* proc: move defer breakpoint code into a function
Moves the code that sets a breakpoint on the first deferred function,
used by both next and StepOut, to its function.
* proc: implement reverse step/next/stepout
When the direction of execution is reversed (on a recording) Step, Next and
StepOut will behave similarly to their forward version. However there are
some subtle interactions between their behavior, prologue skipping, deferred
calls and normal calls. Specifically:
- when stepping backwards we need to set a breakpoint on the first
instruction after each CALL instruction, once this breakpoint is reached we
need to execute a single StepInstruction operation to reverse step into the
CALL.
- to insure that the prologue is skipped reverse next needs to check if it
is on the first instruction after the prologue, and if it is behave like
reverse stepout.
- there is no reason to set breakpoints on deferred calls when reverse
nexting or reverse stepping out, they will never be hit.
- reverse step out should generally place its breakpoint on the CALL
instruction that created the current stack frame (which will be the CALL
instruction immediately preceding the instruction at the return address).
- reverse step out needs to treat panic calls and deferreturn calls
specially.
* service,terminal: implement reverse step, next, stepout
Modifies FindFileLocation, FindFunctionLocation and LineToPC as well as
service/debugger to support inlining and introduces the concept of
logical breakpoints.
For inlined functions FindFileLocation, FindFunctionLocation and
LineToPC will now return one PC address for each inlining and one PC
for the concrete implementation of the function (if present).
A proc.Breakpoint will continue to represent a physical breakpoint, at
a single memory location.
Breakpoints returned by service/debugger, however, will represent
logical breakpoints and may be associated with multiple memory
locations and, therefore, multiple proc.Breakpoints.
The necessary logic is introduced in service/debugger so that a change
to a logical breakpoint will be mirrored to all its physical
breakpoints and physical breakpoints are aggregated into a single
logical breakpoint when returned.
If proc.Step encounters a CALL instruction that points to an address
that isn't associated with any function it should still follow the
CALL.
The circumstances creating this problem do not normally occur, it was
encountered in the process of fixing a bug created by Go1.12.
It was never true that return variables were in the inverse order.
Instead in Go1.11 return variables are saved in debug_info in an
arbitrary order and inverting them just happened to work for this
specific example.
This bug was fixed in Go 1.12, regardless we should attempt to
rearrange return variables anyway.
This patch is a slight refactor to share more code used for genericprocess initialization. There will always be OS/backend specificinitialization, but as much as can be shared should be to preventduplicating of any logic (setting internal breakpoints, loading bininfo,etc).
This patch allows the `trace` CLI subcommand to display return values of
a function. Additionally, it will also display information on where the
function exited, which could also be helpful in determining the path
taken during function execution.
Fixes#388
Implements the function call injection protocol introduced in go 1.11
by https://go-review.googlesource.com/c/go/+/109699.
This is only the basic support, see TODO comments in pkg/proc/fncall.go
for a list of missing features.
Updates #119
Displays the return values of the current function when we step out of
it after executing a step, next or stepout command.
Implementation of this feature is tricky: when the function has
returned the return variables are not in scope anymore. Implementing
this feature requires evaluating variables that are out of scope, using
a stack frame that doesn't exist anymore.
We can't calculate the address of these variables when the
next/step/stepout command is initiated either, because between that
point and the time where the stepout breakpoint is actually hit the
goroutine stack could grow and be moved to a different memory address.
Conditional breakpoints with unmet conditions would cause next and step
to skip the line.
This breakpoint changes the Kind field of proc.Breakpoint from a single
value to a bit field, each breakpoint object can represent
simultaneously a user breakpoint and one internal breakpoint (of which
we have several different kinds).
The breakpoint condition for internal breakpoints is stored in the new
internalCond field of proc.Breakpoint so that it will not conflict with
user specified conditions.
The breakpoint setting code is changed to allow overlapping one
internal breakpoint on a user breakpoint, or a user breakpoint on an
existing internal breakpoint. All other combinations are rejected. The
breakpoint clearing code is changed to clear the UserBreakpoint bit and
only remove the phisical breakpoint if no other bits are set in the
Kind field. ClearInternalBreakpoints does the same thing but clearing
all bits that aren't the UserBreakpoint bit.
Fixes#844
Move some duplicate code, related to breakpoints, that was in both
backends into a single place.
This is in preparation to solve issue #844 (conditional breakpoints
make step and next fail) which will make this common breakpoint code
more complicated.
Before this commit our temp breakpoints only checked that we would stay
on the same goroutine.
However this isn't enough for recursive functions we must check that we
stay on the same goroutine AND on the same stack frame (or, in the case
of the StepOut breakpoint, the previous stack frame).
This commit:
1. adds a new synthetic variable runtime.frameoff that returns the
offset of the current frame from the base of the call stack.
This is similar to runtime.curg
2. Changes the condition used for breakpoints on the lines of the
current function to check that runtime.frameoff hasn't changed.
3. Changes the condition used for breakpoints on the return address to
check that runtime.frameoff corresponds to the previous frame in the
stack.
4. All other temporary breakpoints (the step-into breakpoints and defer
breakpoints) remain unchanged.
Fixes#828
- moved target.Interface into proc as proc.Process
- rename proc.IThread to proc.Thread
- replaced interfaces DisassembleInfo, Continuable and
EvalScopeConvertible with Process.
- removed superfluous Gdbserver prefix from types in the gdbserial
backend.
- removed superfluous Core prefix from types in the core backend.
* proc: Refactor stackIterator to use memoryReadWriter and BinaryInfo
* proc: refactor EvalScope to use memoryReadWriter and BinaryInfo
* proc: refactor Disassemble to use memoryReadWriter and BinaryInfo
* proc: refactor BinaryInfo part of proc.Process to own type
The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.
* proc: compile support for all executable formats unconditionally
So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.
* proc: bugfix: do not resume threads on detach if killing
* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo