* tests: misc test fixes for go1.14
- math.go is now ambiguous due to changes to the go runtime so specify
that we mean our own math.go in _fixtures
- go list -m requires vendor-mode to be disabled so pass '-mod=' to it
in case user has GOFLAGS=-mod=vendor
- update version of go/packages, required to work with go 1.14 (and
executed go mod vendor)
- Increased goroutine migration in one development version of Go 1.14
revealed a problem with TestCheckpoints in command_test.go and
rr_test.go. The tests were always wrong because Restart(checkpoint)
doesn't change the current thread but we can't assume that when the
checkpoint was taken the current goroutine was running on the same
thread.
* goversion: update maximum supported version
* Makefile: disable testing lldb-server backend on linux with Go 1.14
There seems to be some incompatibility with lldb-server version 6.0.0
on linux and Go 1.14.
* proc/gdbserial: better handling of signals
- if multiple signals are received simultaneously propagate all of them to the
target threads instead of only one.
- debugserver will drop an interrupt request if a target thread simultaneously
receives a signal, handle this situation.
* dwarf/line: normalize backslashes for windows executables
Starting with Go 1.14 the compiler sometimes emits backslashes as well
as forward slashes in debug_line, normalize everything to / for
conformity with the behavior of previous versions.
* proc/native: partial support for Windows async preempt mechanism
See https://github.com/golang/go/issues/36494 for a description of why
full support for 1.14 under windows is problematic.
* proc/native: disable Go 1.14 async preemption on Windows
See https://github.com/golang/go/issues/36494
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
Fncall.go was written with the assumption that the object returned by
proc.Thread.Registers does not change after we call
proc.Thread.SetPC/etc.
This is true for the native backend but not for gdbserial. I had
anticipated this problem and introduced the Save/SavedRegisters
mechanism during the first implementation of fncall.go but that's
insufficient.
Instead:
1. clarify that the object returned by proc.Thread.Registers could
change when the CPU registers are modified.
2. add a Copy method to Registers that returns a copy of the registers
that are guaranteed not to change when the CPU registers change.
3. remove the Save/SavedRegisters mechanism.
This solution leaves us the option, in the future, to cache the output
of proc.(Thread).Registers, avoiding a system call every time it's
called.
Implements the function call injection protocol introduced in go 1.11
by https://go-review.googlesource.com/c/go/+/109699.
This is only the basic support, see TODO comments in pkg/proc/fncall.go
for a list of missing features.
Updates #119
If a breakpoint is hit close to process death on a thread that isn't
the group leader the process could die while we are trying to stop it.
This can be easily reproduced by having the goroutine that's executing
main.main (which will almost always run on the thread group leader)
wait for a second goroutine before exiting, then setting a breakpoint
on the second goroutine and stepping through it (see TestIssue1101 in
proc_test.go).
When stepping over the return instruction of main.f the deferred
wg.Done() call will be executed which will cause the main goroutine to
resume and proceed to exit. Both the temporary breakpoint on wg.Done
and the temporary breakpoint on the return address of main.f will be in
close proximity to main.main calling os.Exit() and causing the death of
the thread group leader.
Under these circumstances the call to native.(*Thread).waitFast in
native.(*Thread).halt can hang forever due to a bug similar to
https://sourceware.org/bugzilla/show_bug.cgi?id=12702 (see comment in
native.(*Thread).wait for an explanation).
Replacing waitFast with a normal wait work in most circumstances,
however, besides the performance hit, it looks like in this
circumstances trapWait sometimes receives a spurious SIGTRAP on the
dying group leader which would cause the subsequent call to wait in
halt to accidentally reap the process without noting that it did exit.
Instead this patch removes the call to wait from halt and instead calls
trapWait in a loop in setCurrentBreakpoints until all threads are set
to running=false. This is also a better fix than the workaround to
ESRCH error while setting current breakpoints implemented in 94b50d.
Fixes#1101