package proc import ( "debug/dwarf" "errors" "fmt" "go/constant" "reflect" "github.com/go-delve/delve/pkg/dwarf/frame" "github.com/go-delve/delve/pkg/dwarf/op" "github.com/go-delve/delve/pkg/dwarf/reader" ) // This code is partly adapted from runtime.gentraceback in // $GOROOT/src/runtime/traceback.go // Stackframe represents a frame in a system stack. // // Each stack frame has two locations Current and Call. // // For the topmost stackframe Current and Call are the same location. // // For stackframes after the first Current is the location corresponding to // the return address and Call is the location of the CALL instruction that // was last executed on the frame. Note however that Call.PC is always equal // to Current.PC, because finding the correct value for Call.PC would // require disassembling each function in the stacktrace. // // For synthetic stackframes generated for inlined function calls Current.Fn // is the function containing the inlining and Call.Fn in the inlined // function. type Stackframe struct { Current, Call Location // Frame registers. Regs op.DwarfRegisters // High address of the stack. stackHi uint64 // Return address for this stack frame (as read from the stack frame itself). Ret uint64 // Address to the memory location containing the return address addrret uint64 // Err is set if an error occurred during stacktrace Err error // SystemStack is true if this frame belongs to a system stack. SystemStack bool // Inlined is true if this frame is actually an inlined call. Inlined bool // Bottom is true if this is the bottom of the stack Bottom bool // lastpc is a memory address guaranteed to belong to the last instruction // executed in this stack frame. // For the topmost stack frame this will be the same as Current.PC and // Call.PC, for other stack frames it will usually be Current.PC-1, but // could be different when inlined calls are involved in the stacktrace. // Note that this address isn't guaranteed to belong to the start of an // instruction and, for this reason, should not be propagated outside of // pkg/proc. // Use this value to determine active lexical scopes for the stackframe. lastpc uint64 // TopmostDefer is the defer that would be at the top of the stack when a // panic unwind would get to this call frame, in other words it's the first // deferred function that will be called if the runtime unwinds past this // call frame. TopmostDefer *Defer // Defers is the list of functions deferred by this stack frame (so far). Defers []*Defer } // FrameOffset returns the address of the stack frame, absolute for system // stack frames or as an offset from stackhi for goroutine stacks (a // negative value). func (frame *Stackframe) FrameOffset() int64 { if frame.SystemStack { return frame.Regs.CFA } return frame.Regs.CFA - int64(frame.stackHi) } // FramePointerOffset returns the value of the frame pointer, absolute for // system stack frames or as an offset from stackhi for goroutine stacks (a // negative value). func (frame *Stackframe) FramePointerOffset() int64 { if frame.SystemStack { return int64(frame.Regs.BP()) } return int64(frame.Regs.BP()) - int64(frame.stackHi) } // ThreadStacktrace returns the stack trace for thread. // Note the locations in the array are return addresses not call addresses. func ThreadStacktrace(thread Thread, depth int) ([]Stackframe, error) { g, _ := GetG(thread) if g == nil { regs, err := thread.Registers() if err != nil { return nil, err } so := thread.BinInfo().PCToImage(regs.PC()) dwarfRegs := *(thread.BinInfo().Arch.RegistersToDwarfRegisters(so.StaticBase, regs)) dwarfRegs.ChangeFunc = thread.SetReg it := newStackIterator(thread.BinInfo(), thread.ProcessMemory(), dwarfRegs, 0, nil, 0) return it.stacktrace(depth) } return g.Stacktrace(depth, 0) } func (g *G) stackIterator(opts StacktraceOptions) (*stackIterator, error) { bi := g.variable.bi if g.Thread != nil { regs, err := g.Thread.Registers() if err != nil { return nil, err } so := bi.PCToImage(regs.PC()) dwarfRegs := *(bi.Arch.RegistersToDwarfRegisters(so.StaticBase, regs)) dwarfRegs.ChangeFunc = g.Thread.SetReg return newStackIterator( bi, g.variable.mem, dwarfRegs, g.stack.hi, g, opts), nil } so := g.variable.bi.PCToImage(g.PC) return newStackIterator( bi, g.variable.mem, bi.Arch.addrAndStackRegsToDwarfRegisters(so.StaticBase, g.PC, g.SP, g.BP, g.LR), g.stack.hi, g, opts), nil } type StacktraceOptions uint16 const ( // StacktraceReadDefers requests a stacktrace decorated with deferred calls // for each frame. StacktraceReadDefers StacktraceOptions = 1 << iota // StacktraceSimple requests a stacktrace where no stack switches will be // attempted. StacktraceSimple // StacktraceG requests a stacktrace starting with the register // values saved in the runtime.g structure. StacktraceG ) // Stacktrace returns the stack trace for a goroutine. // Note the locations in the array are return addresses not call addresses. func (g *G) Stacktrace(depth int, opts StacktraceOptions) ([]Stackframe, error) { it, err := g.stackIterator(opts) if err != nil { return nil, err } frames, err := it.stacktrace(depth) if err != nil { return nil, err } if opts&StacktraceReadDefers != 0 { g.readDefers(frames) } return frames, nil } // NullAddrError is an error for a null address. type NullAddrError struct{} func (n NullAddrError) Error() string { return "NULL address" } // stackIterator holds information // required to iterate and walk the program // stack. type stackIterator struct { pc uint64 top bool atend bool frame Stackframe bi *BinaryInfo mem MemoryReadWriter err error stackhi uint64 systemstack bool // regs is the register set for the current frame regs op.DwarfRegisters g *G // the goroutine being stacktraced, nil if we are stacktracing a goroutine-less thread g0_sched_sp uint64 // value of g0.sched.sp (see comments around its use) g0_sched_sp_loaded bool // g0_sched_sp was loaded from g0 opts StacktraceOptions } func newStackIterator(bi *BinaryInfo, mem MemoryReadWriter, regs op.DwarfRegisters, stackhi uint64, g *G, opts StacktraceOptions) *stackIterator { systemstack := true if g != nil { systemstack = g.SystemStack } return &stackIterator{pc: regs.PC(), regs: regs, top: true, bi: bi, mem: mem, err: nil, atend: false, stackhi: stackhi, systemstack: systemstack, g: g, opts: opts} } // Next points the iterator to the next stack frame. func (it *stackIterator) Next() bool { if it.err != nil || it.atend { return false } callFrameRegs, ret, retaddr := it.advanceRegs() it.frame = it.newStackframe(ret, retaddr) if it.opts&StacktraceSimple == 0 { if it.bi.Arch.switchStack(it, &callFrameRegs) { return true } } if it.frame.Ret <= 0 { it.atend = true return true } it.top = false it.pc = it.frame.Ret it.regs = callFrameRegs return true } func (it *stackIterator) switchToGoroutineStack() { it.systemstack = false it.top = false it.pc = it.g.PC it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g.SP it.regs.AddReg(it.regs.BPRegNum, op.DwarfRegisterFromUint64(it.g.BP)) if it.bi.Arch.Name == "arm64" { it.regs.Reg(it.regs.LRRegNum).Uint64Val = it.g.LR } } // Frame returns the frame the iterator is pointing at. func (it *stackIterator) Frame() Stackframe { it.frame.Bottom = it.atend return it.frame } // Err returns the error encountered during stack iteration. func (it *stackIterator) Err() error { return it.err } // frameBase calculates the frame base pseudo-register for DWARF for fn and // the current frame. func (it *stackIterator) frameBase(fn *Function) int64 { dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset) if err != nil { return 0 } fb, _, _, _ := it.bi.Location(dwarfTree.Entry, dwarf.AttrFrameBase, it.pc, it.regs, it.mem) return fb } func (it *stackIterator) newStackframe(ret, retaddr uint64) Stackframe { if retaddr == 0 { it.err = NullAddrError{} return Stackframe{} } f, l, fn := it.bi.PCToLine(it.pc) if fn == nil { f = "?" l = -1 } else { it.regs.FrameBase = it.frameBase(fn) } r := Stackframe{Current: Location{PC: it.pc, File: f, Line: l, Fn: fn}, Regs: it.regs, Ret: ret, addrret: retaddr, stackHi: it.stackhi, SystemStack: it.systemstack, lastpc: it.pc} r.Call = r.Current if !it.top && r.Current.Fn != nil && it.pc != r.Current.Fn.Entry { // if the return address is the entry point of the function that // contains it then this is some kind of fake return frame (for example // runtime.sigreturn) that didn't actually call the current frame, // attempting to get the location of the CALL instruction would just // obfuscate what's going on, since there is no CALL instruction. switch r.Current.Fn.Name { case "runtime.mstart", "runtime.systemstack_switch": // these frames are inserted by runtime.systemstack and there is no CALL // instruction to look for at pc - 1 default: r.lastpc = it.pc - 1 r.Call.File, r.Call.Line = r.Current.Fn.cu.lineInfo.PCToLine(r.Current.Fn.Entry, it.pc-1) } } return r } func (it *stackIterator) stacktrace(depth int) ([]Stackframe, error) { if depth < 0 { return nil, errors.New("negative maximum stack depth") } if it.opts&StacktraceG != 0 && it.g != nil { it.switchToGoroutineStack() it.top = true } frames := make([]Stackframe, 0, depth+1) for it.Next() { frames = it.appendInlineCalls(frames, it.Frame()) if len(frames) >= depth+1 { break } } if err := it.Err(); err != nil { if len(frames) == 0 { return nil, err } frames = append(frames, Stackframe{Err: err}) } return frames, nil } func (it *stackIterator) appendInlineCalls(frames []Stackframe, frame Stackframe) []Stackframe { if frame.Call.Fn == nil { return append(frames, frame) } if frame.Call.Fn.cu.lineInfo == nil { return append(frames, frame) } callpc := frame.Call.PC if len(frames) > 0 { callpc-- } dwarfTree, err := frame.Call.Fn.cu.image.getDwarfTree(frame.Call.Fn.offset) if err != nil { return append(frames, frame) } for _, entry := range reader.InlineStack(dwarfTree, callpc) { fnname, okname := entry.Val(dwarf.AttrName).(string) fileidx, okfileidx := entry.Val(dwarf.AttrCallFile).(int64) line, okline := entry.Val(dwarf.AttrCallLine).(int64) if !okname || !okfileidx || !okline { break } var e *dwarf.Entry filepath, fileErr := frame.Current.Fn.cu.filePath(int(fileidx), e) if fileErr != nil { break } inlfn := &Function{Name: fnname, Entry: frame.Call.Fn.Entry, End: frame.Call.Fn.End, offset: entry.Offset, cu: frame.Call.Fn.cu} frames = append(frames, Stackframe{ Current: frame.Current, Call: Location{ frame.Call.PC, frame.Call.File, frame.Call.Line, inlfn, }, Regs: frame.Regs, stackHi: frame.stackHi, Ret: frame.Ret, addrret: frame.addrret, Err: frame.Err, SystemStack: frame.SystemStack, Inlined: true, lastpc: frame.lastpc, }) frame.Call.File = filepath frame.Call.Line = int(line) } return append(frames, frame) } // advanceRegs calculates the DwarfRegisters for a next stack frame // (corresponding to it.pc). // // The computation uses the registers for the current stack frame (it.regs) and // the corresponding Frame Descriptor Entry (FDE) retrieved from the DWARF info. // // The new set of registers is returned. it.regs is not updated, except for // it.regs.CFA; the caller has to eventually switch it.regs when the iterator // advances to the next frame. func (it *stackIterator) advanceRegs() (callFrameRegs op.DwarfRegisters, ret uint64, retaddr uint64) { fde, err := it.bi.frameEntries.FDEForPC(it.pc) var framectx *frame.FrameContext if _, nofde := err.(*frame.ErrNoFDEForPC); nofde { framectx = it.bi.Arch.fixFrameUnwindContext(nil, it.pc, it.bi) } else { framectx = it.bi.Arch.fixFrameUnwindContext(fde.EstablishFrame(it.pc), it.pc, it.bi) } cfareg, err := it.executeFrameRegRule(0, framectx.CFA, 0) if cfareg == nil { it.err = fmt.Errorf("CFA becomes undefined at PC %#x: %v", it.pc, err) return op.DwarfRegisters{}, 0, 0 } it.regs.CFA = int64(cfareg.Uint64Val) callimage := it.bi.PCToImage(it.pc) callFrameRegs = op.DwarfRegisters{StaticBase: callimage.StaticBase, ByteOrder: it.regs.ByteOrder, PCRegNum: it.regs.PCRegNum, SPRegNum: it.regs.SPRegNum, BPRegNum: it.regs.BPRegNum, LRRegNum: it.regs.LRRegNum} // According to the standard the compiler should be responsible for emitting // rules for the RSP register so that it can then be used to calculate CFA, // however neither Go nor GCC do this. // In the following line we copy GDB's behaviour by assuming this is // implicit. // See also the comment in dwarf2_frame_default_init in // $GDB_SOURCE/dwarf2-frame.c callFrameRegs.AddReg(callFrameRegs.SPRegNum, cfareg) for i, regRule := range framectx.Regs { reg, err := it.executeFrameRegRule(i, regRule, it.regs.CFA) callFrameRegs.AddReg(i, reg) if i == framectx.RetAddrReg { if reg == nil { if err == nil { //lint:ignore ST1005 backwards compatibility err = fmt.Errorf("Undefined return address at %#x", it.pc) } it.err = err } else { ret = reg.Uint64Val } retaddr = uint64(it.regs.CFA + regRule.Offset) } } if it.bi.Arch.Name == "arm64" { if ret == 0 && it.regs.Reg(it.regs.LRRegNum) != nil { ret = it.regs.Reg(it.regs.LRRegNum).Uint64Val } } return callFrameRegs, ret, retaddr } func (it *stackIterator) executeFrameRegRule(regnum uint64, rule frame.DWRule, cfa int64) (*op.DwarfRegister, error) { switch rule.Rule { default: fallthrough case frame.RuleUndefined: return nil, nil case frame.RuleSameVal: if it.regs.Reg(regnum) == nil { return nil, nil } reg := *it.regs.Reg(regnum) return ®, nil case frame.RuleOffset: return it.readRegisterAt(regnum, uint64(cfa+rule.Offset)) case frame.RuleValOffset: return op.DwarfRegisterFromUint64(uint64(cfa + rule.Offset)), nil case frame.RuleRegister: return it.regs.Reg(rule.Reg), nil case frame.RuleExpression: v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize(), it.mem.ReadMemory) if err != nil { return nil, err } return it.readRegisterAt(regnum, uint64(v)) case frame.RuleValExpression: v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize(), it.mem.ReadMemory) if err != nil { return nil, err } return op.DwarfRegisterFromUint64(uint64(v)), nil case frame.RuleArchitectural: return nil, errors.New("architectural frame rules are unsupported") case frame.RuleCFA: if it.regs.Reg(rule.Reg) == nil { return nil, nil } return op.DwarfRegisterFromUint64(uint64(int64(it.regs.Uint64Val(rule.Reg)) + rule.Offset)), nil case frame.RuleFramePointer: curReg := it.regs.Reg(rule.Reg) if curReg == nil { return nil, nil } if curReg.Uint64Val <= uint64(cfa) { return it.readRegisterAt(regnum, curReg.Uint64Val) } newReg := *curReg return &newReg, nil } } func (it *stackIterator) readRegisterAt(regnum uint64, addr uint64) (*op.DwarfRegister, error) { buf := make([]byte, it.bi.Arch.regSize(regnum)) _, err := it.mem.ReadMemory(buf, addr) if err != nil { return nil, err } return op.DwarfRegisterFromBytes(buf), nil } func (it *stackIterator) loadG0SchedSP() { if it.g0_sched_sp_loaded { return } it.g0_sched_sp_loaded = true if it.g != nil { mvar, _ := it.g.variable.structMember("m") if mvar != nil { g0var, _ := mvar.structMember("g0") if g0var != nil { g0, _ := g0var.parseG() if g0 != nil { it.g0_sched_sp = g0.SP } } } } } // Defer represents one deferred call type Defer struct { DwrapPC uint64 // PC of the deferred function or, in Go 1.17+ a wrapper to it DeferPC uint64 // PC address of instruction that added this defer SP uint64 // Value of SP register when this function was deferred (this field gets adjusted when the stack is moved to match the new stack space) link *Defer // Next deferred function argSz int64 // Always 0 in Go >=1.17 variable *Variable Unreadable error } // readDefers decorates the frames with the function deferred at each stack frame. func (g *G) readDefers(frames []Stackframe) { curdefer := g.Defer() i := 0 // scan simultaneously frames and the curdefer linked list, assigning // defers to their associated frames. for { if curdefer == nil || i >= len(frames) { return } if curdefer.Unreadable != nil { // Current defer is unreadable, stick it into the first available frame // (so that it can be reported to the user) and exit frames[i].Defers = append(frames[i].Defers, curdefer) return } if frames[i].Err != nil { return } if frames[i].TopmostDefer == nil { frames[i].TopmostDefer = curdefer } if frames[i].SystemStack || curdefer.SP >= uint64(frames[i].Regs.CFA) { // frames[i].Regs.CFA is the value that SP had before the function of // frames[i] was called. // This means that when curdefer.SP == frames[i].Regs.CFA then curdefer // was added by the previous frame. // // curdefer.SP < frames[i].Regs.CFA means curdefer was added by a // function further down the stack. // // SystemStack frames live on a different physical stack and can't be // compared with deferred frames. i++ } else { frames[i].Defers = append(frames[i].Defers, curdefer) curdefer = curdefer.Next() } } } func (d *Defer) load() { v := d.variable // +rtype _defer v.loadValue(LoadConfig{false, 1, 0, 0, -1, 0}) if v.Unreadable != nil { d.Unreadable = v.Unreadable return } fnvar := v.fieldVariable("fn") if fnvar.Kind == reflect.Func { // In Go 1.18, fn is a func(). d.DwrapPC = fnvar.Base } else if val := fnvar.maybeDereference(); val.Addr != 0 { // In Go <1.18, fn is a *funcval. fnvar = fnvar.loadFieldNamed("fn") if fnvar.Unreadable == nil { d.DwrapPC, _ = constant.Uint64Val(fnvar.Value) } } d.DeferPC, _ = constant.Uint64Val(v.fieldVariable("pc").Value) // +rtype uintptr d.SP, _ = constant.Uint64Val(v.fieldVariable("sp").Value) // +rtype uintptr sizVar := v.fieldVariable("siz") // +rtype -opt int32 if sizVar != nil { // In Go <1.18, siz stores the number of bytes of // defer arguments following the defer record. In Go // 1.18, the defer record doesn't store arguments, so // we leave this 0. d.argSz, _ = constant.Int64Val(sizVar.Value) } linkvar := v.fieldVariable("link").maybeDereference() // +rtype *_defer if linkvar.Addr != 0 { d.link = &Defer{variable: linkvar} } } // errSPDecreased is used when (*Defer).Next detects a corrupted linked // list, specifically when after followin a link pointer the value of SP // decreases rather than increasing or staying the same (the defer list is a // FIFO list, nodes further down the list have been added by function calls // further down the call stack and therefore the SP should always increase). var errSPDecreased = errors.New("corrupted defer list: SP decreased") // Next returns the next defer in the linked list func (d *Defer) Next() *Defer { if d.link == nil { return nil } d.link.load() if d.link.SP < d.SP { d.link.Unreadable = errSPDecreased } return d.link } // EvalScope returns an EvalScope relative to the argument frame of this deferred call. // The argument frame of a deferred call is stored in memory immediately // after the deferred header. func (d *Defer) EvalScope(t *Target, thread Thread) (*EvalScope, error) { scope, err := GoroutineScope(t, thread) if err != nil { return nil, fmt.Errorf("could not get scope: %v", err) } bi := thread.BinInfo() scope.PC = d.DwrapPC scope.File, scope.Line, scope.Fn = bi.PCToLine(d.DwrapPC) if scope.Fn == nil { return nil, fmt.Errorf("could not find function at %#x", d.DwrapPC) } // The arguments are stored immediately after the defer header struct, i.e. // addr+sizeof(_defer). if !bi.Arch.usesLR { // On architectures that don't have a link register CFA is always the address of the first // argument, that's what we use for the value of CFA. // For SP we use CFA minus the size of one pointer because that would be // the space occupied by pushing the return address on the stack during the // CALL. scope.Regs.CFA = (int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize) scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA - int64(bi.Arch.PtrSize())) } else { // On architectures that have a link register CFA and SP have the same // value but the address of the first argument is at CFA+ptrSize so we set // CFA to the start of the argument frame minus one pointer size. scope.Regs.CFA = int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize - int64(bi.Arch.PtrSize()) scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA) } rdr := scope.Fn.cu.image.dwarfReader rdr.Seek(scope.Fn.offset) e, err := rdr.Next() if err != nil { return nil, fmt.Errorf("could not read DWARF function entry: %v", err) } scope.Regs.FrameBase, _, _, _ = bi.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs, scope.Mem) scope.Mem = cacheMemory(scope.Mem, uint64(scope.Regs.CFA), int(d.argSz)) return scope, nil } // DeferredFunc returns the deferred function, on Go 1.17 and later unwraps // any defer wrapper. func (d *Defer) DeferredFunc(p *Target) (file string, line int, fn *Function) { bi := p.BinInfo() fn = bi.PCToFunc(d.DwrapPC) fn = p.dwrapUnwrap(fn) if fn == nil { return "", 0, nil } file, line = fn.cu.lineInfo.PCToLine(fn.Entry, fn.Entry) return file, line, fn }