not find the call instruction")
}
if strings.HasPrefix(curinstr.Text, "call") {
t.Logf("call: %v", curinstr)
if curinstr.DestLoc == nil || curinstr.DestLoc.Function == nil {
t.Fatalf("Call instruction does not have destination: %v", curinstr)
}
if curinstr.DestLoc.Function.Name != "main.afunction" {
t.Fatalf("Call instruction destination not main.afunction: %v", curinstr)
}
break
}
count++
}
})
}

@ -4,6 +4,7 @@ package terminal
import (
"bufio"
"errors"
"fmt"
"go/parser"
"go/scanner"
@ -83,6 +84,7 @@ func DebugCommands(client service.Client) *Commands {
{aliases: []string{"stack", "bt"}, cmdFn: stackCommand, helpMsg: "stack [<depth>] [-full]. Prints stack."},
{aliases: []string{"frame"}, cmdFn: frame, helpMsg: "Sets current stack frame (0 is the top of the stack)"},
{aliases: []string{"source"}, cmdFn: c.sourceCommand, helpMsg: "Executes a file containing a list of delve commands"},
{aliases: []string{"diassemble", "disass"}, cmdFn: g0f0(disassCommand), helpMsg: "Disassembles memory"},
}
return c
@ -371,6 +373,8 @@ func scopePrefix(t *Term, cmdstr string) error {
return printVar(t, scope, rest)
case "set":
return setVar(t, scope, rest)
case "disassemble", "disasm":
return disassCommand(t, scope, rest)
default:
return fmt.Errorf("unknown command %s", cmd)
}
@ -818,6 +822,67 @@ func (c *Commands) sourceCommand(t *Term, args string) error {
return c.executeFile(t, args)
}
var disasmUsageError = errors.New("wrong number of arguments: disassemble [-a <start> <end>] [-l <locspec>]")
func disassCommand(t *Term, scope api.EvalScope, args string) error {
var cmd, rest string
if args != "" {
argv := strings.SplitN(args, " ", 2)
if len(argv) != 2 {
return disasmUsageError
}
cmd = argv[0]
rest = argv[1]
}
var disasm api.AsmInstructions
var disasmErr error
switch cmd {
case "":
locs, err := t.client.FindLocation(scope, "+0")
if err != nil {
return err
}
disasm, disasmErr = t.client.DisassemblePC(scope, locs[0].PC, api.IntelFlavour)
case "-a":
v := strings.SplitN(rest, " ", 2)
if len(v) != 2 {
return disasmUsageError
}
startpc, err := strconv.ParseInt(v[0], 0, 64)
if err != nil {
return fmt.Errorf("wrong argument: %s is not a number", v[0])
}
endpc, err := strconv.ParseInt(v[1], 0, 64)
if err != nil {
return fmt.Errorf("wrong argument: %s is not a number", v[1])
}
disasm, disasmErr = t.client.DisassembleRange(scope, uint64(startpc), uint64(endpc), api.IntelFlavour)
case "-l":
locs, err := t.client.FindLocation(scope, rest)
if err != nil {
return err
}
if len(locs) != 1 {
return errors.New("expression specifies multiple locations")
}
disasm, disasmErr = t.client.DisassemblePC(scope, locs[0].PC, api.IntelFlavour)
default:
return disasmUsageError
}
if disasmErr != nil {
return disasmErr
}
fmt.Printf("printing\n")
DisasmPrint(disasm, os.Stdout)
return nil
}
func digits(n int) int {
if n <= 0 {
return 1

@ -101,6 +101,6 @@ func TestExecuteFile(t *testing.T) {
}
func TestIssue354(t *testing.T) {
printStack([]api.Stackframe{ }, "")
printStack([]api.Stackframe{}, "")
printStack([]api.Stackframe{{api.Location{PC: 0, File: "irrelevant.go", Line: 10, Function: nil}, nil, nil}}, "")
}

31
terminal/disasmprint.go Normal file

@ -0,0 +1,31 @@
package terminal
import (
"bufio"
"fmt"
"github.com/derekparker/delve/service/api"
"io"
"path/filepath"
"text/tabwriter"
)
func DisasmPrint(dv api.AsmInstructions, out io.Writer) {
bw := bufio.NewWriter(out)
defer bw.Flush()
if len(dv) > 0 && dv[0].Loc.Function != nil {
fmt.Fprintf(bw, "TEXT %s(SB) %s\n", dv[0].Loc.Function.Name, dv[0].Loc.File)
}
tw := tabwriter.NewWriter(bw, 1, 8, 1, '\t', 0)
defer tw.Flush()
for _, inst := range dv {
atbp := ""
if inst.Breakpoint {
atbp = "*"
}
atpc := ""
if inst.AtPC {
atpc = "=>"
}
fmt.Fprintf(tw, "%s\t%s:%d\t%#x%s\t%x\t%s\n", atpc, filepath.Base(inst.Loc.File), inst.Loc.Line, inst.Loc.PC, atbp, inst.Bytes, inst.Text)
}
}

2
vendor/rsc.io/x86/x86asm/Makefile generated vendored Normal file

@ -0,0 +1,2 @@
tables.go: ../x86map/map.go ../x86.csv
go run ../x86map/map.go -fmt=decoder ../x86.csv >_tables.go && gofmt _tables.go >tables.go && rm _tables.go

1646
vendor/rsc.io/x86/x86asm/decode.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

926
vendor/rsc.io/x86/x86asm/gnu.go generated vendored Normal file

@ -0,0 +1,926 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86asm
import (
"fmt"
"strings"
)
// GNUSyntax returns the GNU assembler syntax for the instruction, as defined by GNU binutils.
// This general form is often called ``AT&T syntax'' as a reference to AT&T System V Unix.
func GNUSyntax(inst Inst) string {
// Rewrite instruction to mimic GNU peculiarities.
// Note that inst has been passed by value and contains
// no pointers, so any changes we make here are local
// and will not propagate back out to the caller.
// Adjust opcode [sic].
switch inst.Op {
case FDIV, FDIVR, FSUB, FSUBR, FDIVP, FDIVRP, FSUBP, FSUBRP:
// DC E0, DC F0: libopcodes swaps FSUBR/FSUB and FDIVR/FDIV, at least
// if you believe the Intel manual is correct (the encoding is irregular as given;
// libopcodes uses the more regular expected encoding).
// TODO(rsc): Test to ensure Intel manuals are correct and report to libopcodes maintainers?
// NOTE: iant thinks this is deliberate, but we can't find the history.
_, reg1 := inst.Args[0].(Reg)
_, reg2 := inst.Args[1].(Reg)
if reg1 && reg2 && (inst.Opcode>>24 == 0xDC || inst.Opcode>>24 == 0xDE) {
switch inst.Op {
case FDIV:
inst.Op = FDIVR
case FDIVR:
inst.Op = FDIV
case FSUB:
inst.Op = FSUBR
case FSUBR:
inst.Op = FSUB
case FDIVP:
inst.Op = FDIVRP
case FDIVRP:
inst.Op = FDIVP
case FSUBP:
inst.Op = FSUBRP
case FSUBRP:
inst.Op = FSUBP
}
}
case MOVNTSD:
// MOVNTSD is F2 0F 2B /r.
// MOVNTSS is F3 0F 2B /r (supposedly; not in manuals).
// Usually inner prefixes win for display,
// so that F3 F2 0F 2B 11 is REP MOVNTSD
// and F2 F3 0F 2B 11 is REPN MOVNTSS.
// Libopcodes always prefers MOVNTSS regardless of prefix order.
if countPrefix(&inst, 0xF3) > 0 {
found := false
for i := len(inst.Prefix) - 1; i >= 0; i-- {
switch inst.Prefix[i] & 0xFF {
case 0xF3:
if !found {
found = true
inst.Prefix[i] |= PrefixImplicit
}
case 0xF2:
inst.Prefix[i] &^= PrefixImplicit
}
}
inst.Op = MOVNTSS
}
}
// Add implicit arguments.
switch inst.Op {
case MONITOR:
inst.Args[0] = EDX
inst.Args[1] = ECX
inst.Args[2] = EAX
if inst.AddrSize == 16 {
inst.Args[2] = AX
}
case MWAIT:
if inst.Mode == 64 {
inst.Args[0] = RCX
inst.Args[1] = RAX
} else {
inst.Args[0] = ECX
inst.Args[1] = EAX
}
}
// Adjust which prefixes will be displayed.
// The rule is to display all the prefixes not implied by
// the usual instruction display, that is, all the prefixes
// except the ones with PrefixImplicit set.
// However, of course, there are exceptions to the rule.
switch inst.Op {
case CRC32:
// CRC32 has a mandatory F2 prefix.
// If there are multiple F2s and no F3s, the extra F2s do not print.
// (And Decode has already marked them implicit.)
// However, if there is an F3 anywhere, then the extra F2s do print.
// If there are multiple F2 prefixes *and* an (ignored) F3,
// then libopcodes prints the extra F2s as REPNs.
if countPrefix(&inst, 0xF2) > 1 {
unmarkImplicit(&inst, 0xF2)
markLastImplicit(&inst, 0xF2)
}
// An unused data size override should probably be shown,
// to distinguish DATA16 CRC32B from plain CRC32B,
// but libopcodes always treats the final override as implicit
// and the others as explicit.
unmarkImplicit(&inst, PrefixDataSize)
markLastImplicit(&inst, PrefixDataSize)
case CVTSI2SD, CVTSI2SS:
if !isMem(inst.Args[1]) {
markLastImplicit(&inst, PrefixDataSize)
}
case CVTSD2SI, CVTSS2SI, CVTTSD2SI, CVTTSS2SI,
ENTER, FLDENV, FNSAVE, FNSTENV, FRSTOR, LGDT, LIDT, LRET,
POP, PUSH, RET, SGDT, SIDT, SYSRET, XBEGIN:
markLastImplicit(&inst, PrefixDataSize)
case LOOP, LOOPE, LOOPNE, MONITOR:
markLastImplicit(&inst, PrefixAddrSize)
case MOV:
// The 16-bit and 32-bit forms of MOV Sreg, dst and MOV src, Sreg
// cannot be distinguished when src or dst refers to memory, because
// Sreg is always a 16-bit value, even when we're doing a 32-bit
// instruction. Because the instruction tables distinguished these two,
// any operand size prefix has been marked as used (to decide which
// branch to take). Unmark it, so that it will show up in disassembly,
// so that the reader can tell the size of memory operand.
// up with the same arguments
dst, _ := inst.Args[0].(Reg)
src, _ := inst.Args[1].(Reg)
if ES <= src && src <= GS && isMem(inst.Args[0]) || ES <= dst && dst <= GS && isMem(inst.Args[1]) {
unmarkImplicit(&inst, PrefixDataSize)
}
case MOVDQU:
if countPrefix(&inst, 0xF3) > 1 {
unmarkImplicit(&inst, 0xF3)
markLastImplicit(&inst, 0xF3)
}
case MOVQ2DQ:
markLastImplicit(&inst, PrefixDataSize)
case SLDT, SMSW, STR, FXRSTOR, XRSTOR, XSAVE, XSAVEOPT, CMPXCHG8B:
if isMem(inst.Args[0]) {
unmarkImplicit(&inst, PrefixDataSize)
}
case SYSEXIT:
unmarkImplicit(&inst, PrefixDataSize)
}
if isCondJmp[inst.Op] || isLoop[inst.Op] || inst.Op == JCXZ || inst.Op == JECXZ || inst.Op == JRCXZ {
if countPrefix(&inst, PrefixCS) > 0 && countPrefix(&inst, PrefixDS) > 0 {
for i, p := range inst.Prefix {
switch p & 0xFFF {
case PrefixPN, PrefixPT:
inst.Prefix[i] &= 0xF0FF // cut interpretation bits, producing original segment prefix
}
}
}
}
// XACQUIRE/XRELEASE adjustment.
if inst.Op == MOV {
// MOV into memory is a candidate for turning REP into XRELEASE.
// However, if the REP is followed by a REPN, that REPN blocks the
// conversion.
haveREPN := false
for i := len(inst.Prefix) - 1; i >= 0; i-- {
switch inst.Prefix[i] &^ PrefixIgnored {
case PrefixREPN:
haveREPN = true
case PrefixXRELEASE:
if haveREPN {
inst.Prefix[i] = PrefixREP
}
}
}
}
// We only format the final F2/F3 as XRELEASE/XACQUIRE.
haveXA := false
haveXR := false
for i := len(inst.Prefix) - 1; i >= 0; i-- {
switch inst.Prefix[i] &^ PrefixIgnored {
case PrefixXRELEASE:
if !haveXR {
haveXR = true
} else {
inst.Prefix[i] = PrefixREP
}
case PrefixXACQUIRE:
if !haveXA {
haveXA = true
} else {
inst.Prefix[i] = PrefixREPN
}
}
}
// Determine opcode.
op := strings.ToLower(inst.Op.String())
if alt := gnuOp[inst.Op]; alt != "" {
op = alt
}
// Determine opcode suffix.
// Libopcodes omits the suffix if the width of the operation
// can be inferred from a register arguments. For example,
// add $1, %ebx has no suffix because you can tell from the
// 32-bit register destination that it is a 32-bit add,
// but in addl $1, (%ebx), the destination is memory, so the
// size is not evident without the l suffix.
needSuffix := true
SuffixLoop:
for i, a := range inst.Args {
if a == nil {
break
}
switch a := a.(type) {
case Reg:
switch inst.Op {
case MOVSX, MOVZX:
continue
case SHL, SHR, RCL, RCR, ROL, ROR, SAR:
if i == 1 {
// shift count does not tell us operand size
continue
}
case CRC32:
// The source argument does tell us operand size,
// but libopcodes still always puts a suffix on crc32.
continue
case PUSH, POP:
// Even though segment registers are 16-bit, push and pop
// can save/restore them from 32-bit slots, so they
// do not imply operand size.
if ES <= a && a <= GS {
continue
}
case CVTSI2SD, CVTSI2SS:
// The integer register argument takes priority.
if X0 <= a && a <= X15 {
continue
}
}
if AL <= a && a <= R15 || ES <= a && a <= GS || X0 <= a && a <= X15 || M0 <= a && a <= M7 {
needSuffix = false
break SuffixLoop
}
}
}
if needSuffix {
switch inst.Op {
case CMPXCHG8B, FLDCW, FNSTCW, FNSTSW, LDMXCSR, LLDT, LMSW, LTR, PCLMULQDQ,
SETA, SETAE, SETB, SETBE, SETE, SETG, SETGE, SETL, SETLE, SETNE, SETNO, SETNP, SETNS, SETO, SETP, SETS,
SLDT, SMSW, STMXCSR, STR, VERR, VERW:
// For various reasons, libopcodes emits no suffix for these instructions.
case CRC32:
op += byteSizeSuffix(argBytes(&inst, inst.Args[1]))
case LGDT, LIDT, SGDT, SIDT:
op += byteSizeSuffix(inst.DataSize / 8)
case MOVZX, MOVSX:
// Integer size conversions get two suffixes.
op = op[:4] + byteSizeSuffix(argBytes(&inst, inst.Args[1])) + byteSizeSuffix(argBytes(&inst, inst.Args[0]))
case LOOP, LOOPE, LOOPNE:
// Add w suffix to indicate use of CX register instead of ECX.
if inst.AddrSize == 16 {
op += "w"
}
case CALL, ENTER, JMP, LCALL, LEAVE, LJMP, LRET, RET, SYSRET, XBEGIN:
// Add w suffix to indicate use of 16-bit target.
// Exclude JMP rel8.
if inst.Opcode>>24 == 0xEB {
break
}
if inst.DataSize == 16 && inst.Mode != 16 {
markLastImplicit(&inst, PrefixDataSize)
op += "w"
} else if inst.Mode == 64 {
op += "q"
}
case FRSTOR, FNSAVE, FNSTENV, FLDENV:
// Add s suffix to indicate shortened FPU state (I guess).
if inst.DataSize == 16 {
op += "s"
}
case PUSH, POP:
if markLastImplicit(&inst, PrefixDataSize) {
op += byteSizeSuffix(inst.DataSize / 8)
} else if inst.Mode == 64 {
op += "q"
} else {
op += byteSizeSuffix(inst.MemBytes)
}
default:
if isFloat(inst.Op) {
// I can't explain any of this, but it's what libopcodes does.
switch inst.MemBytes {
default:
if (inst.Op == FLD || inst.Op == FSTP) && isMem(inst.Args[0]) {
op += "t"
}
case 4:
if isFloatInt(inst.Op) {
op += "l"
} else {
op += "s"
}
case 8:
if isFloatInt(inst.Op) {
op += "ll"
} else {
op += "l"
}
}
break
}
op += byteSizeSuffix(inst.MemBytes)
}
}
// Adjust special case opcodes.
switch inst.Op {
case 0:
if inst.Prefix[0] != 0 {
return strings.ToLower(inst.Prefix[0].String())
}
case INT:
if inst.Opcode>>24 == 0xCC {
inst.Args[0] = nil
op = "int3"
}
case CMPPS, CMPPD, CMPSD_XMM, CMPSS:
imm, ok := inst.Args[2].(Imm)
if ok && 0 <= imm && imm < 8 {
inst.Args[2] = nil
op = cmppsOps[imm] + op[3:]
}
case PCLMULQDQ:
imm, ok := inst.Args[2].(Imm)
if ok && imm&^0x11 == 0 {
inst.Args[2] = nil
op = pclmulqOps[(imm&0x10)>>3|(imm&1)]
}
case XLATB:
if markLastImplicit(&inst, PrefixAddrSize) {
op = "xlat" // not xlatb
}
}
// Build list of argument strings.
var (
usedPrefixes bool // segment prefixes consumed by Mem formatting
args []string // formatted arguments
)
for i, a := range inst.Args {
if a == nil {
break
}
switch inst.Op {
case MOVSB, MOVSW, MOVSD, MOVSQ, OUTSB, OUTSW, OUTSD:
if i == 0 {
usedPrefixes = true // disable use of prefixes for first argument
} else {
usedPrefixes = false
}
}
if a == Imm(1) && (inst.Opcode>>24)&^1 == 0xD0 {
continue
}
args = append(args, gnuArg(&inst, a, &usedPrefixes))
}
// The default is to print the arguments in reverse Intel order.
// A few instructions inhibit this behavior.
switch inst.Op {
case BOUND, LCALL, ENTER, LJMP:
// no reverse
default:
// reverse args
for i, j := 0, len(args)-1; i < j; i, j = i+1, j-1 {
args[i], args[j] = args[j], args[i]
}
}
// Build prefix string.
// Must be after argument formatting, which can turn off segment prefixes.
var (
prefix = "" // output string
numAddr = 0
numData = 0
implicitData = false
)
for _, p := range inst.Prefix {
if p&0xFF == PrefixDataSize && p&PrefixImplicit != 0 {
implicitData = true
}
}
for _, p := range inst.Prefix {
if p == 0 {
break
}
if p&PrefixImplicit != 0 {
continue
}
switch p &^ (PrefixIgnored | PrefixInvalid) {
default:
if p.IsREX() {
if p&0xFF == PrefixREX {
prefix += "rex "
} else {
prefix += "rex." + p.String()[4:] + " "
}
break
}
prefix += strings.ToLower(p.String()) + " "
case PrefixPN:
op += ",pn"
continue
case PrefixPT:
op += ",pt"
continue
case PrefixAddrSize, PrefixAddr16, PrefixAddr32:
// For unknown reasons, if the addr16 prefix is repeated,
// libopcodes displays all but the last as addr32, even though
// the addressing form used in a memory reference is clearly
// still 16-bit.
n := 32
if inst.Mode == 32 {
n = 16
}
numAddr++
if countPrefix(&inst, PrefixAddrSize) > numAddr {
n = inst.Mode
}
prefix += fmt.Sprintf("addr%d ", n)
continue
case PrefixData16, PrefixData32:
if implicitData && countPrefix(&inst, PrefixDataSize) > 1 {
// Similar to the addr32 logic above, but it only kicks in
// when something used the data size prefix (one is implicit).
n := 16
if inst.Mode == 16 {
n = 32
}
numData++
if countPrefix(&inst, PrefixDataSize) > numData {
if inst.Mode == 16 {
n = 16
} else {
n = 32
}
}
prefix += fmt.Sprintf("data%d ", n)
continue
}
prefix += strings.ToLower(p.String()) + " "
}
}
// Finally! Put it all together.
text := prefix + op
if args != nil {
text += " "
// Indirect call/jmp gets a star to distinguish from direct jump address.
if (inst.Op == CALL || inst.Op == JMP || inst.Op == LJMP || inst.Op == LCALL) && (isMem(inst.Args[0]) || isReg(inst.Args[0])) {
text += "*"
}
text += strings.Join(args, ",")
}
return text
}
// gnuArg returns the GNU syntax for the argument x from the instruction inst.
// If *usedPrefixes is false and x is a Mem, then the formatting
// includes any segment prefixes and sets *usedPrefixes to true.
func gnuArg(inst *Inst, x Arg, usedPrefixes *bool) string {
if x == nil {
return "<nil>"
}
switch x := x.(type) {
case Reg:
switch inst.Op {
case CVTSI2SS, CVTSI2SD, CVTSS2SI, CVTSD2SI, CVTTSD2SI, CVTTSS2SI:
if inst.DataSize == 16 && EAX <= x && x <= R15L {
x -= EAX - AX
}
case IN, INSB, INSW, INSD, OUT, OUTSB, OUTSW, OUTSD:
// DX is the port, but libopcodes prints it as if it were a memory reference.
if x == DX {
return "(%dx)"
}
}
return gccRegName[x]
case Mem:
seg := ""
var haveCS, haveDS, haveES, haveFS, haveGS, haveSS bool
switch x.Segment {
case CS:
haveCS = true
case DS:
haveDS = true
case ES:
haveES = true
case FS:
haveFS = true
case GS:
haveGS = true
case SS:
haveSS = true
}
switch inst.Op {
case INSB, INSW, INSD, STOSB, STOSW, STOSD, STOSQ, SCASB, SCASW, SCASD, SCASQ:
// These do not accept segment prefixes, at least in the GNU rendering.
default:
if *usedPrefixes {
break
}
for i := len(inst.Prefix) - 1; i >= 0; i-- {
p := inst.Prefix[i] &^ PrefixIgnored
if p == 0 {
continue
}
switch p {
case PrefixCS:
if !haveCS {
haveCS = true
inst.Prefix[i] |= PrefixImplicit
}
case PrefixDS:
if !haveDS {
haveDS = true
inst.Prefix[i] |= PrefixImplicit
}
case PrefixES:
if !haveES {
haveES = true
inst.Prefix[i] |= PrefixImplicit
}
case PrefixFS:
if !haveFS {
haveFS = true
inst.Prefix[i] |= PrefixImplicit
}
case PrefixGS:
if !haveGS {
haveGS = true
inst.Prefix[i] |= PrefixImplicit
}
case PrefixSS:
if !haveSS {
haveSS = true
inst.Prefix[i] |= PrefixImplicit
}
}
}
*usedPrefixes = true
}
if haveCS {
seg += "%cs:"
}
if haveDS {
seg += "%ds:"
}
if haveSS {
seg += "%ss:"
}
if haveES {
seg += "%es:"
}
if haveFS {
seg += "%fs:"
}
if haveGS {
seg += "%gs:"
}
disp := ""
if x.Disp != 0 {
disp = fmt.Sprintf("%#x", x.Disp)
}
if x.Scale == 0 || x.Index == 0 && x.Scale == 1 && (x.Base == ESP || x.Base == RSP || x.Base == 0 && inst.Mode == 64) {
if x.Base == 0 {
return seg + disp
}
return fmt.Sprintf("%s%s(%s)", seg, disp, gccRegName[x.Base])
}
base := gccRegName[x.Base]
if x.Base == 0 {
base = ""
}
index := gccRegName[x.Index]
if x.Index == 0 {
if inst.AddrSize == 64 {
index = "%riz"
} else {
index = "%eiz"
}
}
if AX <= x.Base && x.Base <= DI {
// 16-bit addressing - no scale
return fmt.Sprintf("%s%s(%s,%s)", seg, disp, base, index)
}
return fmt.Sprintf("%s%s(%s,%s,%d)", seg, disp, base, index, x.Scale)
case Rel:
return fmt.Sprintf(".%+#x", int32(x))
case Imm:
if inst.Mode == 32 {
return fmt.Sprintf("$%#x", uint32(x))
}
return fmt.Sprintf("$%#x", int64(x))
}
return x.String()
}
var gccRegName = [...]string{
0: "REG0",
AL: "%al",
CL: "%cl",
BL: "%bl",
DL: "%dl",
AH: "%ah",
CH: "%ch",
BH: "%bh",
DH: "%dh",
SPB: "%spl",
BPB: "%bpl",
SIB: "%sil",
DIB: "%dil",
R8B: "%r8b",
R9B: "%r9b",
R10B: "%r10b",
R11B: "%r11b",
R12B: "%r12b",
R13B: "%r13b",
R14B: "%r14b",
R15B: "%r15b",
AX: "%ax",
CX: "%cx",
BX: "%bx",
DX: "%dx",
SP: "%sp",
BP: "%bp",
SI: "%si",
DI: "%di",
R8W: "%r8w",
R9W: "%r9w",
R10W: "%r10w",
R11W: "%r11w",
R12W: "%r12w",
R13W: "%r13w",
R14W: "%r14w",
R15W: "%r15w",
EAX: "%eax",
ECX: "%ecx",
EDX: "%edx",
EBX: "%ebx",
ESP: "%esp",
EBP: "%ebp",
ESI: "%esi",
EDI: "%edi",
R8L: "%r8d",
R9L: "%r9d",
R10L: "%r10d",
R11L: "%r11d",
R12L: "%r12d",
R13L: "%r13d",
R14L: "%r14d",
R15L: "%r15d",
RAX: "%rax",
RCX: "%rcx",
RDX: "%rdx",
RBX: "%rbx",
RSP: "%rsp",
RBP: "%rbp",
RSI: "%rsi",
RDI: "%rdi",
R8: "%r8",
R9: "%r9",
R10: "%r10",
R11: "%r11",
R12: "%r12",
R13: "%r13",
R14: "%r14",
R15: "%r15",
IP: "%ip",
EIP: "%eip",
RIP: "%rip",
F0: "%st",
F1: "%st(1)",
F2: "%st(2)",
F3: "%st(3)",
F4: "%st(4)",
F5: "%st(5)",
F6: "%st(6)",
F7: "%st(7)",
M0: "%mm0",
M1: "%mm1",
M2: "%mm2",
M3: "%mm3",
M4: "%mm4",
M5: "%mm5",
M6: "%mm6",
M7: "%mm7",
X0: "%xmm0",
X1: "%xmm1",
X2: "%xmm2",
X3: "%xmm3",
X4: "%xmm4",
X5: "%xmm5",
X6: "%xmm6",
X7: "%xmm7",
X8: "%xmm8",
X9: "%xmm9",
X10: "%xmm10",
X11: "%xmm11",
X12: "%xmm12",
X13: "%xmm13",
X14: "%xmm14",
X15: "%xmm15",
CS: "%cs",
SS: "%ss",
DS: "%ds",
ES: "%es",
FS: "%fs",
GS: "%gs",
GDTR: "%gdtr",
IDTR: "%idtr",
LDTR: "%ldtr",
MSW: "%msw",
TASK: "%task",
CR0: "%cr0",
CR1: "%cr1",
CR2: "%cr2",
CR3: "%cr3",
CR4: "%cr4",
CR5: "%cr5",
CR6: "%cr6",
CR7: "%cr7",
CR8: "%cr8",
CR9: "%cr9",
CR10: "%cr10",
CR11: "%cr11",
CR12: "%cr12",
CR13: "%cr13",
CR14: "%cr14",
CR15: "%cr15",
DR0: "%db0",
DR1: "%db1",
DR2: "%db2",
DR3: "%db3",
DR4: "%db4",
DR5: "%db5",
DR6: "%db6",
DR7: "%db7",
TR0: "%tr0",
TR1: "%tr1",
TR2: "%tr2",
TR3: "%tr3",
TR4: "%tr4",
TR5: "%tr5",
TR6: "%tr6",
TR7: "%tr7",
}
var gnuOp = map[Op]string{
CBW: "cbtw",
CDQ: "cltd",
CMPSD: "cmpsl",
CMPSD_XMM: "cmpsd",
CWD: "cwtd",
CWDE: "cwtl",
CQO: "cqto",
INSD: "insl",
IRET: "iretw",
IRETD: "iret",
IRETQ: "iretq",
LODSB: "lods",
LODSD: "lods",
LODSQ: "lods",
LODSW: "lods",
MOVSD: "movsl",
MOVSD_XMM: "movsd",
OUTSD: "outsl",
POPA: "popaw",
POPAD: "popa",
POPF: "popfw",
POPFD: "popf",
PUSHA: "pushaw",
PUSHAD: "pusha",
PUSHF: "pushfw",
PUSHFD: "pushf",
SCASB: "scas",
SCASD: "scas",
SCASQ: "scas",
SCASW: "scas",
STOSB: "stos",
STOSD: "stos",
STOSQ: "stos",
STOSW: "stos",
XLATB: "xlat",
}
var cmppsOps = []string{
"cmpeq",
"cmplt",
"cmple",
"cmpunord",
"cmpneq",
"cmpnlt",
"cmpnle",
"cmpord",
}
var pclmulqOps = []string{
"pclmullqlqdq",
"pclmulhqlqdq",
"pclmullqhqdq",
"pclmulhqhqdq",
}
func countPrefix(inst *Inst, target Prefix) int {
n := 0
for _, p := range inst.Prefix {
if p&0xFF == target&0xFF {
n++
}
}
return n
}
func markLastImplicit(inst *Inst, prefix Prefix) bool {
for i := len(inst.Prefix) - 1; i >= 0; i-- {
p := inst.Prefix[i]
if p&0xFF == prefix {
inst.Prefix[i] |= PrefixImplicit
return true
}
}
return false
}
func unmarkImplicit(inst *Inst, prefix Prefix) {
for i := len(inst.Prefix) - 1; i >= 0; i-- {
p := inst.Prefix[i]
if p&0xFF == prefix {
inst.Prefix[i] &^= PrefixImplicit
}
}
}
func byteSizeSuffix(b int) string {
switch b {
case 1:
return "b"
case 2:
return "w"
case 4:
return "l"
case 8:
return "q"
}
return ""
}
func argBytes(inst *Inst, arg Arg) int {
if isMem(arg) {
return inst.MemBytes
}
return regBytes(arg)
}
func isFloat(op Op) bool {
switch op {
case FADD, FCOM, FCOMP, FDIV, FDIVR, FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD, FIMUL, FIST, FISTP, FISTTP, FISUB, FISUBR, FLD, FMUL, FST, FSTP, FSUB, FSUBR:
return true
}
return false
}
func isFloatInt(op Op) bool {
switch op {
case FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD, FIMUL, FIST, FISTP, FISTTP, FISUB, FISUBR:
return true
}
return false
}

643
vendor/rsc.io/x86/x86asm/inst.go generated vendored Normal file

@ -0,0 +1,643 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package x86asm implements decoding of x86 machine code.
package x86asm
import (
"bytes"
"fmt"
)
// An Inst is a single instruction.
type Inst struct {
Prefix Prefixes // Prefixes applied to the instruction.
Op Op // Opcode mnemonic
Opcode uint32 // Encoded opcode bits, left aligned (first byte is Opcode>>24, etc)
Args Args // Instruction arguments, in Intel order
Mode int // processor mode in bits: 16, 32, or 64
AddrSize int // address size in bits: 16, 32, or 64
DataSize int // operand size in bits: 16, 32, or 64
MemBytes int // size of memory argument in bytes: 1, 2, 4, 8, 16, and so on.
Len int // length of encoded instruction in bytes
PCRel int // length of PC-relative address in instruction encoding
PCRelOff int // index of start of PC-relative address in instruction encoding
}
// Prefixes is an array of prefixes associated with a single instruction.
// The prefixes are listed in the same order as found in the instruction:
// each prefix byte corresponds to one slot in the array. The first zero
// in the array marks the end of the prefixes.
type Prefixes [14]Prefix
// A Prefix represents an Intel instruction prefix.
// The low 8 bits are the actual prefix byte encoding,
// and the top 8 bits contain distinguishing bits and metadata.
type Prefix uint16
const (
// Metadata about the role of a prefix in an instruction.
PrefixImplicit Prefix = 0x8000 // prefix is implied by instruction text
PrefixIgnored Prefix = 0x4000 // prefix is ignored: either irrelevant or overridden by a later prefix
PrefixInvalid Prefix = 0x2000 // prefix makes entire instruction invalid (bad LOCK)
// Memory segment overrides.
PrefixES Prefix = 0x26 // ES segment override
PrefixCS Prefix = 0x2E // CS segment override
PrefixSS Prefix = 0x36 // SS segment override
PrefixDS Prefix = 0x3E // DS segment override
PrefixFS Prefix = 0x64 // FS segment override
PrefixGS Prefix = 0x65 // GS segment override
// Branch prediction.
PrefixPN Prefix = 0x12E // predict not taken (conditional branch only)
PrefixPT Prefix = 0x13E // predict taken (conditional branch only)
// Size attributes.
PrefixDataSize Prefix = 0x66 // operand size override
PrefixData16 Prefix = 0x166
PrefixData32 Prefix = 0x266
PrefixAddrSize Prefix = 0x67 // address size override
PrefixAddr16 Prefix = 0x167
PrefixAddr32 Prefix = 0x267
// One of a kind.
PrefixLOCK Prefix = 0xF0 // lock
PrefixREPN Prefix = 0xF2 // repeat not zero
PrefixXACQUIRE Prefix = 0x1F2
PrefixBND Prefix = 0x2F2
PrefixREP Prefix = 0xF3 // repeat
PrefixXRELEASE Prefix = 0x1F3
// The REX prefixes must be in the range [PrefixREX, PrefixREX+0x10).
// the other bits are set or not according to the intended use.
PrefixREX Prefix = 0x40 // REX 64-bit extension prefix
PrefixREXW Prefix = 0x08 // extension bit W (64-bit instruction width)
PrefixREXR Prefix = 0x04 // extension bit R (r field in modrm)
PrefixREXX Prefix = 0x02 // extension bit X (index field in sib)
PrefixREXB Prefix = 0x01 // extension bit B (r/m field in modrm or base field in sib)
)
// IsREX reports whether p is a REX prefix byte.
func (p Prefix) IsREX() bool {
return p&0xF0 == PrefixREX
}
func (p Prefix) String() string {
p &^= PrefixImplicit | PrefixIgnored | PrefixInvalid
if s := prefixNames[p]; s != "" {
return s
}
if p.IsREX() {
s := "REX."
if p&PrefixREXW != 0 {
s += "W"
}
if p&PrefixREXR != 0 {
s += "R"
}
if p&PrefixREXX != 0 {
s += "X"
}
if p&PrefixREXB != 0 {
s += "B"
}
return s
}
return fmt.Sprintf("Prefix(%#x)", int(p))
}
// An Op is an x86 opcode.
type Op uint32
func (op Op) String() string {
i := int(op)
if i < 0 || i >= len(opNames) || opNames[i] == "" {
return fmt.Sprintf("Op(%d)", i)
}
return opNames[i]
}
// An Args holds the instruction arguments.
// If an instruction has fewer than 4 arguments,
// the final elements in the array are nil.
type Args [4]Arg
// An Arg is a single instruction argument,
// one of these types: Reg, Mem, Imm, Rel.
type Arg interface {
String() string
isArg()
}
// Note that the implements of Arg that follow are all sized
// so that on a 64-bit machine the data can be inlined in
// the interface value instead of requiring an allocation.
// A Reg is a single register.
// The zero Reg value has no name but indicates ``no register.''
type Reg uint8
const (
_ Reg = iota
// 8-bit
AL
CL
DL
BL
AH
CH
DH
BH
SPB
BPB
SIB
DIB
R8B
R9B
R10B
R11B
R12B
R13B
R14B
R15B
// 16-bit
AX
CX
DX
BX
SP
BP
SI
DI
R8W
R9W
R10W
R11W
R12W
R13W
R14W
R15W
// 32-bit
EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI
R8L
R9L
R10L
R11L
R12L
R13L
R14L
R15L
// 64-bit
RAX
RCX
RDX
RBX
RSP
RBP
RSI
RDI
R8
R9
R10
R11
R12
R13
R14
R15
// Instruction pointer.
IP // 16-bit
EIP // 32-bit
RIP // 64-bit
// 387 floating point registers.
F0
F1
F2
F3
F4
F5
F6
F7
// MMX registers.
M0
M1
M2
M3
M4
M5
M6
M7
// XMM registers.
X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
// Segment registers.
ES
CS
SS
DS
FS
GS
// System registers.
GDTR
IDTR
LDTR
MSW
TASK
// Control registers.
CR0
CR1
CR2
CR3
CR4
CR5
CR6
CR7
CR8
CR9
CR10
CR11
CR12
CR13
CR14
CR15
// Debug registers.
DR0
DR1
DR2
DR3
DR4
DR5
DR6
DR7
DR8
DR9
DR10
DR11
DR12
DR13
DR14
DR15
// Task registers.
TR0
TR1
TR2
TR3
TR4
TR5
TR6
TR7
)
const regMax = TR7
func (Reg) isArg() {}
func (r Reg) String() string {
i := int(r)
if i < 0 || i >= len(regNames) || regNames[i] == "" {
return fmt.Sprintf("Reg(%d)", i)
}
return regNames[i]
}
// A Mem is a memory reference.
// The general form is Segment:[Base+Scale*Index+Disp].
type Mem struct {
Segment Reg
Base Reg
Scale uint8
Index Reg
Disp int64
}
func (Mem) isArg() {}
func (m Mem) String() string {
var base, plus, scale, index, disp string
if m.Base != 0 {
base = m.Base.String()
}
if m.Scale != 0 {
if m.Base != 0 {
plus = "+"
}
if m.Scale > 1 {
scale = fmt.Sprintf("%d*", m.Scale)
}
index = m.Index.String()
}
if m.Disp != 0 || m.Base == 0 && m.Scale == 0 {
disp = fmt.Sprintf("%+#x", m.Disp)
}
return "[" + base + plus + scale + index + disp + "]"
}
// A Rel is an offset relative to the current instruction pointer.
type Rel int32
func (Rel) isArg() {}
func (r Rel) String() string {
return fmt.Sprintf(".%+d", r)
}
// An Imm is an integer constant.
type Imm int64
func (Imm) isArg() {}
func (i Imm) String() string {
return fmt.Sprintf("%#x", int64(i))
}
func (i Inst) String() string {
var buf bytes.Buffer
for _, p := range i.Prefix {
if p == 0 {
break
}
if p&PrefixImplicit != 0 {
continue
}
fmt.Fprintf(&buf, "%v ", p)
}
fmt.Fprintf(&buf, "%v", i.Op)
sep := " "
for _, v := range i.Args {
if v == nil {
break
}
fmt.Fprintf(&buf, "%s%v", sep, v)
sep = ", "
}
return buf.String()
}
func isReg(a Arg) bool {
_, ok := a.(Reg)
return ok
}
func isSegReg(a Arg) bool {
r, ok := a.(Reg)
return ok && ES <= r && r <= GS
}
func isMem(a Arg) bool {
_, ok := a.(Mem)
return ok
}
func isImm(a Arg) bool {
_, ok := a.(Imm)
return ok
}
func regBytes(a Arg) int {
r, ok := a.(Reg)
if !ok {
return 0
}
if AL <= r && r <= R15B {
return 1
}
if AX <= r && r <= R15W {
return 2
}
if EAX <= r && r <= R15L {
return 4
}
if RAX <= r && r <= R15 {
return 8
}
return 0
}
func isSegment(p Prefix) bool {
switch p {
case PrefixCS, PrefixDS, PrefixES, PrefixFS, PrefixGS, PrefixSS:
return true
}
return false
}
// The Op definitions and string list are in tables.go.
var prefixNames = map[Prefix]string{
PrefixCS: "CS",
PrefixDS: "DS",
PrefixES: "ES",
PrefixFS: "FS",
PrefixGS: "GS",
PrefixSS: "SS",
PrefixLOCK: "LOCK",
PrefixREP: "REP",
PrefixREPN: "REPN",
PrefixAddrSize: "ADDRSIZE",
PrefixDataSize: "DATASIZE",
PrefixAddr16: "ADDR16",
PrefixData16: "DATA16",
PrefixAddr32: "ADDR32",
PrefixData32: "DATA32",
PrefixBND: "BND",
PrefixXACQUIRE: "XACQUIRE",
PrefixXRELEASE: "XRELEASE",
PrefixREX: "REX",
PrefixPT: "PT",
PrefixPN: "PN",
}
var regNames = [...]string{
AL: "AL",
CL: "CL",
BL: "BL",
DL: "DL",
AH: "AH",
CH: "CH",
BH: "BH",
DH: "DH",
SPB: "SPB",
BPB: "BPB",
SIB: "SIB",
DIB: "DIB",
R8B: "R8B",
R9B: "R9B",
R10B: "R10B",
R11B: "R11B",
R12B: "R12B",
R13B: "R13B",
R14B: "R14B",
R15B: "R15B",
AX: "AX",
CX: "CX",
BX: "BX",
DX: "DX",
SP: "SP",
BP: "BP",
SI: "SI",
DI: "DI",
R8W: "R8W",
R9W: "R9W",
R10W: "R10W",
R11W: "R11W",
R12W: "R12W",
R13W: "R13W",
R14W: "R14W",
R15W: "R15W",
EAX: "EAX",
ECX: "ECX",
EDX: "EDX",
EBX: "EBX",
ESP: "ESP",
EBP: "EBP",
ESI: "ESI",
EDI: "EDI",
R8L: "R8L",
R9L: "R9L",
R10L: "R10L",
R11L: "R11L",
R12L: "R12L",
R13L: "R13L",
R14L: "R14L",
R15L: "R15L",
RAX: "RAX",
RCX: "RCX",
RDX: "RDX",
RBX: "RBX",
RSP: "RSP",
RBP: "RBP",
RSI: "RSI",
RDI: "RDI",
R8: "R8",
R9: "R9",
R10: "R10",
R11: "R11",
R12: "R12",
R13: "R13",
R14: "R14",
R15: "R15",
IP: "IP",
EIP: "EIP",
RIP: "RIP",
F0: "F0",
F1: "F1",
F2: "F2",
F3: "F3",
F4: "F4",
F5: "F5",
F6: "F6",
F7: "F7",
M0: "M0",
M1: "M1",
M2: "M2",
M3: "M3",
M4: "M4",
M5: "M5",
M6: "M6",
M7: "M7",
X0: "X0",
X1: "X1",
X2: "X2",
X3: "X3",
X4: "X4",
X5: "X5",
X6: "X6",
X7: "X7",
X8: "X8",
X9: "X9",
X10: "X10",
X11: "X11",
X12: "X12",
X13: "X13",
X14: "X14",
X15: "X15",
CS: "CS",
SS: "SS",
DS: "DS",
ES: "ES",
FS: "FS",
GS: "GS",
GDTR: "GDTR",
IDTR: "IDTR",
LDTR: "LDTR",
MSW: "MSW",
TASK: "TASK",
CR0: "CR0",
CR1: "CR1",
CR2: "CR2",
CR3: "CR3",
CR4: "CR4",
CR5: "CR5",
CR6: "CR6",
CR7: "CR7",
CR8: "CR8",
CR9: "CR9",
CR10: "CR10",
CR11: "CR11",
CR12: "CR12",
CR13: "CR13",
CR14: "CR14",
CR15: "CR15",
DR0: "DR0",
DR1: "DR1",
DR2: "DR2",
DR3: "DR3",
DR4: "DR4",
DR5: "DR5",
DR6: "DR6",
DR7: "DR7",
DR8: "DR8",
DR9: "DR9",
DR10: "DR10",
DR11: "DR11",
DR12: "DR12",
DR13: "DR13",
DR14: "DR14",
DR15: "DR15",
TR0: "TR0",
TR1: "TR1",
TR2: "TR2",
TR3: "TR3",
TR4: "TR4",
TR5: "TR5",
TR6: "TR6",
TR7: "TR7",
}

518
vendor/rsc.io/x86/x86asm/intel.go generated vendored Normal file

@ -0,0 +1,518 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86asm
import (
"fmt"
"strings"
)
// IntelSyntax returns the Intel assembler syntax for the instruction, as defined by Intel's XED tool.
func IntelSyntax(inst Inst) string {
var iargs []Arg
for _, a := range inst.Args {
if a == nil {
break
}
iargs = append(iargs, a)
}
switch inst.Op {
case INSB, INSD, INSW, OUTSB, OUTSD, OUTSW, LOOPNE, JCXZ, JECXZ, JRCXZ, LOOP, LOOPE, MOV, XLATB:
if inst.Op == MOV && (inst.Opcode>>16)&0xFFFC != 0x0F20 {
break
}
for i, p := range inst.Prefix {
if p&0xFF == PrefixAddrSize {
inst.Prefix[i] &^= PrefixImplicit
}
}
}
switch inst.Op {
case MOV:
dst, _ := inst.Args[0].(Reg)
src, _ := inst.Args[1].(Reg)
if ES <= dst && dst <= GS && EAX <= src && src <= R15L {
src -= EAX - AX
iargs[1] = src
}
if ES <= dst && dst <= GS && RAX <= src && src <= R15 {
src -= RAX - AX
iargs[1] = src
}
if inst.Opcode>>24&^3 == 0xA0 {
for i, p := range inst.Prefix {
if p&0xFF == PrefixAddrSize {
inst.Prefix[i] |= PrefixImplicit
}
}
}
}
switch inst.Op {
case AAM, AAD:
if imm, ok := iargs[0].(Imm); ok {
if inst.DataSize == 32 {
iargs[0] = Imm(uint32(int8(imm)))
} else if inst.DataSize == 16 {
iargs[0] = Imm(uint16(int8(imm)))
}
}
case PUSH:
if imm, ok := iargs[0].(Imm); ok {
iargs[0] = Imm(uint32(imm))
}
}
for _, p := range inst.Prefix {
if p&PrefixImplicit != 0 {
for j, pj := range inst.Prefix {
if pj&0xFF == p&0xFF {
inst.Prefix[j] |= PrefixImplicit
}
}
}
}
if inst.Op != 0 {
for i, p := range inst.Prefix {
switch p &^ PrefixIgnored {
case PrefixData16, PrefixData32, PrefixCS, PrefixDS, PrefixES, PrefixSS:
inst.Prefix[i] |= PrefixImplicit
}
if p.IsREX() {
inst.Prefix[i] |= PrefixImplicit
}
}
}
if isLoop[inst.Op] || inst.Op == JCXZ || inst.Op == JECXZ || inst.Op == JRCXZ {
for i, p := range inst.Prefix {
if p == PrefixPT || p == PrefixPN {
inst.Prefix[i] |= PrefixImplicit
}
}
}
switch inst.Op {
case AAA, AAS, CBW, CDQE, CLC, CLD, CLI, CLTS, CMC, CPUID, CQO, CWD, DAA, DAS,
FDECSTP, FINCSTP, FNCLEX, FNINIT, FNOP, FWAIT, HLT,
ICEBP, INSB, INSD, INSW, INT, INTO, INVD, IRET, IRETQ,
LAHF, LEAVE, LRET, MONITOR, MWAIT, NOP, OUTSB, OUTSD, OUTSW,
PAUSE, POPA, POPF, POPFQ, PUSHA, PUSHF, PUSHFQ,
RDMSR, RDPMC, RDTSC, RDTSCP, RET, RSM,
SAHF, STC, STD, STI, SYSENTER, SYSEXIT, SYSRET,
UD2, WBINVD, WRMSR, XEND, XLATB, XTEST:
if inst.Op == NOP && inst.Opcode>>24 != 0x90 {
break
}
if inst.Op == RET && inst.Opcode>>24 != 0xC3 {
break
}
if inst.Op == INT && inst.Opcode>>24 != 0xCC {
break
}
if inst.Op == LRET && inst.Opcode>>24 != 0xcb {
break
}
for i, p := range inst.Prefix {
if p&0xFF == PrefixDataSize {
inst.Prefix[i] &^= PrefixImplicit | PrefixIgnored
}
}
case 0:
// ok
}
switch inst.Op {
case INSB, INSD, INSW, OUTSB, OUTSD, OUTSW, MONITOR, MWAIT, XLATB:
iargs = nil
case STOSB, STOSW, STOSD, STOSQ:
iargs = iargs[:1]
case LODSB, LODSW, LODSD, LODSQ, SCASB, SCASW, SCASD, SCASQ:
iargs = iargs[1:]
}
const (
haveData16 = 1 << iota
haveData32
haveAddr16
haveAddr32
haveXacquire
haveXrelease
haveLock
haveHintTaken
haveHintNotTaken
haveBnd
)
var prefixBits uint32
prefix := ""
for _, p := range inst.Prefix {
if p == 0 {
break
}
if p&0xFF == 0xF3 {
prefixBits &^= haveBnd
}
if p&(PrefixImplicit|PrefixIgnored) != 0 {
continue
}
switch p {
default:
prefix += strings.ToLower(p.String()) + " "
case PrefixCS, PrefixDS, PrefixES, PrefixFS, PrefixGS, PrefixSS:
if inst.Op == 0 {
prefix += strings.ToLower(p.String()) + " "
}
case PrefixREPN:
prefix += "repne "
case PrefixLOCK:
prefixBits |= haveLock
case PrefixData16, PrefixDataSize:
prefixBits |= haveData16
case PrefixData32:
prefixBits |= haveData32
case PrefixAddrSize, PrefixAddr16:
prefixBits |= haveAddr16
case PrefixAddr32:
prefixBits |= haveAddr32
case PrefixXACQUIRE:
prefixBits |= haveXacquire
case PrefixXRELEASE:
prefixBits |= haveXrelease
case PrefixPT:
prefixBits |= haveHintTaken
case PrefixPN:
prefixBits |= haveHintNotTaken
case PrefixBND:
prefixBits |= haveBnd
}
}
switch inst.Op {
case JMP:
if inst.Opcode>>24 == 0xEB {
prefixBits &^= haveBnd
}
case RET, LRET:
prefixBits &^= haveData16 | haveData32
}
if prefixBits&haveXacquire != 0 {
prefix += "xacquire "
}
if prefixBits&haveXrelease != 0 {
prefix += "xrelease "
}
if prefixBits&haveLock != 0 {
prefix += "lock "
}
if prefixBits&haveBnd != 0 {
prefix += "bnd "
}
if prefixBits&haveHintTaken != 0 {
prefix += "hint-taken "
}
if prefixBits&haveHintNotTaken != 0 {
prefix += "hint-not-taken "
}
if prefixBits&haveAddr16 != 0 {
prefix += "addr16 "
}
if prefixBits&haveAddr32 != 0 {
prefix += "addr32 "
}
if prefixBits&haveData16 != 0 {
prefix += "data16 "
}
if prefixBits&haveData32 != 0 {
prefix += "data32 "
}
if inst.Op == 0 {
if prefix == "" {
return "<no instruction>"
}
return prefix[:len(prefix)-1]
}
var args []string
for _, a := range iargs {
if a == nil {
break
}
args = append(args, intelArg(&inst, a))
}
var op string
switch inst.Op {
case NOP:
if inst.Opcode>>24 == 0x0F {
if inst.DataSize == 16 {
args = append(args, "ax")
} else {
args = append(args, "eax")
}
}
case BLENDVPD, BLENDVPS, PBLENDVB:
args = args[:2]
case INT:
if inst.Opcode>>24 == 0xCC {
args = nil
op = "int3"
}
case LCALL, LJMP:
if len(args) == 2 {
args[0], args[1] = args[1], args[0]
}
case FCHS, FABS, FTST, FLDPI, FLDL2E, FLDLG2, F2XM1, FXAM, FLD1, FLDL2T, FSQRT, FRNDINT, FCOS, FSIN:
if len(args) == 0 {
args = append(args, "st0")
}
case FPTAN, FSINCOS, FUCOMPP, FCOMPP, FYL2X, FPATAN, FXTRACT, FPREM1, FPREM, FYL2XP1, FSCALE:
if len(args) == 0 {
args = []string{"st0", "st1"}
}
case FST, FSTP, FISTTP, FIST, FISTP, FBSTP:
if len(args) == 1 {
args = append(args, "st0")
}
case FLD, FXCH, FCOM, FCOMP, FIADD, FIMUL, FICOM, FICOMP, FISUBR, FIDIV, FUCOM, FUCOMP, FILD, FBLD, FADD, FMUL, FSUB, FSUBR, FISUB, FDIV, FDIVR, FIDIVR:
if len(args) == 1 {
args = []string{"st0", args[0]}
}
case MASKMOVDQU, MASKMOVQ, XLATB, OUTSB, OUTSW, OUTSD:
FixSegment:
for i := len(inst.Prefix) - 1; i >= 0; i-- {
p := inst.Prefix[i] & 0xFF
switch p {
case PrefixCS, PrefixES, PrefixFS, PrefixGS, PrefixSS:
if inst.Mode != 64 || p == PrefixFS || p == PrefixGS {
args = append(args, strings.ToLower((inst.Prefix[i] & 0xFF).String()))
break FixSegment
}
case PrefixDS:
if inst.Mode != 64 {
break FixSegment
}
}
}
}
if op == "" {
op = intelOp[inst.Op]
}
if op == "" {
op = strings.ToLower(inst.Op.String())
}
if args != nil {
op += " " + strings.Join(args, ", ")
}
return prefix + op
}
func intelArg(inst *Inst, arg Arg) string {
switch a := arg.(type) {
case Imm:
if inst.Mode == 32 {
return fmt.Sprintf("%#x", uint32(a))
}
if Imm(int32(a)) == a {
return fmt.Sprintf("%#x", int64(a))
}
return fmt.Sprintf("%#x", uint64(a))
case Mem:
if a.Base == EIP {
a.Base = RIP
}
prefix := ""
switch inst.MemBytes {
case 1:
prefix = "byte "
case 2:
prefix = "word "
case 4:
prefix = "dword "
case 8:
prefix = "qword "
case 16:
prefix = "xmmword "
}
switch inst.Op {
case INVLPG:
prefix = "byte "
case STOSB, MOVSB, CMPSB, LODSB, SCASB:
prefix = "byte "
case STOSW, MOVSW, CMPSW, LODSW, SCASW:
prefix = "word "
case STOSD, MOVSD, CMPSD, LODSD, SCASD:
prefix = "dword "
case STOSQ, MOVSQ, CMPSQ, LODSQ, SCASQ:
prefix = "qword "
case LAR:
prefix = "word "
case BOUND:
if inst.Mode == 32 {
prefix = "qword "
} else {
prefix = "dword "
}
case PREFETCHW, PREFETCHNTA, PREFETCHT0, PREFETCHT1, PREFETCHT2, CLFLUSH:
prefix = "zmmword "
}
switch inst.Op {
case MOVSB, MOVSW, MOVSD, MOVSQ, CMPSB, CMPSW, CMPSD, CMPSQ, STOSB, STOSW, STOSD, STOSQ, SCASB, SCASW, SCASD, SCASQ, LODSB, LODSW, LODSD, LODSQ:
switch a.Base {
case DI, EDI, RDI:
if a.Segment == ES {
a.Segment = 0
}
case SI, ESI, RSI:
if a.Segment == DS {
a.Segment = 0
}
}
case LEA:
a.Segment = 0
default:
switch a.Base {
case SP, ESP, RSP, BP, EBP, RBP:
if a.Segment == SS {
a.Segment = 0
}
default:
if a.Segment == DS {
a.Segment = 0
}
}
}
if inst.Mode == 64 && a.Segment != FS && a.Segment != GS {
a.Segment = 0
}
prefix += "ptr "
if a.Segment != 0 {
prefix += strings.ToLower(a.Segment.String()) + ":"
}
prefix += "["
if a.Base != 0 {
prefix += intelArg(inst, a.Base)
}
if a.Scale != 0 && a.Index != 0 {
if a.Base != 0 {
prefix += "+"
}
prefix += fmt.Sprintf("%s*%d", intelArg(inst, a.Index), a.Scale)
}
if a.Disp != 0 {
if prefix[len(prefix)-1] == '[' && (a.Disp >= 0 || int64(int32(a.Disp)) != a.Disp) {
prefix += fmt.Sprintf("%#x", uint64(a.Disp))
} else {
prefix += fmt.Sprintf("%+#x", a.Disp)
}
}
prefix += "]"
return prefix
case Rel:
return fmt.Sprintf(".%+#x", int64(a))
case Reg:
if int(a) < len(intelReg) && intelReg[a] != "" {
return intelReg[a]
}
}
return strings.ToLower(arg.String())
}
var intelOp = map[Op]string{
JAE: "jnb",
JA: "jnbe",
JGE: "jnl",
JNE: "jnz",
JG: "jnle",
JE: "jz",
SETAE: "setnb",
SETA: "setnbe",
SETGE: "setnl",
SETNE: "setnz",
SETG: "setnle",
SETE: "setz",
CMOVAE: "cmovnb",
CMOVA: "cmovnbe",
CMOVGE: "cmovnl",
CMOVNE: "cmovnz",
CMOVG: "cmovnle",
CMOVE: "cmovz",
LCALL: "call far",
LJMP: "jmp far",
LRET: "ret far",
ICEBP: "int1",
MOVSD_XMM: "movsd",
XLATB: "xlat",
}
var intelReg = [...]string{
F0: "st0",
F1: "st1",
F2: "st2",
F3: "st3",
F4: "st4",
F5: "st5",
F6: "st6",
F7: "st7",
M0: "mmx0",
M1: "mmx1",
M2: "mmx2",
M3: "mmx3",
M4: "mmx4",
M5: "mmx5",
M6: "mmx6",
M7: "mmx7",
X0: "xmm0",
X1: "xmm1",
X2: "xmm2",
X3: "xmm3",
X4: "xmm4",
X5: "xmm5",
X6: "xmm6",
X7: "xmm7",
X8: "xmm8",
X9: "xmm9",
X10: "xmm10",
X11: "xmm11",
X12: "xmm12",
X13: "xmm13",
X14: "xmm14",
X15: "xmm15",
// TODO: Maybe the constants are named wrong.
SPB: "spl",
BPB: "bpl",
SIB: "sil",
DIB: "dil",
R8L: "r8d",
R9L: "r9d",
R10L: "r10d",
R11L: "r11d",
R12L: "r12d",
R13L: "r13d",
R14L: "r14d",
R15L: "r15d",
}

346
vendor/rsc.io/x86/x86asm/plan9x.go generated vendored Normal file

@ -0,0 +1,346 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86asm
import (
"fmt"
"strings"
)
// plan9Syntax returns the Go assembler syntax for the instruction.
// The syntax was originally defined by Plan 9.
// The pc is the program counter of the instruction, used for expanding
// PC-relative addresses into absolute ones.
// The symname function queries the symbol table for the program
// being disassembled. Given a target address it returns the name and base
// address of the symbol containing the target, if any; otherwise it returns "", 0.
func plan9Syntax(inst Inst, pc uint64, symname func(uint64) (string, uint64)) string {
if symname == nil {
symname = func(uint64) (string, uint64) { return "", 0 }
}
var args []string
for i := len(inst.Args) - 1; i >= 0; i-- {
a := inst.Args[i]
if a == nil {
continue
}
args = append(args, plan9Arg(&inst, pc, symname, a))
}
var last Prefix
for _, p := range inst.Prefix {
if p == 0 || p.IsREX() {
break
}
last = p
}
prefix := ""
switch last & 0xFF {
case 0, 0x66, 0x67:
// ignore
case PrefixREPN:
prefix += "REPNE "
default:
prefix += last.String() + " "
}
op := inst.Op.String()
if plan9Suffix[inst.Op] {
switch inst.DataSize {
case 8:
op += "B"
case 16:
op += "W"
case 32:
op += "L"
case 64:
op += "Q"
}
}
if args != nil {
op += " " + strings.Join(args, ", ")
}
return prefix + op
}
func plan9Arg(inst *Inst, pc uint64, symname func(uint64) (string, uint64), arg Arg) string {
switch a := arg.(type) {
case Reg:
return plan9Reg[a]
case Rel:
if pc == 0 {
break
}
// If the absolute address is the start of a symbol, use the name.
// Otherwise use the raw address, so that things like relative
// jumps show up as JMP 0x123 instead of JMP f+10(SB).
// It is usually easier to search for 0x123 than to do the mental
// arithmetic to find f+10.
addr := pc + uint64(inst.Len) + uint64(a)
if s, base := symname(addr); s != "" && addr == base {
return fmt.Sprintf("%s(SB)", s)
}
return fmt.Sprintf("%#x", addr)
case Imm:
if s, base := symname(uint64(a)); s != "" {
suffix := ""
if uint64(a) != base {
suffix = fmt.Sprintf("%+d", uint64(a)-base)
}
return fmt.Sprintf("$%s%s(SB)", s, suffix)
}
if inst.Mode == 32 {
return fmt.Sprintf("$%#x", uint32(a))
}
if Imm(int32(a)) == a {
return fmt.Sprintf("$%#x", int64(a))
}
return fmt.Sprintf("$%#x", uint64(a))
case Mem:
if a.Segment == 0 && a.Disp != 0 && a.Base == 0 && (a.Index == 0 || a.Scale == 0) {
if s, base := symname(uint64(a.Disp)); s != "" {
suffix := ""
if uint64(a.Disp) != base {
suffix = fmt.Sprintf("%+d", uint64(a.Disp)-base)
}
return fmt.Sprintf("%s%s(SB)", s, suffix)
}
}
s := ""
if a.Segment != 0 {
s += fmt.Sprintf("%s:", plan9Reg[a.Segment])
}
if a.Disp != 0 {
s += fmt.Sprintf("%#x", a.Disp)
} else {
s += "0"
}
if a.Base != 0 {
s += fmt.Sprintf("(%s)", plan9Reg[a.Base])
}
if a.Index != 0 && a.Scale != 0 {
s += fmt.Sprintf("(%s*%d)", plan9Reg[a.Index], a.Scale)
}
return s
}
return arg.String()
}
var plan9Suffix = [maxOp + 1]bool{
ADC: true,
ADD: true,
AND: true,
BSF: true,
BSR: true,
BT: true,
BTC: true,
BTR: true,
BTS: true,
CMP: true,
CMPXCHG: true,
CVTSI2SD: true,
CVTSI2SS: true,
CVTSD2SI: true,
CVTSS2SI: true,
CVTTSD2SI: true,
CVTTSS2SI: true,
DEC: true,
DIV: true,
FLDENV: true,
FRSTOR: true,
IDIV: true,
IMUL: true,
IN: true,
INC: true,
LEA: true,
MOV: true,
MOVNTI: true,
MUL: true,
NEG: true,
NOP: true,
NOT: true,
OR: true,
OUT: true,
POP: true,
POPA: true,
PUSH: true,
PUSHA: true,
RCL: true,
RCR: true,
ROL: true,
ROR: true,
SAR: true,
SBB: true,
SHL: true,
SHLD: true,
SHR: true,
SHRD: true,
SUB: true,
TEST: true,
XADD: true,
XCHG: true,
XOR: true,
}
var plan9Reg = [...]string{
AL: "AL",
CL: "CL",
BL: "BL",
DL: "DL",
AH: "AH",
CH: "CH",
BH: "BH",
DH: "DH",
SPB: "SP",
BPB: "BP",
SIB: "SI",
DIB: "DI",
R8B: "R8",
R9B: "R9",
R10B: "R10",
R11B: "R11",
R12B: "R12",
R13B: "R13",
R14B: "R14",
R15B: "R15",
AX: "AX",
CX: "CX",
BX: "BX",
DX: "DX",
SP: "SP",
BP: "BP",
SI: "SI",
DI: "DI",
R8W: "R8",
R9W: "R9",
R10W: "R10",
R11W: "R11",
R12W: "R12",
R13W: "R13",
R14W: "R14",
R15W: "R15",
EAX: "AX",
ECX: "CX",
EDX: "DX",
EBX: "BX",
ESP: "SP",
EBP: "BP",
ESI: "SI",
EDI: "DI",
R8L: "R8",
R9L: "R9",
R10L: "R10",
R11L: "R11",
R12L: "R12",
R13L: "R13",
R14L: "R14",
R15L: "R15",
RAX: "AX",
RCX: "CX",
RDX: "DX",
RBX: "BX",
RSP: "SP",
RBP: "BP",
RSI: "SI",
RDI: "DI",
R8: "R8",
R9: "R9",
R10: "R10",
R11: "R11",
R12: "R12",
R13: "R13",
R14: "R14",
R15: "R15",
IP: "IP",
EIP: "IP",
RIP: "IP",
F0: "F0",
F1: "F1",
F2: "F2",
F3: "F3",
F4: "F4",
F5: "F5",
F6: "F6",
F7: "F7",
M0: "M0",
M1: "M1",
M2: "M2",
M3: "M3",
M4: "M4",
M5: "M5",
M6: "M6",
M7: "M7",
X0: "X0",
X1: "X1",
X2: "X2",
X3: "X3",
X4: "X4",
X5: "X5",
X6: "X6",
X7: "X7",
X8: "X8",
X9: "X9",
X10: "X10",
X11: "X11",
X12: "X12",
X13: "X13",
X14: "X14",
X15: "X15",
CS: "CS",
SS: "SS",
DS: "DS",
ES: "ES",
FS: "FS",
GS: "GS",
GDTR: "GDTR",
IDTR: "IDTR",
LDTR: "LDTR",
MSW: "MSW",
TASK: "TASK",
CR0: "CR0",
CR1: "CR1",
CR2: "CR2",
CR3: "CR3",
CR4: "CR4",
CR5: "CR5",
CR6: "CR6",
CR7: "CR7",
CR8: "CR8",
CR9: "CR9",
CR10: "CR10",
CR11: "CR11",
CR12: "CR12",
CR13: "CR13",
CR14: "CR14",
CR15: "CR15",
DR0: "DR0",
DR1: "DR1",
DR2: "DR2",
DR3: "DR3",
DR4: "DR4",
DR5: "DR5",
DR6: "DR6",
DR7: "DR7",
DR8: "DR8",
DR9: "DR9",
DR10: "DR10",
DR11: "DR11",
DR12: "DR12",
DR13: "DR13",
DR14: "DR14",
DR15: "DR15",
TR0: "TR0",
TR1: "TR1",
TR2: "TR2",
TR3: "TR3",
TR4: "TR4",
TR5: "TR5",
TR6: "TR6",
TR7: "TR7",
}

9760
vendor/rsc.io/x86/x86asm/tables.go generated vendored Normal file

File diff suppressed because it is too large Load Diff