The ebpf implementations uses cgo, but only to access some C struct
definitions. Instead of using cgo simply duplicate the defintion of
those two structs in Go and add a test to check that the duplicate
definitions remain synchronized.
Fixes#2827
* Reformat pkg/locspec documentation so that it is formatted correctly
by godoc/pkgsite
* Unexport some types and variables in proc that don't need to be
exported.
On linux we can not read memory if the thread we use to do it is
occupied doing certain system calls. The exact conditions when this
happens have never been clear.
This problem was worked around by using the Blocked method which
recognized the most common circumstances where this would happen.
However this is a hack: Blocked returning true doesn't mean that the
problem will manifest and Blocked returning false doesn't necessarily
mean the problem will not manifest. A side effect of this is issue
#2151 where sometimes we can't read the memory of a thread and find its
associated goroutine.
This commit fixes this problem by always reading memory using a thread
we know to be good for this, specifically the one returned by
ContinueOnce. In particular the changes are as follows:
1. Remove (ProcessInternal).CurrentThread and
(ProcessInternal).SetCurrentThread, the "current thread" becomes a
field of Target, CurrentThread becomes a (*Target) method and
(*Target).SwitchThread basically just sets a field Target.
2. The backends keep track of their own internal idea of what the
current thread is, to use it to read memory, this is the thread they
return from ContinueOnce as trapthread
3. The current thread in the backend and the current thread in Target
only ever get synchronized in two places: when the backend creates a
Target object the currentThread field of Target is initialized with the
backend's current thread and when (*Target).Restart gets called (when a
recording is rewound the currentThread used by Target might not exist
anymore).
4. We remove the MemoryReadWriter interface embedded in Thread and
instead add a Memory method to Process that returns a MemoryReadWriter.
The backends will return something here that will read memory using
the current thread saved by the backend.
5. The Thread.Blocked method is removed
One possible problem with this change is processes that have threads
with different memory maps. As far as I can determine this could happen
on old versions of linux but this option was removed in linux 2.5.
Fixes#2151
Since proc is supposed to work independently from the target
architecture it shouldn't use architecture-dependent types, like
uintptr. For example when reading a 64bit core file on a 32bit
architecture, uintptr will be 32bit but the addresses proc needs to
represent will be 64bit.
* proc: start variable visibility one line after their decl line
In most cases variables shouldn't be visible on their declaration line
because they won't be initialized there.
Function arguments are treated as an exception.
This fix is only applied to programs compiled with Go 1.15 or later as
previous versions of Go did not report the correct declaration line for
variables captured by closures.
Fixes#1134
* proc: silence go vet error
* Makefile: enable PIE tests on windows/Go 1.15
* core: support core files for PIEs on windows
* goversion: add Go 1.15 to supported versions
* proc: fix function call injection for Go 1.15
Go 1.15 changed the call injection protocol so that the runtime will
execute the injected call on a different (new) goroutine.
This commit changes the function call support in delve to:
1. correctly track down the call injection state after the runtime
switches to a different goroutine.
2. correctly perform the escapeCheck when stack values can come from
multiple goroutine stacks.
* proc: miscellaneous fixed for call injection under macOS with go 1.15
- create copy of SP in debugCallAXCompleteCall case because the code
used to assume that regs doesn't change
- fix automatic address calculation for function arguments when an
argument has a spurious DW_OP_piece at entry
Under some circumstances (methods with non-pointer receivers or from
embedded fields called through an interface) the compiler will
autogenerate wrapper functions.
This commit changes next, step and stepout to skip all autogenerated
wrappers.
Fixes#1908
Remove build tags from disassembler code, move architecture specific
functionality inside proc.Arch.
This is necessary because Delve should be able to debug corefiles
cross-platform.
* delve now can be built to arm64-arch and running on linux-arm64 OS.
* arm64 general-purpose registers have completed.
* arm64 disasm has completed.
Co-authored-by: tykcd996 <tang.yuke@zte.com.cn>
Co-authored-by: hengwu0 <wu.heng@zte.com.cn>
This pull request makes several changes to delve to allow headless
instancess that are started with the --accept-multiclient flag to
keep running even if there is no connected client. Specifically:
1. Makes a headless instance started with --accept-multiclient quit
after one of the clients sends a Detach request (previously they
would never ever quit, which was a bug).
2. Changes proc/gdbserial and proc/native so that they mark the
Process as exited after they detach, even if they did not kill the
process during detach. This prevents bugs such as #1231 where we
attempt to manipulate a target process after we detached from it.
3. On non --accept-multiclient instances do not kill the target
process unless we started it or the client specifically requests
it (previously if the client did not Detach before closing the
connection we would kill the target process unconditionally)
4. Add a -c option to the quit command that detaches from the
headless server after restarting the target.
5. Change terminal so that, when attached to --accept-multiclient,
pressing ^C will prompt the user to either disconnect from the
server or pause the target process. Also extend the exit prompt to
ask if the user wants to keep the headless server running.
Implements #245, #952, #1159, #1231
updates vendored version of x86asm, adds a symbol lookup function to
pass to the disassembler.
This will show global symbol names in the disassembly like go tool
objdump does.
StepBreakpoints are set on CALL instructions, when they are hit we
disassemble the current instruction, figure out the destination address
and set a breakpoint after the prologue of the called function.
In order to disassemble the current instruction we disassemble the area
of memory starting from PC and going to PC+15 (because 15 bytes is the
maximum length of one instruction on AMD64). This means that we won't
just disassemble one instruction but also a few instructions following
it ending with one truncated instruction.
This usually works fine but sometimes the disassembler will panic with
an array out of bounds error when trying to disassemble a truncated
instruction. To avoid this problem this commit changes the funciton
disassemble to take one extra parameter, singleInstr, when singleInstr
is set disassemble will quit after disassembling a single instruction.
Move some duplicate code, related to breakpoints, that was in both
backends into a single place.
This is in preparation to solve issue #844 (conditional breakpoints
make step and next fail) which will make this common breakpoint code
more complicated.
Instead of panicing for sending on a closed channel, detect that the
process has exited and return a proper error message.
This patch also cleans up some spots where the Pid is omitted from the
error.
Fixes#920
- moved target.Interface into proc as proc.Process
- rename proc.IThread to proc.Thread
- replaced interfaces DisassembleInfo, Continuable and
EvalScopeConvertible with Process.
- removed superfluous Gdbserver prefix from types in the gdbserial
backend.
- removed superfluous Core prefix from types in the core backend.
* proc: Refactor stackIterator to use memoryReadWriter and BinaryInfo
* proc: refactor EvalScope to use memoryReadWriter and BinaryInfo
* proc: refactor Disassemble to use memoryReadWriter and BinaryInfo
* proc: refactor BinaryInfo part of proc.Process to own type
The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.
* proc: compile support for all executable formats unconditionally
So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.
* proc: bugfix: do not resume threads on detach if killing
* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo