package proc import ( "encoding/binary" "github.com/go-delve/delve/pkg/dwarf/frame" "github.com/go-delve/delve/pkg/dwarf/op" "golang.org/x/arch/arm64/arm64asm" ) // ARM64 represents the ARM64 CPU architecture. type ARM64 struct { gStructOffset uint64 goos string // crosscall2fn is the DIE of crosscall2, a function used by the go runtime // to call C functions. This function in go 1.9 (and previous versions) had // a bad frame descriptor which needs to be fixed to generate good stack // traces. crosscall2fn *Function // sigreturnfn is the DIE of runtime.sigreturn, the return trampoline for // the signal handler. See comment in FixFrameUnwindContext for a // description of why this is needed. sigreturnfn *Function } const ( arm64DwarfIPRegNum uint64 = 32 arm64DwarfSPRegNum uint64 = 31 arm64DwarfBPRegNum uint64 = 29 ) var arm64BreakInstruction = []byte{0x0, 0x0, 0x20, 0xd4} // ARM64Arch returns an initialized ARM64 // struct. func ARM64Arch(goos string) *ARM64 { return &ARM64{ goos: goos, } } // PtrSize returns the size of a pointer // on this architecture. func (a *ARM64) PtrSize() int { return 8 } // MaxInstructionLength returns the maximum lenght of an instruction. func (a *ARM64) MaxInstructionLength() int { return 4 } // BreakpointInstruction returns the Breakpoint // instruction for this architecture. func (a *ARM64) BreakpointInstruction() []byte { return arm64BreakInstruction } // BreakInstrMovesPC returns whether the // breakpoint instruction will change the value // of PC after being executed func (a *ARM64) BreakInstrMovesPC() bool { return false } // BreakpointSize returns the size of the // breakpoint instruction on this architecture. func (a *ARM64) BreakpointSize() int { return len(arm64BreakInstruction) } // Always return false for now. func (a *ARM64) DerefTLS() bool { return false } // FixFrameUnwindContext adds default architecture rules to fctxt or returns // the default frame unwind context if fctxt is nil. func (a *ARM64) FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext { if a.sigreturnfn == nil { a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"] } if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) { // When there's no frame descriptor entry use BP (the frame pointer) instead // - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()]) // - cfa is bp + a.PtrSize()*2 // - bp is [bp] (i.e. [cfa-a.PtrSize()*2]) // - sp is cfa // When the signal handler runs it will move the execution to the signal // handling stack (installed using the sigaltstack system call). // This isn't a proper stack switch: the pointer to g in TLS will still // refer to whatever g was executing on that thread before the signal was // received. // Since go did not execute a stack switch the previous value of sp, pc // and bp is not saved inside g.sched, as it normally would. // The only way to recover is to either read sp/pc from the signal context // parameter (the ucontext_t* parameter) or to unconditionally follow the // frame pointer when we get to runtime.sigreturn (which is what we do // here). return &frame.FrameContext{ RetAddrReg: arm64DwarfIPRegNum, Regs: map[uint64]frame.DWRule{ arm64DwarfIPRegNum: frame.DWRule{ Rule: frame.RuleOffset, Offset: int64(-a.PtrSize()), }, arm64DwarfBPRegNum: frame.DWRule{ Rule: frame.RuleOffset, Offset: int64(-2 * a.PtrSize()), }, arm64DwarfSPRegNum: frame.DWRule{ Rule: frame.RuleValOffset, Offset: 0, }, }, CFA: frame.DWRule{ Rule: frame.RuleCFA, Reg: arm64DwarfBPRegNum, Offset: int64(2 * a.PtrSize()), }, } } if a.crosscall2fn == nil { a.crosscall2fn = bi.LookupFunc["crosscall2"] } if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End { rule := fctxt.CFA if rule.Offset == crosscall2SPOffsetBad { switch a.goos { case "windows": rule.Offset += crosscall2SPOffsetWindows default: rule.Offset += crosscall2SPOffsetNonWindows } } fctxt.CFA = rule } // We assume that RBP is the frame pointer and we want to keep it updated, // so that we can use it to unwind the stack even when we encounter frames // without descriptor entries. // If there isn't a rule already we emit one. if fctxt.Regs[arm64DwarfBPRegNum].Rule == frame.RuleUndefined { fctxt.Regs[arm64DwarfBPRegNum] = frame.DWRule{ Rule: frame.RuleFramePointer, Reg: arm64DwarfBPRegNum, Offset: 0, } } return fctxt } func (a *ARM64) RegSize(regnum uint64) int { // fp registers if regnum >= 64 && regnum <= 95 { return 16 } return 8 // general registers } // The mapping between hardware registers and DWARF registers is specified // in the DWARF for the ARMĀ® Architecture page 7, // Table 1 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040b/IHI0040B_aadwarf.pdf var arm64DwarfToHardware = map[int]arm64asm.Reg{ 0: arm64asm.X0, 1: arm64asm.X1, 2: arm64asm.X2, 3: arm64asm.X3, 4: arm64asm.X4, 5: arm64asm.X5, 6: arm64asm.X6, 7: arm64asm.X7, 8: arm64asm.X8, 9: arm64asm.X9, 10: arm64asm.X10, 11: arm64asm.X11, 12: arm64asm.X12, 13: arm64asm.X13, 14: arm64asm.X14, 15: arm64asm.X15, 16: arm64asm.X16, 17: arm64asm.X17, 18: arm64asm.X18, 19: arm64asm.X19, 20: arm64asm.X20, 21: arm64asm.X21, 22: arm64asm.X22, 23: arm64asm.X23, 24: arm64asm.X24, 25: arm64asm.X25, 26: arm64asm.X26, 27: arm64asm.X27, 28: arm64asm.X28, 29: arm64asm.X29, 30: arm64asm.X30, 31: arm64asm.SP, 64: arm64asm.V0, 65: arm64asm.V1, 66: arm64asm.V2, 67: arm64asm.V3, 68: arm64asm.V4, 69: arm64asm.V5, 70: arm64asm.V6, 71: arm64asm.V7, 72: arm64asm.V8, 73: arm64asm.V9, 74: arm64asm.V10, 75: arm64asm.V11, 76: arm64asm.V12, 77: arm64asm.V13, 78: arm64asm.V14, 79: arm64asm.V15, 80: arm64asm.V16, 81: arm64asm.V17, 82: arm64asm.V18, 83: arm64asm.V19, 84: arm64asm.V20, 85: arm64asm.V21, 86: arm64asm.V22, 87: arm64asm.V23, 88: arm64asm.V24, 89: arm64asm.V25, 90: arm64asm.V26, 91: arm64asm.V27, 92: arm64asm.V28, 93: arm64asm.V29, 94: arm64asm.V30, 95: arm64asm.V31, } func maxArm64DwarfRegister() int { max := int(arm64DwarfIPRegNum) for i := range arm64DwarfToHardware { if i > max { max = i } } return max } // RegistersToDwarfRegisters converts hardware registers to the format used // by the DWARF expression interpreter. func (a *ARM64) RegistersToDwarfRegisters(staticBase uint64, regs Registers) op.DwarfRegisters { dregs := make([]*op.DwarfRegister, maxArm64DwarfRegister()+1) dregs[arm64DwarfIPRegNum] = op.DwarfRegisterFromUint64(regs.PC()) dregs[arm64DwarfSPRegNum] = op.DwarfRegisterFromUint64(regs.SP()) dregs[arm64DwarfBPRegNum] = op.DwarfRegisterFromUint64(regs.BP()) for dwarfReg, asmReg := range arm64DwarfToHardware { v, err := regs.Get(int(asmReg)) if err == nil { dregs[dwarfReg] = op.DwarfRegisterFromUint64(v) } } return op.DwarfRegisters{ StaticBase: staticBase, Regs: dregs, ByteOrder: binary.LittleEndian, PCRegNum: arm64DwarfIPRegNum, SPRegNum: arm64DwarfSPRegNum, BPRegNum: arm64DwarfBPRegNum, } } // AddrAndStackRegsToDwarfRegisters returns DWARF registers from the passed in // PC, SP, and BP registers in the format used by the DWARF expression interpreter. func (a *ARM64) AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp uint64) op.DwarfRegisters { dregs := make([]*op.DwarfRegister, arm64DwarfIPRegNum+1) dregs[arm64DwarfIPRegNum] = op.DwarfRegisterFromUint64(pc) dregs[arm64DwarfSPRegNum] = op.DwarfRegisterFromUint64(sp) dregs[arm64DwarfBPRegNum] = op.DwarfRegisterFromUint64(bp) return op.DwarfRegisters{ StaticBase: staticBase, Regs: dregs, ByteOrder: binary.LittleEndian, PCRegNum: arm64DwarfIPRegNum, SPRegNum: arm64DwarfSPRegNum, BPRegNum: arm64DwarfBPRegNum, } }