* Add ShortenType function
Taken from
https://github.com/aarzilli/gdlv/blob/master/internal/prettyprint/short.go
with kind permission by @aarzilli.
* Shorten type names in variable values
The variables view in VS Code is a lot easier to read if long type names are
shortened in much the same way as we shorten them for functions in the call
stack view.
We only shorten them in the value strings; the Type field of dap.Variable is
kept as is. Since this only appears in a tooltip, it isn't a problem to have the
full type visible there.
Commit 30cdedae6910f5e9af6739845bacfd5b8778e745 introduced a dependency
from service/dap to pkg/terminal to call a stack printing function,
it's weird to have code that implements the DAP protocol depend on the
code for the JSON-RPC client.
Move PrintStack to a different package that can be called by both.
Changes print so a format argument can be specified by using '%' as
prefix. For example:
print %x d
will print variable 'd' in hexadecimal. The interpretarion of the
format argument is the same as that of fmt's package.
Fixes#1038Fixes#1800Fixes#2159
1. Don't use intelligent '#' in fmt of go because it is not always satisfying
for diffrent version of golang. Always keep one leading zero for octal and
one leading '0x' for hex manually. Then keep alignment for every byte.
2. Always keep addr alignment when the lens of two adjacent address are
different.
Update #1814.
According to #1800#1584#1038, `dlv` should enable the user to dive into
memory. User can print binary data in specific memory address range.
But not support for sepecific variable name or structures temporarily.(Because
I have no idea that modify `print` command.)
Close#1584.
Much like the bug in issue #1031 and commit
f6f6f0bf13e4c708cb501202b83a6327a0f00e31 pointers can also escape to
the heap and then have a zero address (and no children) when we
autodereference.
1. Mark autodereferenced escaped variables with a 0 address as
unreadable.
2. Add guards to the pretty printers for unsafe.Pointer and pointers.
Fixes#1075
* string to []rune
* string to []byte
* []rune to string
* []byte to string
* any pointer to uintptr
The string, []rune, []byte conversion pairs aligns this to the go
language.
The pointer -> uintptr conversion pair is symmetric to the uintptr ->
pointer that we already have.
Also lets the user specify any size for byte array types instead of
just the ones already used by the program, this can be used to read
arbitrary memory.
Fixes#548, #867
The concrete value of an interface is always stored as a pointer inside
an interface variable. So far we have followed the memory layout and
reported the type of the 'data' attribute of interfaces as a pointer,
however this makes it impossible to distinguish interfaces with
concrete value of type 'A' from interfaces of concrete value of type
'*A'.
With this changeset when we autodereference pointers when the concrete
type of an interface is not a pointer.
* Fix various issues detected by megacheck
I've ran honnef.co/go/tools/cmd/megacheck and fixed a few of the
things that came up there.
* Cleanup using Gogland
* service/api: Removed unused fields of service/api.Function
* proc/eval: Set return variable name to input expression
* all: fine-grained control of loadValue for better variable printing
Makes proc.(*Variable).loadValue loading parameters configurable
through one extra argument of type LoadConfig.
This interface is also exposed through the API so clients can control
how much of a variable delve should read.
Typedefs that resolve to slices are not recorded in DWARF as typedefs
but instead as structs in a way that there is no way to know they
are really slices using debug/dwarf.
Using golang.org/x/debug/dwarf instead this problem is solved and
as a bonus some types are printed with a nicer names: (struct string
→ string, struct []int → []int, etc)
Fixes#356 and #293
Supported operators:
- All (binary and unary) operators between basic types except <-,
++ and -- (includes & to take the address of an expression)
- Comparison operators between supported compound types
- Typecast of integer constants into pointer types
- struct members
- indexing of arrays, slices and strings
- slicing of arrays, slices and strings
- pointer dereferencing
- true, false and nil constants
Implements #116, #117 and #251