Changes implementations of proc.Registers interface and the
op.DwarfRegisters struct so that floating point registers can be loaded
only when they are needed.
Removes the floatingPoint parameter from proc.Thread.Registers.
This accomplishes three things:
1. it simplifies the proc.Thread.Registers interface
2. it makes it impossible to accidentally create a broken set of saved
registers or of op.DwarfRegisters by accidentally calling
Registers(false)
3. it improves general performance of Delve by avoiding to load
floating point registers as much as possible
Floating point registers are loaded under two circumstances:
1. When the Slice method is called with floatingPoint == true
2. When the Copy method is called
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 4327350142 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 3852642917 ns/op
Updates #1549
When there is a single piece and it's a register value just return it.
This is important for clang compiled programs which will use DW_OP_regN
to specify the value of the frame base.
* dwarf/line: implement DW_LNE_set_discriminator
We don't use the discriminator field in any way but we need to at least
parse it to support debub_line programs that use it.
* dwarf/line: support parsing DWARF4 debug_line sections
There is an extra field maximum_operations_per_instruction that is used
for VLIW CPUs. We don't support this feature but we have to at least
parse the field to not crash.
Instead of rescanning debug_info every time we want to read a function
(either to find inlined calls or its variables) cache the tree of
dwarf.Entry that we would generate and use that.
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 5164689165 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 4817425836 ns/op
Updates #1549
* *: Fix go vet struct complaints
* *: Fix struct vet issue on linux
* *: Ignore proc/native in go vet check
We have to do some unsafe pointer manipulation that will never make go
vet happy within the proc/native package. Ignore it for runs of go vet.
Implement debugging function for 386 on linux with reference to AMD64.
There are a few remaining problems that need to be solved in another time.
1. The stacktrace of cgo are not exactly as expected.
2. Not implement `core` for now.
3. Not implement `call` for now. Can't not find `runtime·debugCallV1` or
similar function in $GOROOT/src/runtime/asm_386.s.
Update #20
* Fixed DirIdx (index starts at one)
I am using the elf to load C++ based elf and there the index starts at one and not zero, hence the minor fix.
* Added test
* Added proper test for c-generated elf & replaced index offset by adding build dir
* Changed other IncludeDir test
* Format fix & replace print with actual test
* Format fixes @derekparker requested.
* tests: misc test fixes for go1.14
- math.go is now ambiguous due to changes to the go runtime so specify
that we mean our own math.go in _fixtures
- go list -m requires vendor-mode to be disabled so pass '-mod=' to it
in case user has GOFLAGS=-mod=vendor
- update version of go/packages, required to work with go 1.14 (and
executed go mod vendor)
- Increased goroutine migration in one development version of Go 1.14
revealed a problem with TestCheckpoints in command_test.go and
rr_test.go. The tests were always wrong because Restart(checkpoint)
doesn't change the current thread but we can't assume that when the
checkpoint was taken the current goroutine was running on the same
thread.
* goversion: update maximum supported version
* Makefile: disable testing lldb-server backend on linux with Go 1.14
There seems to be some incompatibility with lldb-server version 6.0.0
on linux and Go 1.14.
* proc/gdbserial: better handling of signals
- if multiple signals are received simultaneously propagate all of them to the
target threads instead of only one.
- debugserver will drop an interrupt request if a target thread simultaneously
receives a signal, handle this situation.
* dwarf/line: normalize backslashes for windows executables
Starting with Go 1.14 the compiler sometimes emits backslashes as well
as forward slashes in debug_line, normalize everything to / for
conformity with the behavior of previous versions.
* proc/native: partial support for Windows async preempt mechanism
See https://github.com/golang/go/issues/36494 for a description of why
full support for 1.14 under windows is problematic.
* proc/native: disable Go 1.14 async preemption on Windows
See https://github.com/golang/go/issues/36494
It was reading all the way to the end of the debug_info section,
slowing down stacktraces substantially.
Benchmark before:
BenchmarkConditionalBreakpoints-4 1 80344642562 ns/op
Benchmark after:
BenchmarkConditionalBreakpoints-4 1 22218288218 ns/op
i.e. a reduction of the cost of a breakpoint hit from 8ms to 2.2ms
Updates #1549
* proc: separate amd64-arch code
separate amd64 code about stacktrace, so we can add arm64 stacktrace code.
* proc: implemente stacktrace of arm64
* delve now can use stack, frame commands on arm64-arch debug.
Co-authored-by: tykcd996 <tang.yuke@zte.com.cn>
Co-authored-by: hengwu0 <wu.heng@zte.com.cn>
* test: remove skip-code of stacktrace on arm64
* add LR DWARF register and remove skip-code for fixed tests
* proc: fix the Continue command after the hardcoded breakpoint on arm64
Arm64 use hardware breakpoint, and it will not set PC to the next instruction like amd64. We should move PC in both runtime.breakpoints and hardcoded breakpoints(probably cgo).
* proc: implement cgo stacktrace on arm64
* proc: combine amd64_stack.go and arm64_stack.go file
* proc: reorganize the stacktrace code
* move SwitchStack function arch-related
* fix Continue command after manual stop on arm64
* add timeout flag to make.go to enable infinite timeouts
Co-authored-by: aarzilli <alessandro.arzilli@gmail.com>
Co-authored-by: hengwu0 <wu.heng@zte.com.cn>
Co-authored-by: tykcd996 <56993522+tykcd996@users.noreply.github.com>
Co-authored-by: Alessandro Arzilli <alessandro.arzilli@gmail.com>
Due to a bug in the Go compiler midstack inlined calls do not report
their ranges correctly. We can't check if an address is in the range of
a DIE by simply looking at that DIE's range, we should also recursively
check the DIE's children's ranges.
Also fixes the way stacktraces of midstack inlined calls are reported
(they used to be inverted, with the deepest inlined stack frame
reported last).
Fixes#1795
Adds an API call that returns a list of packages contained in the
program and the files that were used to build them, and also a best
guess at which filesystem directory contained the package when it was
built.
This can be used by IDEs to map file paths if the debugging environment
doesn't match the build environment exactly.
Use the name specified by compile unit attribute DW_AT_go_package_name,
introduced in Go 1.13, to map package names to package paths, instead of
trying to deduce it from names of types.
Also use this mapping for resolving global variables and function
expressions.
Modifies FindFileLocation, FindFunctionLocation and LineToPC as well as
service/debugger to support inlining and introduces the concept of
logical breakpoints.
For inlined functions FindFileLocation, FindFunctionLocation and
LineToPC will now return one PC address for each inlining and one PC
for the concrete implementation of the function (if present).
A proc.Breakpoint will continue to represent a physical breakpoint, at
a single memory location.
Breakpoints returned by service/debugger, however, will represent
logical breakpoints and may be associated with multiple memory
locations and, therefore, multiple proc.Breakpoints.
The necessary logic is introduced in service/debugger so that a change
to a logical breakpoint will be mirrored to all its physical
breakpoints and physical breakpoints are aggregated into a single
logical breakpoint when returned.
A compile unit can produce a debug_line program consisting of multiple
sequences according to the DWARF standard. The standard guarantees that
addresses monotonically increment within a single sequence but
different sequences may not follow this rule.
This commit changes dwarf/line (in particular PCToLine and
AllPCsBetween) to support debug_line sections containing units with
multiple sequences.
TestPCToLine needs to be changed so that it picks valid addresses (i.e.
addresses covered by a sequence) as values for basePC, instead of just
rounding.
Fixes#1694
Trust argument order to determine argument frame layout when calling
functions, this allows calling optimized functions and removes the
special cases for runtime.mallocgc.
Fixes#1589
According to the description of "CIE: length, CIE_id, version, augmentation"
in Page 122 of http://dwarfstd.org/doc/Dwarf3.pdf ,
`augmentation` should exclude `version`
* *: Add .cirrus.yml for FreeBSD testing
* *: run go mod tidy
* service/test: prefer 127.0.0.1 over localhost
* dwarf/line: fix TestDebugLinePrologueParser
* vendor: rerun go mod vendor
Backports debug/dwarf commit: 535741a69a1300d1fe2800778b99c8a1b75d7fdd
CL: https://go-review.googlesource.com/18459
The x/debug/dwarf that we used for dwarf/godwarf/type.go was forked
from debug/dwarf long before this commit.
Original description:
Currently readType simultaneously constructs a type graph and resolves
the sizes of the types. However, these two operations are
fundamentally at odds: the order we parse a cyclic structure in may be
different than the order we need to resolve type sizes in. As a
result, it's possible that when readType attempts to resolve the size
of a typedef, it may dereference a nil Type field of another typedef
retrieved from the type cache that's only partially constructed.
To fix this, we delay resolving typedef sizes until the end of the
readType recursion, when the full type graph is constructed.
Fixes#1601
Support for bulk queries makes the DWARF quality checker
(github.com/dr2chase/dwarf-goodness/cmd/dwarf-goodness)
run much more efficiently (replace quadratic cost with
linear).
Also fixes findCompileUnitForOffset which was broken in some edge cases
(when looking up an offset inside the last child of the compilation
unit) which don't happen in normal executables (we only look up types, and those
are always direct childs of compile units).
Allow changing the value of a string variable to a new literal string,
which requires calling runtime.mallocgc to allocate the string into the
target process.
This means that a command like:
call f("some string")
is now supported.
Additionally the command:
call s = "some string"
is also supported.
Fixes#826
This change splits the BinaryInfo object into a slice of Image objects
containing information about the base executable and each loaded shared
library (note: go plugins are shared libraries).
Delve backens are supposed to call BinaryInfo.AddImage whenever they
detect that a new shared library has been loaded.
Member fields of BinaryInfo that are used to speed up access to dwarf
(Functions, packageVars, consts, etc...) remain part of BinaryInfo and
are updated to reference the correct image object. This simplifies this
change.
This approach has a few shortcomings:
1. Multiple shared libraries can define functions or globals with the
same name and we have no way to disambiguate between them.
2. We don't have a way to handle library unloading.
Both of those affect C shared libraries much more than they affect go
plugins. Go plugins can't be unloaded at all and a lot of name
collisions are prevented by import paths.
There's only one problem that is concerning: if two plugins both import
the same package they will end up with multiple definition for the same
function.
For example if two plugins use fmt.Printf the final in-memory image
(and therefore our BinaryInfo object) will end up with two copies of
fmt.Printf at different memory addresses. If a user types
break fmt.Printf
a breakpoint should be created at *both* locations.
Allowing this is a relatively complex change that should be done in a
different PR than this.
For this reason I consider this approach an acceptable and sustainable
stopgap.
Updates #865
As specified in line dwarf/godwarf/type.go:507 the typeCache entry
should always be set before recursive calls to readType to avoid infite
recursion.
Most code in readType already does this but some of the code added
later to handle Go types was wrong.
Fix this bug and also fix the String and Size methods of Type so that
they handle recursive types "correctly" (i.e. they don't recur
forever).
No test is added for this since all legitimate uses of cyclical types
were already handled correctly and the malformed types emitted by the
go compiler will probably be removed in 1.12.
See: https://github.com/golang/go/issues/29264Fixes#1444
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
Support for position independent executables (PIE) on the native linux
backend, the gdbserver backend on linux and the core backend.
Also implemented in the windows native backend, but it can't be tested
because go doesn't support PIE on windows yet.
Changes (*Variable).setValue so that it can be used in CallFunction to
set up the argument frame for the function call, adding the ability to:
- nil nillable types
- set strings to the empty string
- copy from one structure to another (including strings and slices)
- convert any interface type to interface{}
- convert pointer shaped types (map, chan, pointers, and structs
consisting of a single pointer field) to interface{}
This covers all cases where an assignment statement can be evaluated
without allocating memory or calling functions in the target process.
Adds a test that compares the output of our state machine with the
output of the debug_line reader in the standard library and checks that
they produce the same output for the debug_line section of grafana as
compiled on macOS (which is the most interesting case since it uses cgo
and therefore goes through dsymutil).
A few bugs were uncovered and fixed:
1. is_stmt was reset improperly after a DW_LNS_end_sequence instruction
2. basic_block, prologue_end and epilogue_begin were not reset after a
DW_LNS_copy instruction
3. some opcodes were not decoded properly if the debug_line section
declares fewer standard opcodes than we know about.
Fixes#1282
There is no guarantee that files will end up stored contiguously in the
debug_line section which makes this optimization wrong in the general
case.
In particular with recent versions of go1.11 and a go.mod file present
the go compiler seems to sometimes produce executables that actually
violate this assumption.
Go1.11 switched to the zlib-gnu compression format for debug sections.
Change proc and and a test in dwarf/line to support this change.
Also deletes some dead code from pkg/proc/bininfo.go that hadn't been
used in a long time.
Implements structured logging via Logrus. This gives us a logger per
boundry that we care about, allowing for easier parsing of logs if users
have more than one log option enabled. Also, cleans up a lot of
conditionals in the code by simply silencing the logger at creation as
opposed to conditionally logging everywhere.
go1.11 adds a new extended attribute to all type DIEs containing the
address of the corresponding runtime._type struct, use this attribute
to find the DIE of the concrete type of interface variables when
available.
Go1.11 uses the is_stmt flag of .debug_line to communicate which
assembly instructions are good places for breakpoints, we should
respect this flag.
These changes were introduced by:
* https://go-review.googlesource.com/c/go/+/102435/
Additionally when setting next breakpoints ignore all PC addresses that
belong to the same line as the one currently under at the cursor. This
matches the behavior of gdb and avoids stopping multiple times at the
heading line of a for statement with go1.11.
Change: https://go-review.googlesource.com/c/go/+/110416 adds the
prologue_end flag to the .debug_line section to communicate the end of
the stack-split prologue. We should use it instead of pattern matching
the disassembly when available.
Fixes#550
type of interfaces
'c7cde8b'.
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.