If a closure captures a variable but also defines a variable of the
same name in its root scope the shadowed flag would, sometimes, not be
appropriately applied to the captured variable.
This change:
1. sorts the variable list by depth *and* declaration line, so that
closure captured variables always appear before other root-scope
variables, regardless of the order used by the compiler
2. marks variable with the same name as shadowed even if there is only
one scope at play.
This fixes the problem but as a side effect:
1. programs compiled with Go prior to version 1.9 will have the
shadowed flag applied arbitrarily (previously the shadowed flag was not
applied at all)
2. programs compiled with Go prior to versoin 1.11 will still exhibit
the bug, as they do not have DeclLine information.
Fixes#1672
proc.Next and proc.Step will call, after setting their temp
breakpoints, curthread.SetCurrentBreakpoint. This is intended to find
if one of the newly created breakpoints happens to be at the same
instruction that curthread is stopped at.
However SetCurrentBreakpoint is intended to be called after a Continue
and StepInstruction operation so it will also detect if curthread is
stopped one byte after a breakpoint.
If the instruction immediately preceeding the current instruction of
curthread happens to:
1. have one of the newly created temp breakpoints
2. be one byte long
SetCurrentBreakpoint will believe that we just hit that breakpoint and
therefore the instruction should be repeated, and thus rewind the PC of
curthread by 1.
We should distinguish between the two uses of SetCurrentBreakpoint and
disable the check for "just hit" breakpoints when inappropriate.
Fixes#1656
* proc: fix stacktraces when a SIGSEGV happens during a cgo call
When a SIGSEGV happens in a cgo call (for example as a result of
dereferencing a NULL pointer) the stack layout will look like this:
(system stack) runtime.fatalthrow
(system stack) runtime.throw
(system stack) runtime.sigpanic
(system stack) offending C function
... other C functions...
(system stack) runtime.asmcgocall
(goroutine stack) call inside cgo
The code in switchStack would switch directly from the
runtime.fatalthrow frame to the first frame in the goroutine stack,
hiding important information.
Disable this switch for runtime.fatalthrow and reintroduce the check
for runtime.mstart that existed before this version of the code was
implemented in commit 7bec20.
This problem was reported in comment:
https://github.com/go-delve/delve/issues/935#issuecomment-512182533
* cmd/dlv: actually disable C compiler optimizations when building
Increases the maximum string length from 64 to 1MB when loading strings
for a binary operator, also delays the loading until it's necessary.
This ensures that comparison between strings will always succeed in
reasonable situations.
Fixes#1615
Backports debug/dwarf commit: 535741a69a1300d1fe2800778b99c8a1b75d7fdd
CL: https://go-review.googlesource.com/18459
The x/debug/dwarf that we used for dwarf/godwarf/type.go was forked
from debug/dwarf long before this commit.
Original description:
Currently readType simultaneously constructs a type graph and resolves
the sizes of the types. However, these two operations are
fundamentally at odds: the order we parse a cyclic structure in may be
different than the order we need to resolve type sizes in. As a
result, it's possible that when readType attempts to resolve the size
of a typedef, it may dereference a nil Type field of another typedef
retrieved from the type cache that's only partially constructed.
To fix this, we delay resolving typedef sizes until the end of the
readType recursion, when the full type graph is constructed.
Fixes#1601
If the argument of 'source' ends in '.star' it will be interpreted as a
starlark script.
If the argument of 'source' is '-' an interactive starlark repl will be
started.
For documentation on how the starlark execution environment works see
Documentation/cli/starlark.md.
The starlark API is autogenerated from the JSON-RPC API by
script/gen-starlark-bindings.go.
In general for each JSON-RPC API a single global starlark function is
created.
When one of those functions is called (through a starlark script) the
arguments are converted to go structs using reflection. See
unmarshalStarlarkValue in pkg/terminal/starbind/conv.go.
If there are no type conversion errors the JSON-RPC call is executed.
The return value of the JSON-RPC call is converted back into a starlark
value by interfaceToStarlarkValue (same file):
* primitive types (such as integers, floats or strings) are converted
by creating the corresponding starlark value.
* compound types (such as structs and slices) are converted by wrapping
their reflect.Value object into a type that implements the relevant
starlark interfaces.
* api.Variables are treated specially so that their Value field can be
of the proper type instead of always being a string.
Implements #1415, #1443
Allow changing the value of a string variable to a new literal string,
which requires calling runtime.mallocgc to allocate the string into the
target process.
This means that a command like:
call f("some string")
is now supported.
Additionally the command:
call s = "some string"
is also supported.
Fixes#826
* proc: support nested function calls
Changes the code in fncall.go to support nested function calls.
This changes delays argument evaluation until after we have used
the call injection protocol to allocate an argument frame. When
evaluating the parse tree of an expression we'll initiate each
function call we find on the way down and then complete the function
call on the way up.
For example. in:
f(g(x))
we will:
1. initiate the call injection protocol for f(...)
2. progress it until the point where we have space for the arguments
of 'f' (i.e. when we receive the debugCallAXCompleteCall message
from the target runtime)
3. inititate the call injection protocol for g(...)
4. progress it until the point where we have space for the arguments
of 'g'
5. copy the value of x into the argument frame of 'g'
6. finish the call to g(...)
7. copy the return value of g(x) into the argument frame of 'f'
8. finish the call to f(...)
Updates #119
* proc: bugfix: closure addr was wrong for non-closure functions
The initial implementation of the 'call' command required the
function call to be the root expression, i.e. something like:
double(3) + 1
was not allowed, because the root expression was the binary operator
'+', not the function call.
With this change expressions like the one above and others are
allowed.
This is the first step necessary to implement nested function calls
(where the result of a function call is used as argument to another
function call).
This is implemented by replacing proc.CallFunction with
proc.EvalExpressionWithCalls. EvalExpressionWithCalls will run
proc.(*EvalScope).EvalExpression in a different goroutine. This
goroutine, the 'eval' goroutine, will communicate with the main
goroutine of the debugger by means of two channels: continueRequest
and continueCompleted.
The eval goroutine evaluates the expression recursively, when
a function call is encountered it takes care of setting up the
function call on the target program and writes a request to the
continueRequest channel, this causes the 'main' goroutine to restart
the target program by calling proc.Continue.
Whenever Continue encounters a breakpoint that belongs to the
function call injection protocol (runtime.debugCallV1 and associated
functions) it writes to continueCompleted which resumes the 'eval'
goroutine.
The 'eval' goroutine takes care of implementing the function call
injection protocol.
When the expression is fully evaluated the 'eval' goroutine will
write a special message to 'continueRequest' signaling that the
expression evaluation is terminated which will cause Continue to
return to the user.
Updates #119
Go 1.12 introduced a change to the internal map representation where
empty map cells can be marked with a tophash value of 1 instead of just
0.
Fixes#1531
Adds initial support for plugins, this is only the code needed to keep
track of loaded plugins on linux (both native and gdbserial backend).
It does not actually implement support for debugging plugins on linux.
Updates #865
Like we do with unrecovered panics, create a default breakpoint to
catch runtime errors that will cause the program to terminate.
Primarily intended to give users the opportunity to examine the state
of a deadlocked process.
runtime.clone (on some operating systems?) work similarly to fork:
when a thread calls runtime.clone a new thread is created. For a
short period of time both the parent thread and the child thread
appear to be running the same goroutine, until the child thread
adjusts its TLS to point to the correct goroutine.
This means that proc.GetG for a thread that's currently running
'runtime.clone' could be wrong and, consequently, the field
proc.(G).thread of a G struct returned by GoroutinesInfo could be
also wrong. And, finally, that FindGoroutine could sometimes return
a *G with a bad associated thread if the goroutine of interest
recently called 'runtime.clone'.
To work around this problem this commit makes two changes:
1. proc.GetG will return nil for all threads executing runtime.clone.
2. FindGoroutine will return the selected goroutine as long as the
ID matches the one requested.
Change (1) takes care of the 'runtime.clone' problem. If we stop
the target process shortly after a thread executed the SYSCALL
instruction in 'runtime.clone' there are three possibilities:
a. Both the parent thread and the child thread are stopped inside
'runtime.clone'. In this case the state we report is slightly
incorrect, because both threads will be reported as not running any
goroutine when we do know which goorutine one of them (the parent)
is running. This doesn't actually matter since runtime.clone is
always called on the system stack and therefore the goroutine in
runtime.allgs will have the correct location.
b. The child thread managed to exit 'runtime.clone' but the parent
thread didn't. This is similar to (a) but in this case GetG on the
child thread will return the correct goroutine. GetG on the parent
thread will still return (incorrectly) nil but this doesn't matter
for the samer reason as described in (a).
c. The parent thread managed to exit 'runtime.clone' but the child
thread didn't. In this case GetG will return the correct goroutine
both for the parent thread (because it's not executing runtime.clone)
and the child thread.
Change (2) means that even if a thread has a completely nonsensical
TLS (for example because it's set through cgo) evaluating a variable
with a valid GoroutineID will still work as long as it's the current
goroutine (which is the most common case). This change also doubles
as an optimization for FindGoroutine.
Fixes#1469
The repository is being switched from the personal account
github.com/derekparker/delve to the organization account
github.com/go-delve/delve. This patch updates imports and docs, while
preserving things which should not be changed such as my name in the
CHANGELOG and in TODO comments.
When casting an integer into a struct pointer we make a fake pointer
variable that doesn't have an address, maybeDereference and
structMember should still work on this kind of Variable.
Fixes#1432
Minidumps are the windows equivalent of unix core files.
This commit updates pkg/proc/core so that it can open and read windows
minidumps.
Updates #794
Some tests used a fake vendor directory placed inside _fixtures to
import some support packages.
In go.mod mode vendor directory are only supported on the root of the
project, which breaks some of our tests.
Since vendor directories outside the root of the project are so rare
anyway it's possible that a future version of go will stop supporting
it even in GOPATH mode.
Also it was weird and unnecessary in the first place anyawy.
Continue did not resume execution after a call to CallFunction if the
point where the process was stopped, before the call CallFunction, was
a breakpoint.
Fixes#1374
With this syntax users do not need to type the concrete type of an
interface variable to access its contents. This also sidesteps the
problem where the serialization of a type by go/printer is different
from the one used for debug_info type names.
Updates #1328
Normally variables that have a named struct as a type will get a
typedef entry as their type, sometimes however the Go linker will
decide to use the DW_TAG_structure_type entry instead.
For consistency always wrap a struct type into a typedef when we are
creating a new variables (see comment in newVariable for exceptions).
This fixes a bug where it would be impossible to call methods on a
global variable.
Evaluates var.method expressions into a variable holding the
corresponding method with the receiver variable as a child, in
preparation for extending CallFunction so that it can call methods.
Changes (*Variable).setValue so that it can be used in CallFunction to
set up the argument frame for the function call, adding the ability to:
- nil nillable types
- set strings to the empty string
- copy from one structure to another (including strings and slices)
- convert any interface type to interface{}
- convert pointer shaped types (map, chan, pointers, and structs
consisting of a single pointer field) to interface{}
This covers all cases where an assignment statement can be evaluated
without allocating memory or calling functions in the target process.
Adds -defer flag to the stack command that decorates the stack traces
by associating each stack frame with its deferred calls.
Reworks proc.next to use this feature instead of using proc.DeferPC,
laying the groundwork to implement #1240.
Implements the function call injection protocol introduced in go 1.11
by https://go-review.googlesource.com/c/go/+/109699.
This is only the basic support, see TODO comments in pkg/proc/fncall.go
for a list of missing features.
Updates #119
If the application being debugged imports two packages with the same
name (but different paths) there was no way to disambiguate the two,
since the character '/' can not appear inside a go identifier.
By allowing users to use a string literal as the package name a package
path can be specified.
Displays the return values of the current function when we step out of
it after executing a step, next or stepout command.
Implementation of this feature is tricky: when the function has
returned the return variables are not in scope anymore. Implementing
this feature requires evaluating variables that are out of scope, using
a stack frame that doesn't exist anymore.
We can't calculate the address of these variables when the
next/step/stepout command is initiated either, because between that
point and the time where the stepout breakpoint is actually hit the
goroutine stack could grow and be moved to a different memory address.
Go1.11 uses the is_stmt flag of .debug_line to communicate which
assembly instructions are good places for breakpoints, we should
respect this flag.
These changes were introduced by:
* https://go-review.googlesource.com/c/go/+/102435/
Additionally when setting next breakpoints ignore all PC addresses that
belong to the same line as the one currently under at the cursor. This
matches the behavior of gdb and avoids stopping multiple times at the
heading line of a for statement with go1.11.
Change: https://go-review.googlesource.com/c/go/+/110416 adds the
prologue_end flag to the .debug_line section to communicate the end of
the stack-split prologue. We should use it instead of pattern matching
the disassembly when available.
Fixes#550
type of interfaces
'c7cde8b'.
If dwz binary is available in the system, test delve's ability to find
deduplicated symbols in the DWARF information.
dwzcompression.go contains a small C function (void fortytwo()) which
calls glibc's fprintf with stdin as first argument. Normally, stdin
will be present as a DW_TAG_variable as part of a DW_TAG_compile_unit
named dwzcompression.cgo2.c.
After running dwz on the binary, stdin is moved to a
DW_TAG_partial_unit, which is imported from dwzcompression.cgo2.c with
a DW_TAG_imported_unit.
This test verifies that delve is able to find stdin symbol's type, as a
way to confirm it understands dwz's compressed/deduplicated DWARF
information.
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.
* Extend the "frame" command to set the current frame.
Command
frame 3
sets up so that subsequent "print", "set", "whatis" command
will operate on frame 3.
frame 3 print foo
continues to work.
Added "up", "down". They move the current frame up or down.
Implementation note:
This changes removes "scopePrefix" mode from the terminal/command.go and instead
have the command examine the goroutine/frame value to see if it is invoked in a
scoped context.
* Rename Command.Frame -> Command.frame.
Registers XMM1 and XMM2 get sometimes clobbered between the time we set
them and the panic. There is no guarantee that they won't in the go
spec so we shouldn't expect any register to keep its value. However
since this seems to only affect 1 and 2 let's try to use 9 and 10
instead.
Every time we read an empty string we accidentally issue a read for 0
bytes at address 0, this is fine for real memory but the core file
reader doesn't like it.
Fixes an issue reported on the mailing list.