Maps were always loaded with using the default configuration during a
reslice. This is probably a remnant from when we didn't let clients
configure the load parameters.
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.
When creating a stack trace we should switch between the goroutine
stack and the system stack (where cgo code is executed) as appropriate
to reconstruct the logical stacktrace.
Goroutines that are currently executing on the system stack will have
the SystemStack flag set, frames of the goroutine stack will have a
negative FrameOffset (like always) and frames of the system stack will
have a positive FrameOffset (which is actually just the CFA value for
the frame).
Updates #935
Replace the unsafe.Pointer type of the buf field of channels with the
appropriate array type, allow expressions accessing member field of the
channel struct.
Fixes#962
* string to []rune
* string to []byte
* []rune to string
* []byte to string
* any pointer to uintptr
The string, []rune, []byte conversion pairs aligns this to the go
language.
The pointer -> uintptr conversion pair is symmetric to the uintptr ->
pointer that we already have.
Also lets the user specify any size for byte array types instead of
just the ones already used by the program, this can be used to read
arbitrary memory.
Fixes#548, #867
Splits out type parsing and go-specific Type hierarchy from
x/debug/dwarf, replace x/debug/dwarf with debug/dwarf everywhere,
remove x/debug/dwarf from vendoring.
The concrete value of an interface is always stored as a pointer inside
an interface variable. So far we have followed the memory layout and
reported the type of the 'data' attribute of interfaces as a pointer,
however this makes it impossible to distinguish interfaces with
concrete value of type 'A' from interfaces of concrete value of type
'*A'.
With this changeset when we autodereference pointers when the concrete
type of an interface is not a pointer.
Before this commit our temp breakpoints only checked that we would stay
on the same goroutine.
However this isn't enough for recursive functions we must check that we
stay on the same goroutine AND on the same stack frame (or, in the case
of the StepOut breakpoint, the previous stack frame).
This commit:
1. adds a new synthetic variable runtime.frameoff that returns the
offset of the current frame from the base of the call stack.
This is similar to runtime.curg
2. Changes the condition used for breakpoints on the lines of the
current function to check that runtime.frameoff hasn't changed.
3. Changes the condition used for breakpoints on the return address to
check that runtime.frameoff corresponds to the previous frame in the
stack.
4. All other temporary breakpoints (the step-into breakpoints and defer
breakpoints) remain unchanged.
Fixes#828
* proc: Refactor stackIterator to use memoryReadWriter and BinaryInfo
* proc: refactor EvalScope to use memoryReadWriter and BinaryInfo
* proc: refactor Disassemble to use memoryReadWriter and BinaryInfo
* proc: refactor BinaryInfo part of proc.Process to own type
The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.
* proc: compile support for all executable formats unconditionally
So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.
* proc: bugfix: do not resume threads on detach if killing
* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo