'dwz' is a tool that reduces the size of DWARF sections by
deduplicating symbols. The deduplicated symbols are moved from their
original 'compile unit' to a 'partial unit', which is then referenced
from its original location with an 'imported unit' tag.
In the case of Go binaries, all symbols are located in a single
'compile unit', and the name of each symbol contains a reference to its
package, so 'dwz' is not able to deduplicate them. But still, some C
symbols included in the binary are deduplicated, which also alters the
structure of the DWARF sections, making delve unable to parse them
(crashing in the attempt).
While it would've been possible to simply ignore the C symbols, or
blindly loading all then into BinaryInfo members (packageVars,
Functions...), for correctness sake this change tries to do the right
thing, staging symbols into temporary partialUnit objects, moving them
to BinaryInfo when they are actually requested by a 'imported unit'
tag.
Go seems to be generating multiple compilation units that have
the same file. I think this happens for functions that get inlined.
Without this patch, those inlined functions break the ability to set
a breakpoint at other lines in the file. I was able to load the same
binary in gdb and set a breakpoints throughout the file without issue.
```
➜ objdump --dwarf=decodedline automate-gateway | grep handler/users.go
.../handler/users.go:[++]
s/.../handler/users.go 20 0xb6dd88
.../handler/users.go:[++]
s/.../handler/users.go 20 0xb6e50f
.../handler/users.go:[++]
s/automate-gateway/handler/users.go 32 0xb66640
```
Inlined functions are still a little weird. setting a breakpoint on
a function that gets inlined picks the first occurence. That being
said, I think delve should still do something reasonable for the rest
of the lines in the file.
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.
updates vendored version of x86asm, adds a symbol lookup function to
pass to the disassembler.
This will show global symbol names in the disassembly like go tool
objdump does.
debug_info entries can use DW_AT_abstract_origin to inherit the
attributes of another entry, supporting this attribute is necessary to
support DW_TAG_inlined_subroutine.
Go, starting with 1.10, emits DW_TAG_inlined_subroutine entries when
inlining is enabled.
Adds a configuration option (show-location-expr) that when activated
will cause the whatis command to also print the DWARF location
expression for a variable.
1. Use a slice instead of a map to access standard and extended opcodes
(reduces BenchmarkStateMachine from ~12ms/op to ~7ms/op)
2. Cache StateMachine values for the entry point of functions.
gosymtab and gopclntab only contain informations about go code, linked
C code isn't there, we should use debug_line instead to also cover C.
Updates #935
Splits out type parsing and go-specific Type hierarchy from
x/debug/dwarf, replace x/debug/dwarf with debug/dwarf everywhere,
remove x/debug/dwarf from vendoring.
Variable lookup is slow because it requires a full scan of debug_info
to check for package variables, this doesn't matter much in interactive
use but can slow down evaluation of breakpoint conditions
significantly.
Providing benchmark proof for this is hard since this effect doesn't
show for small programs with small debug_info sections.
When a Go program is externally linked, the external linker is
responsible for picking the TLS offset. It records its decision in the
runtime.tlsg symbol. Read the offset from that rather than guessing -16.
This implementation causes a regression: 1.4 and earlier will no longer
work.
* proc: refactor BinaryInfo part of proc.Process to own type
The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.
* proc: compile support for all executable formats unconditionally
So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.
* proc: bugfix: do not resume threads on detach if killing
* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo