package fbsdutil import ( "golang.org/x/arch/x86/x86asm" "github.com/go-delve/delve/pkg/proc" "github.com/go-delve/delve/pkg/proc/linutil" ) // AMD64Registers implements the proc.Registers interface for the native/freebsd // backend and core/freebsd backends, on AMD64. type AMD64Registers struct { Regs *AMD64PtraceRegs Fpregs []proc.Register Fpregset *AMD64Xstate Fsbase uint64 } // AMD64PtraceRegs is the struct used by the freebsd kernel to return the // general purpose registers for AMD64 CPUs. // source: sys/x86/include/reg.h type AMD64PtraceRegs struct { R15 int64 R14 int64 R13 int64 R12 int64 R11 int64 R10 int64 R9 int64 R8 int64 Rdi int64 Rsi int64 Rbp int64 Rbx int64 Rdx int64 Rcx int64 Rax int64 Trapno uint32 Fs uint16 Gs uint16 Err uint32 Es uint16 Ds uint16 Rip int64 Cs int64 Rflags int64 Rsp int64 Ss int64 } // Slice returns the registers as a list of (name, value) pairs. func (r *AMD64Registers) Slice(floatingPoint bool) []proc.Register { var regs64 = []struct { k string v int64 }{ {"R15", r.Regs.R15}, {"R14", r.Regs.R14}, {"R13", r.Regs.R13}, {"R12", r.Regs.R12}, {"R11", r.Regs.R11}, {"R10", r.Regs.R10}, {"R9", r.Regs.R9}, {"R8", r.Regs.R8}, {"Rdi", r.Regs.Rdi}, {"Rsi", r.Regs.Rsi}, {"Rbp", r.Regs.Rbp}, {"Rbx", r.Regs.Rbx}, {"Rdx", r.Regs.Rdx}, {"Rcx", r.Regs.Rcx}, {"Rax", r.Regs.Rax}, {"Rip", r.Regs.Rip}, {"Cs", r.Regs.Cs}, {"Rflags", r.Regs.Rflags}, {"Rsp", r.Regs.Rsp}, {"Ss", r.Regs.Ss}, } var regs32 = []struct { k string v uint32 }{ {"Trapno", r.Regs.Trapno}, {"Err", r.Regs.Err}, } var regs16 = []struct { k string v uint16 }{ {"Fs", r.Regs.Fs}, {"Gs", r.Regs.Gs}, {"Es", r.Regs.Es}, {"Ds", r.Regs.Ds}, } out := make([]proc.Register, 0, len(regs64)+ len(regs32)+ len(regs16)+ 1+ // for Rflags len(r.Fpregs)) for _, reg := range regs64 { // FreeBSD defines the registers as signed, but Linux defines // them as unsigned. Of course, a register doesn't really have // a concept of signedness. Cast to what Delve expects. out = proc.AppendQwordReg(out, reg.k, uint64(reg.v)) } for _, reg := range regs32 { out = proc.AppendDwordReg(out, reg.k, reg.v) } for _, reg := range regs16 { out = proc.AppendWordReg(out, reg.k, reg.v) } // x86 called this register "Eflags". amd64 extended it and renamed it // "Rflags", but Linux still uses the old name. out = proc.AppendEflagReg(out, "Rflags", uint64(r.Regs.Rflags)) if floatingPoint { out = append(out, r.Fpregs...) } return out } // PC returns the value of RIP register. func (r *AMD64Registers) PC() uint64 { return uint64(r.Regs.Rip) } // SP returns the value of RSP register. func (r *AMD64Registers) SP() uint64 { return uint64(r.Regs.Rsp) } func (r *AMD64Registers) BP() uint64 { return uint64(r.Regs.Rbp) } // TLS returns the address of the thread local storage memory segment. func (r *AMD64Registers) TLS() uint64 { return r.Fsbase } // GAddr returns the address of the G variable if it is known, 0 and false // otherwise. func (r *AMD64Registers) GAddr() (uint64, bool) { return 0, false } // Get returns the value of the n-th register (in x86asm order). func (r *AMD64Registers) Get(n int) (uint64, error) { reg := x86asm.Reg(n) const ( mask8 = 0x000000ff mask16 = 0x0000ffff mask32 = 0xffffffff ) switch reg { // 8-bit case x86asm.AL: return uint64(r.Regs.Rax) & mask8, nil case x86asm.CL: return uint64(r.Regs.Rcx) & mask8, nil case x86asm.DL: return uint64(r.Regs.Rdx) & mask8, nil case x86asm.BL: return uint64(r.Regs.Rbx) & mask8, nil case x86asm.AH: return (uint64(r.Regs.Rax) >> 8) & mask8, nil case x86asm.CH: return (uint64(r.Regs.Rcx) >> 8) & mask8, nil case x86asm.DH: return (uint64(r.Regs.Rdx) >> 8) & mask8, nil case x86asm.BH: return (uint64(r.Regs.Rbx) >> 8) & mask8, nil case x86asm.SPB: return uint64(r.Regs.Rsp) & mask8, nil case x86asm.BPB: return uint64(r.Regs.Rbp) & mask8, nil case x86asm.SIB: return uint64(r.Regs.Rsi) & mask8, nil case x86asm.DIB: return uint64(r.Regs.Rdi) & mask8, nil case x86asm.R8B: return uint64(r.Regs.R8) & mask8, nil case x86asm.R9B: return uint64(r.Regs.R9) & mask8, nil case x86asm.R10B: return uint64(r.Regs.R10) & mask8, nil case x86asm.R11B: return uint64(r.Regs.R11) & mask8, nil case x86asm.R12B: return uint64(r.Regs.R12) & mask8, nil case x86asm.R13B: return uint64(r.Regs.R13) & mask8, nil case x86asm.R14B: return uint64(r.Regs.R14) & mask8, nil case x86asm.R15B: return uint64(r.Regs.R15) & mask8, nil // 16-bit case x86asm.AX: return uint64(r.Regs.Rax) & mask16, nil case x86asm.CX: return uint64(r.Regs.Rcx) & mask16, nil case x86asm.DX: return uint64(r.Regs.Rdx) & mask16, nil case x86asm.BX: return uint64(r.Regs.Rbx) & mask16, nil case x86asm.SP: return uint64(r.Regs.Rsp) & mask16, nil case x86asm.BP: return uint64(r.Regs.Rbp) & mask16, nil case x86asm.SI: return uint64(r.Regs.Rsi) & mask16, nil case x86asm.DI: return uint64(r.Regs.Rdi) & mask16, nil case x86asm.R8W: return uint64(r.Regs.R8) & mask16, nil case x86asm.R9W: return uint64(r.Regs.R9) & mask16, nil case x86asm.R10W: return uint64(r.Regs.R10) & mask16, nil case x86asm.R11W: return uint64(r.Regs.R11) & mask16, nil case x86asm.R12W: return uint64(r.Regs.R12) & mask16, nil case x86asm.R13W: return uint64(r.Regs.R13) & mask16, nil case x86asm.R14W: return uint64(r.Regs.R14) & mask16, nil case x86asm.R15W: return uint64(r.Regs.R15) & mask16, nil // 32-bit case x86asm.EAX: return uint64(r.Regs.Rax) & mask32, nil case x86asm.ECX: return uint64(r.Regs.Rcx) & mask32, nil case x86asm.EDX: return uint64(r.Regs.Rdx) & mask32, nil case x86asm.EBX: return uint64(r.Regs.Rbx) & mask32, nil case x86asm.ESP: return uint64(r.Regs.Rsp) & mask32, nil case x86asm.EBP: return uint64(r.Regs.Rbp) & mask32, nil case x86asm.ESI: return uint64(r.Regs.Rsi) & mask32, nil case x86asm.EDI: return uint64(r.Regs.Rdi) & mask32, nil case x86asm.R8L: return uint64(r.Regs.R8) & mask32, nil case x86asm.R9L: return uint64(r.Regs.R9) & mask32, nil case x86asm.R10L: return uint64(r.Regs.R10) & mask32, nil case x86asm.R11L: return uint64(r.Regs.R11) & mask32, nil case x86asm.R12L: return uint64(r.Regs.R12) & mask32, nil case x86asm.R13L: return uint64(r.Regs.R13) & mask32, nil case x86asm.R14L: return uint64(r.Regs.R14) & mask32, nil case x86asm.R15L: return uint64(r.Regs.R15) & mask32, nil // 64-bit case x86asm.RAX: return uint64(r.Regs.Rax), nil case x86asm.RCX: return uint64(r.Regs.Rcx), nil case x86asm.RDX: return uint64(r.Regs.Rdx), nil case x86asm.RBX: return uint64(r.Regs.Rbx), nil case x86asm.RSP: return uint64(r.Regs.Rsp), nil case x86asm.RBP: return uint64(r.Regs.Rbp), nil case x86asm.RSI: return uint64(r.Regs.Rsi), nil case x86asm.RDI: return uint64(r.Regs.Rdi), nil case x86asm.R8: return uint64(r.Regs.R8), nil case x86asm.R9: return uint64(r.Regs.R9), nil case x86asm.R10: return uint64(r.Regs.R10), nil case x86asm.R11: return uint64(r.Regs.R11), nil case x86asm.R12: return uint64(r.Regs.R12), nil case x86asm.R13: return uint64(r.Regs.R13), nil case x86asm.R14: return uint64(r.Regs.R14), nil case x86asm.R15: return uint64(r.Regs.R15), nil } return 0, proc.ErrUnknownRegister } // Copy returns a copy of these registers that is guarenteed not to change. func (r *AMD64Registers) Copy() proc.Registers { var rr AMD64Registers rr.Regs = &AMD64PtraceRegs{} rr.Fpregset = &AMD64Xstate{} *(rr.Regs) = *(r.Regs) if r.Fpregset != nil { *(rr.Fpregset) = *(r.Fpregset) } if r.Fpregs != nil { rr.Fpregs = make([]proc.Register, len(r.Fpregs)) copy(rr.Fpregs, r.Fpregs) } return &rr } type AMD64Xstate linutil.AMD64Xstate func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate) error { return linutil.AMD64XstateRead(xstateargs, readLegacy, (*linutil.AMD64Xstate)(regset)) } func (xsave *AMD64Xstate) Decode() (regs []proc.Register) { return (*linutil.AMD64Xstate).Decode((*linutil.AMD64Xstate)(xsave)) }