Adds -defer flag to the stack command that decorates the stack traces
by associating each stack frame with its deferred calls.
Reworks proc.next to use this feature instead of using proc.DeferPC,
laying the groundwork to implement #1240.
Implements the function call injection protocol introduced in go 1.11
by https://go-review.googlesource.com/c/go/+/109699.
This is only the basic support, see TODO comments in pkg/proc/fncall.go
for a list of missing features.
Updates #119
go1.11 adds a new extended attribute to all type DIEs containing the
address of the corresponding runtime._type struct, use this attribute
to find the DIE of the concrete type of interface variables when
available.
Caching the frame in variablesByTag is problematic:
1. accounting for variables that are (partially) stored in registers is
complicated (see issue #1106)
2. for some types (strings, interfaces...) simply creating the Variable
object reads memory, which therefore happens before we can do any
caching.
Instead cache the entire frame when the EvalScope object is created.
The cached range is between the SP value of the current frame and the
CFA of the preceeding frame, if available, or the CFA of the current
frame otherwise.
Fixes#1106
Go 1.10 added inlined calls to debug_info, this commit adds support
for DW_TAG_inlined_call to delve, both for stack traces (where
inlined calls will appear as normal stack frames) and to correct
the behavior of next, step and stepout.
The calls to Next and Frame of stackIterator continue to work
unchanged and only return real stack frames, after reading each line
appendInlinedCalls is called to unpacked all the inlined calls that
involve the current PC.
The fake stack frames produced by appendInlinedCalls are
distinguished from real stack frames by having the Inlined attribute
set to true. Also their Current and Call locations are treated
differently. The Call location will be changed to represent the
position inside the inlined call, while the Current location will
always reference the real stack frame. This is done because:
* next, step and stepout need to access the debug_info entry of
the real function they are stepping through
* we are already manipulating Call in different ways while Current
is just what we read from the call stack
The strategy remains mostly the same, we disassemble the function
and we set a breakpoint on each instruction corresponding to a
different file:line. The function in question will be the one
corresponding to the first real (i.e. non-inlined) stack frame.
* If the current function contains inlined calls, 'next' will not
set any breakpoints on instructions that belong to inlined calls. We
do not do this for 'step'.
* If we are inside an inlined call that makes other inlined
functions, 'next' will not set any breakpoints that belong to
inlined calls that are children of the current inlined call.
* If the current function is inlined the breakpoint on the return
address won't be set, because inlined frames don't have a return
address.
* The code we use for stepout doesn't work at all if we are inside
an inlined call, instead we call 'next' but instruct it to remove
all PCs belonging to the current inlined call.
updates vendored version of x86asm, adds a symbol lookup function to
pass to the disassembler.
This will show global symbol names in the disassembly like go tool
objdump does.
Every time we read an empty string we accidentally issue a read for 0
bytes at address 0, this is fine for real memory but the core file
reader doesn't like it.
Fixes an issue reported on the mailing list.
debug_info entries can use DW_AT_abstract_origin to inherit the
attributes of another entry, supporting this attribute is necessary to
support DW_TAG_inlined_subroutine.
Go, starting with 1.10, emits DW_TAG_inlined_subroutine entries when
inlining is enabled.
Much like the bug in issue #1031 and commit
f6f6f0bf13e4c708cb501202b83a6327a0f00e31 pointers can also escape to
the heap and then have a zero address (and no children) when we
autodereference.
1. Mark autodereferenced escaped variables with a 0 address as
unreadable.
2. Add guards to the pretty printers for unsafe.Pointer and pointers.
Fixes#1075
Adds a configuration option (show-location-expr) that when activated
will cause the whatis command to also print the DWARF location
expression for a variable.
When creating a stack trace we should switch between the goroutine
stack and the system stack (where cgo code is executed) as appropriate
to reconstruct the logical stacktrace.
Goroutines that are currently executing on the system stack will have
the SystemStack flag set, frames of the goroutine stack will have a
negative FrameOffset (like always) and frames of the system stack will
have a positive FrameOffset (which is actually just the CFA value for
the frame).
Updates #935
Replace the unsafe.Pointer type of the buf field of channels with the
appropriate array type, allow expressions accessing member field of the
channel struct.
Fixes#962
Instead of only tracking a few cherrypicked registers in stack.go track
all DWARF registers.
This is needed for cgo code and for the locationlists emitted by go in
1.10:
* The debug_frame sections emitted by C compilers can not be used
without tracking all registers
* the loclists emitted by go1.10 need all registers of a frame to be
interpreted.
gosymtab and gopclntab only contain informations about go code, linked
C code isn't there, we should use debug_line instead to also cover C.
Updates #935
Before go1.9 embedded struct fields had name == "" in runtime and ==
type name in DWARF. After go1.9 both runtime and DWARF use a simplified
version of the type as name.
Embedded structs are distinguished from normal fields by setting a flag
in the runtime.structfield, for runtime, and by adding a custom
attribute in DWARF.
Splits out type parsing and go-specific Type hierarchy from
x/debug/dwarf, replace x/debug/dwarf with debug/dwarf everywhere,
remove x/debug/dwarf from vendoring.
Variable lookup is slow because it requires a full scan of debug_info
to check for package variables, this doesn't matter much in interactive
use but can slow down evaluation of breakpoint conditions
significantly.
Providing benchmark proof for this is hard since this effect doesn't
show for small programs with small debug_info sections.
The concrete value of an interface is always stored as a pointer inside
an interface variable. So far we have followed the memory layout and
reported the type of the 'data' attribute of interfaces as a pointer,
however this makes it impossible to distinguish interfaces with
concrete value of type 'A' from interfaces of concrete value of type
'*A'.
With this changeset when we autodereference pointers when the concrete
type of an interface is not a pointer.
* Fix various issues detected by megacheck
I've ran honnef.co/go/tools/cmd/megacheck and fixed a few of the
things that came up there.
* Cleanup using Gogland
type M struct was never used (as far as I know).
type VariableEval interface was used for a brief period of time during
the refactoring, now both its methods are functions.
Before this commit our temp breakpoints only checked that we would stay
on the same goroutine.
However this isn't enough for recursive functions we must check that we
stay on the same goroutine AND on the same stack frame (or, in the case
of the StepOut breakpoint, the previous stack frame).
This commit:
1. adds a new synthetic variable runtime.frameoff that returns the
offset of the current frame from the base of the call stack.
This is similar to runtime.curg
2. Changes the condition used for breakpoints on the lines of the
current function to check that runtime.frameoff hasn't changed.
3. Changes the condition used for breakpoints on the return address to
check that runtime.frameoff corresponds to the previous frame in the
stack.
4. All other temporary breakpoints (the step-into breakpoints and defer
breakpoints) remain unchanged.
Fixes#828
- moved target.Interface into proc as proc.Process
- rename proc.IThread to proc.Thread
- replaced interfaces DisassembleInfo, Continuable and
EvalScopeConvertible with Process.
- removed superfluous Gdbserver prefix from types in the gdbserial
backend.
- removed superfluous Core prefix from types in the core backend.
* proc: Refactor stackIterator to use memoryReadWriter and BinaryInfo
* proc: refactor EvalScope to use memoryReadWriter and BinaryInfo
* proc: refactor Disassemble to use memoryReadWriter and BinaryInfo
* proc: refactor BinaryInfo part of proc.Process to own type
The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.
* proc: compile support for all executable formats unconditionally
So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.
* proc: bugfix: do not resume threads on detach if killing
* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo
Stack barriers were removed in Go 1.9, and thus code that
expected various stack-barrier-related symbols to exist
does not find them. Check for their absence and do not
crash when they are missing. Disable stack-barrier-handling
test for 1.9 and beyond.
Fixes#754.