* dwarf/line: implement DW_LNE_set_discriminator
We don't use the discriminator field in any way but we need to at least
parse it to support debub_line programs that use it.
* dwarf/line: support parsing DWARF4 debug_line sections
There is an extra field maximum_operations_per_instruction that is used
for VLIW CPUs. We don't support this feature but we have to at least
parse the field to not crash.
Implement debugging function for 386 on linux with reference to AMD64.
There are a few remaining problems that need to be solved in another time.
1. The stacktrace of cgo are not exactly as expected.
2. Not implement `core` for now.
3. Not implement `call` for now. Can't not find `runtime·debugCallV1` or
similar function in $GOROOT/src/runtime/asm_386.s.
Update #20
Adds an API call that returns a list of packages contained in the
program and the files that were used to build them, and also a best
guess at which filesystem directory contained the package when it was
built.
This can be used by IDEs to map file paths if the debugging environment
doesn't match the build environment exactly.
Modifies FindFileLocation, FindFunctionLocation and LineToPC as well as
service/debugger to support inlining and introduces the concept of
logical breakpoints.
For inlined functions FindFileLocation, FindFunctionLocation and
LineToPC will now return one PC address for each inlining and one PC
for the concrete implementation of the function (if present).
A proc.Breakpoint will continue to represent a physical breakpoint, at
a single memory location.
Breakpoints returned by service/debugger, however, will represent
logical breakpoints and may be associated with multiple memory
locations and, therefore, multiple proc.Breakpoints.
The necessary logic is introduced in service/debugger so that a change
to a logical breakpoint will be mirrored to all its physical
breakpoints and physical breakpoints are aggregated into a single
logical breakpoint when returned.
A compile unit can produce a debug_line program consisting of multiple
sequences according to the DWARF standard. The standard guarantees that
addresses monotonically increment within a single sequence but
different sequences may not follow this rule.
This commit changes dwarf/line (in particular PCToLine and
AllPCsBetween) to support debug_line sections containing units with
multiple sequences.
TestPCToLine needs to be changed so that it picks valid addresses (i.e.
addresses covered by a sequence) as values for basePC, instead of just
rounding.
Fixes#1694
Support for bulk queries makes the DWARF quality checker
(github.com/dr2chase/dwarf-goodness/cmd/dwarf-goodness)
run much more efficiently (replace quadratic cost with
linear).
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
Support for position independent executables (PIE) on the native linux
backend, the gdbserver backend on linux and the core backend.
Also implemented in the windows native backend, but it can't be tested
because go doesn't support PIE on windows yet.
Adds a test that compares the output of our state machine with the
output of the debug_line reader in the standard library and checks that
they produce the same output for the debug_line section of grafana as
compiled on macOS (which is the most interesting case since it uses cgo
and therefore goes through dsymutil).
A few bugs were uncovered and fixed:
1. is_stmt was reset improperly after a DW_LNS_end_sequence instruction
2. basic_block, prologue_end and epilogue_begin were not reset after a
DW_LNS_copy instruction
3. some opcodes were not decoded properly if the debug_line section
declares fewer standard opcodes than we know about.
Fixes#1282
There is no guarantee that files will end up stored contiguously in the
debug_line section which makes this optimization wrong in the general
case.
In particular with recent versions of go1.11 and a go.mod file present
the go compiler seems to sometimes produce executables that actually
violate this assumption.
Implements structured logging via Logrus. This gives us a logger per
boundry that we care about, allowing for easier parsing of logs if users
have more than one log option enabled. Also, cleans up a lot of
conditionals in the code by simply silencing the logger at creation as
opposed to conditionally logging everywhere.
Go1.11 uses the is_stmt flag of .debug_line to communicate which
assembly instructions are good places for breakpoints, we should
respect this flag.
These changes were introduced by:
* https://go-review.googlesource.com/c/go/+/102435/
Additionally when setting next breakpoints ignore all PC addresses that
belong to the same line as the one currently under at the cursor. This
matches the behavior of gdb and avoids stopping multiple times at the
heading line of a for statement with go1.11.
Change: https://go-review.googlesource.com/c/go/+/110416 adds the
prologue_end flag to the .debug_line section to communicate the end of
the stack-split prologue. We should use it instead of pattern matching
the disassembly when available.
Fixes#550
type of interfaces
'c7cde8b'.
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.
1. Use a slice instead of a map to access standard and extended opcodes
(reduces BenchmarkStateMachine from ~12ms/op to ~7ms/op)
2. Cache StateMachine values for the entry point of functions.
gosymtab and gopclntab only contain informations about go code, linked
C code isn't there, we should use debug_line instead to also cover C.
Updates #935