package proc import ( "errors" "fmt" "go/ast" "go/constant" "go/parser" "go/token" "reflect" ) const ( // UnrecoveredPanic is the name given to the unrecovered panic breakpoint. UnrecoveredPanic = "unrecovered-panic" // FatalThrow is the name given to the breakpoint triggered when the target // process dies because of a fatal runtime error. FatalThrow = "runtime-fatal-throw" unrecoveredPanicID = -1 fatalThrowID = -2 ) // Breakpoint represents a physical breakpoint. Stores information on the break // point including the byte of data that originally was stored at that // address. type Breakpoint struct { // File & line information for printing. FunctionName string File string Line int Addr uint64 // Address breakpoint is set for. OriginalData []byte // If software breakpoint, the data we replace with breakpoint instruction. Name string // User defined name of the breakpoint LogicalID int // ID of the logical breakpoint that owns this physical breakpoint WatchExpr string WatchType WatchType HWBreakIndex uint8 // hardware breakpoint index // Kind describes whether this is an internal breakpoint (for next'ing or // stepping). // A single breakpoint can be both a UserBreakpoint and some kind of // internal breakpoint, but it can not be two different kinds of internal // breakpoint. Kind BreakpointKind // Breakpoint information Tracepoint bool // Tracepoint flag TraceReturn bool Goroutine bool // Retrieve goroutine information Stacktrace int // Number of stack frames to retrieve Variables []string // Variables to evaluate LoadArgs *LoadConfig LoadLocals *LoadConfig HitCount map[int]uint64 // Number of times a breakpoint has been reached in a certain goroutine TotalHitCount uint64 // Number of times a breakpoint has been reached // DeferReturns: when kind == NextDeferBreakpoint this breakpoint // will also check if the caller is runtime.gopanic or if the return // address is in the DeferReturns array. // Next uses NextDeferBreakpoints for the breakpoint it sets on the // deferred function, DeferReturns is populated with the // addresses of calls to runtime.deferreturn in the current // function. This ensures that the breakpoint on the deferred // function only triggers on panic or on the defer call to // the function, not when the function is called directly DeferReturns []uint64 // Cond: if not nil the breakpoint will be triggered only if evaluating Cond returns true Cond ast.Expr // internalCond is the same as Cond but used for the condition of internal breakpoints internalCond ast.Expr // HitCond: if not nil the breakpoint will be triggered only if the evaluated HitCond returns // true with the TotalHitCount. HitCond *struct { Op token.Token Val int } // ReturnInfo describes how to collect return variables when this // breakpoint is hit as a return breakpoint. returnInfo *returnBreakpointInfo } // BreakpointKind determines the behavior of delve when the // breakpoint is reached. type BreakpointKind uint16 const ( // UserBreakpoint is a user set breakpoint UserBreakpoint BreakpointKind = (1 << iota) // NextBreakpoint is a breakpoint set by Next, Continue // will stop on it and delete it NextBreakpoint // NextDeferBreakpoint is a breakpoint set by Next on the // first deferred function. In addition to checking their condition // breakpoints of this kind will also check that the function has been // called by runtime.gopanic or through runtime.deferreturn. NextDeferBreakpoint // StepBreakpoint is a breakpoint set by Step on a CALL instruction, // Continue will set a new breakpoint (of NextBreakpoint kind) on the // destination of CALL, delete this breakpoint and then continue again StepBreakpoint ) // WatchType is the watchpoint type type WatchType uint8 const ( WatchRead WatchType = 1 << iota WatchWrite ) // Read returns true if the hardware breakpoint should trigger on memory reads. func (wtype WatchType) Read() bool { return wtype&WatchRead != 0 } // Write returns true if the hardware breakpoint should trigger on memory writes. func (wtype WatchType) Write() bool { return wtype&WatchWrite != 0 } // Size returns the size in bytes of the hardware breakpoint. func (wtype WatchType) Size() int { return int(wtype >> 4) } // withSize returns a new HWBreakType with the size set to the specified value func (wtype WatchType) withSize(sz uint8) WatchType { return WatchType((sz << 4) | uint8(wtype&0xf)) } var ErrHWBreakUnsupported = errors.New("hardware breakpoints not implemented") func (bp *Breakpoint) String() string { return fmt.Sprintf("Breakpoint %d at %#v %s:%d (%d)", bp.LogicalID, bp.Addr, bp.File, bp.Line, bp.TotalHitCount) } // BreakpointExistsError is returned when trying to set a breakpoint at // an address that already has a breakpoint set for it. type BreakpointExistsError struct { File string Line int Addr uint64 } func (bpe BreakpointExistsError) Error() string { return fmt.Sprintf("Breakpoint exists at %s:%d at %x", bpe.File, bpe.Line, bpe.Addr) } // InvalidAddressError represents the result of // attempting to set a breakpoint at an invalid address. type InvalidAddressError struct { Address uint64 } func (iae InvalidAddressError) Error() string { return fmt.Sprintf("Invalid address %#v\n", iae.Address) } type returnBreakpointInfo struct { retFrameCond ast.Expr fn *Function frameOffset int64 spOffset int64 } // CheckCondition evaluates bp's condition on thread. func (bp *Breakpoint) CheckCondition(thread Thread) BreakpointState { bpstate := BreakpointState{Breakpoint: bp, Active: false, Internal: false, CondError: nil} bpstate.checkCond(thread) // Update the breakpoint hit counts. if bpstate.Breakpoint != nil && bpstate.Active { if g, err := GetG(thread); err == nil { bpstate.HitCount[g.ID]++ } bpstate.TotalHitCount++ } bpstate.checkHitCond(thread) return bpstate } func (bpstate *BreakpointState) checkCond(thread Thread) { if bpstate.Cond == nil && bpstate.internalCond == nil { bpstate.Active = true bpstate.Internal = bpstate.IsInternal() return } nextDeferOk := true if bpstate.Kind&NextDeferBreakpoint != 0 { var err error frames, err := ThreadStacktrace(thread, 2) if err == nil { nextDeferOk, _ = isPanicCall(frames) if !nextDeferOk { nextDeferOk, _ = isDeferReturnCall(frames, bpstate.DeferReturns) } } } if bpstate.IsInternal() { // Check internalCondition if this is also an internal breakpoint bpstate.Active, bpstate.CondError = evalBreakpointCondition(thread, bpstate.internalCond) bpstate.Active = bpstate.Active && nextDeferOk if bpstate.Active || bpstate.CondError != nil { bpstate.Internal = true return } } if bpstate.IsUser() { // Check normal condition if this is also a user breakpoint bpstate.Active, bpstate.CondError = evalBreakpointCondition(thread, bpstate.Cond) } } // checkHitCond evaluates bp's hit condition on thread. func (bpstate *BreakpointState) checkHitCond(thread Thread) { if bpstate.HitCond == nil || !bpstate.Active || bpstate.Internal { return } // Evaluate the breakpoint condition. switch bpstate.HitCond.Op { case token.EQL: bpstate.Active = int(bpstate.TotalHitCount) == bpstate.HitCond.Val case token.NEQ: bpstate.Active = int(bpstate.TotalHitCount) != bpstate.HitCond.Val case token.GTR: bpstate.Active = int(bpstate.TotalHitCount) > bpstate.HitCond.Val case token.LSS: bpstate.Active = int(bpstate.TotalHitCount) < bpstate.HitCond.Val case token.GEQ: bpstate.Active = int(bpstate.TotalHitCount) >= bpstate.HitCond.Val case token.LEQ: bpstate.Active = int(bpstate.TotalHitCount) <= bpstate.HitCond.Val case token.REM: bpstate.Active = int(bpstate.TotalHitCount)%bpstate.HitCond.Val == 0 } } func isPanicCall(frames []Stackframe) (bool, int) { // In Go prior to 1.17 the call stack for a panic is: // 0. deferred function call // 1. runtime.callN // 2. runtime.gopanic // in Go after 1.17 it is either: // 0. deferred function call // 1. deferred call wrapper // 2. runtime.gopanic // or: // 0. deferred function call // 1. runtime.gopanic if len(frames) >= 3 && frames[2].Current.Fn != nil && frames[2].Current.Fn.Name == "runtime.gopanic" { return true, 2 } if len(frames) >= 2 && frames[1].Current.Fn != nil && frames[1].Current.Fn.Name == "runtime.gopanic" { return true, 1 } return false, 0 } func isDeferReturnCall(frames []Stackframe, deferReturns []uint64) (bool, uint64) { if len(frames) >= 1 { for _, pc := range deferReturns { if frames[0].Ret == pc { return true, pc } } } return false, 0 } // IsInternal returns true if bp is an internal breakpoint. // User-set breakpoints can overlap with internal breakpoints, in that case // both IsUser and IsInternal will be true. func (bp *Breakpoint) IsInternal() bool { return bp.Kind != UserBreakpoint } // IsUser returns true if bp is a user-set breakpoint. // User-set breakpoints can overlap with internal breakpoints, in that case // both IsUser and IsInternal will be true. func (bp *Breakpoint) IsUser() bool { return bp.Kind&UserBreakpoint != 0 } func evalBreakpointCondition(thread Thread, cond ast.Expr) (bool, error) { if cond == nil { return true, nil } scope, err := GoroutineScope(nil, thread) if err != nil { scope, err = ThreadScope(nil, thread) if err != nil { return true, err } } v, err := scope.evalAST(cond) if err != nil { return true, fmt.Errorf("error evaluating expression: %v", err) } if v.Kind != reflect.Bool { return true, errors.New("condition expression not boolean") } v.loadValue(loadFullValue) if v.Unreadable != nil { return true, fmt.Errorf("condition expression unreadable: %v", v.Unreadable) } return constant.BoolVal(v.Value), nil } // NoBreakpointError is returned when trying to // clear a breakpoint that does not exist. type NoBreakpointError struct { Addr uint64 } func (nbp NoBreakpointError) Error() string { return fmt.Sprintf("no breakpoint at %#v", nbp.Addr) } // BreakpointMap represents an (address, breakpoint) map. type BreakpointMap struct { M map[uint64]*Breakpoint breakpointIDCounter int internalBreakpointIDCounter int } // NewBreakpointMap creates a new BreakpointMap. func NewBreakpointMap() BreakpointMap { return BreakpointMap{ M: make(map[uint64]*Breakpoint), } } // SetBreakpoint sets a breakpoint at addr, and stores it in the process wide // break point table. func (t *Target) SetBreakpoint(addr uint64, kind BreakpointKind, cond ast.Expr) (*Breakpoint, error) { return t.setBreakpointInternal(addr, kind, 0, cond) } // SetWatchpoint sets a data breakpoint at addr and stores it in the // process wide break point table. func (t *Target) SetWatchpoint(scope *EvalScope, expr string, wtype WatchType, cond ast.Expr) (*Breakpoint, error) { if (wtype&WatchWrite == 0) && (wtype&WatchRead == 0) { return nil, errors.New("at least one of read and write must be set for watchpoint") } n, err := parser.ParseExpr(expr) if err != nil { return nil, err } xv, err := scope.evalAST(n) if err != nil { return nil, err } if xv.Addr == 0 || xv.Flags&VariableFakeAddress != 0 || xv.DwarfType == nil { return nil, fmt.Errorf("can not watch %q", expr) } if xv.Unreadable != nil { return nil, fmt.Errorf("expression %q is unreadable: %v", expr, xv.Unreadable) } if xv.Kind == reflect.UnsafePointer || xv.Kind == reflect.Invalid { return nil, fmt.Errorf("can not watch variable of type %s", xv.Kind.String()) } sz := xv.DwarfType.Size() if sz <= 0 || sz > int64(t.BinInfo().Arch.PtrSize()) { //TODO(aarzilli): it is reasonable to expect to be able to watch string //and interface variables and we could support it by watching certain //member fields here. return nil, fmt.Errorf("can not watch variable of type %s", xv.DwarfType.String()) } if xv.Addr >= scope.g.stack.lo && xv.Addr < scope.g.stack.hi { //TODO(aarzilli): support watching stack variables return nil, errors.New("can not watch stack allocated variable") } bp, err := t.setBreakpointInternal(xv.Addr, UserBreakpoint, wtype.withSize(uint8(sz)), cond) if bp != nil { bp.WatchExpr = expr } return bp, err } func (t *Target) setBreakpointInternal(addr uint64, kind BreakpointKind, wtype WatchType, cond ast.Expr) (*Breakpoint, error) { if valid, err := t.Valid(); !valid { return nil, err } bpmap := t.Breakpoints() if bp, ok := bpmap.M[addr]; ok { // We can overlap one internal breakpoint with one user breakpoint, we // need to support this otherwise a conditional breakpoint can mask a // breakpoint set by next or step. if (kind != UserBreakpoint && bp.Kind != UserBreakpoint) || (kind == UserBreakpoint && bp.IsUser()) { return bp, BreakpointExistsError{bp.File, bp.Line, bp.Addr} } bp.Kind |= kind if kind != UserBreakpoint { bp.internalCond = cond } else { bp.Cond = cond } return bp, nil } f, l, fn := t.BinInfo().PCToLine(uint64(addr)) fnName := "" if fn != nil { fnName = fn.Name } hwidx := uint8(0) if wtype != 0 { m := make(map[uint8]bool) for _, bp := range bpmap.M { if bp.WatchType != 0 { m[bp.HWBreakIndex] = true } } for hwidx = 0; true; hwidx++ { if !m[hwidx] { break } } } newBreakpoint := &Breakpoint{ FunctionName: fnName, WatchType: wtype, HWBreakIndex: hwidx, File: f, Line: l, Addr: addr, Kind: kind, HitCount: map[int]uint64{}, } err := t.proc.WriteBreakpoint(newBreakpoint) if err != nil { return nil, err } if kind != UserBreakpoint { bpmap.internalBreakpointIDCounter++ newBreakpoint.LogicalID = bpmap.internalBreakpointIDCounter newBreakpoint.internalCond = cond } else { bpmap.breakpointIDCounter++ newBreakpoint.LogicalID = bpmap.breakpointIDCounter newBreakpoint.Cond = cond } bpmap.M[addr] = newBreakpoint return newBreakpoint, nil } // SetBreakpointWithID creates a breakpoint at addr, with the specified logical ID. func (t *Target) SetBreakpointWithID(id int, addr uint64) (*Breakpoint, error) { bpmap := t.Breakpoints() bp, err := t.SetBreakpoint(addr, UserBreakpoint, nil) if err == nil { bp.LogicalID = id bpmap.breakpointIDCounter-- } return bp, err } // ClearBreakpoint clears the breakpoint at addr. func (t *Target) ClearBreakpoint(addr uint64) (*Breakpoint, error) { if valid, err := t.Valid(); !valid { return nil, err } bpmap := t.Breakpoints() bp, ok := bpmap.M[addr] if !ok { return nil, NoBreakpointError{Addr: addr} } bp.Kind &= ^UserBreakpoint bp.Cond = nil if bp.Kind != 0 { return bp, nil } if err := t.proc.EraseBreakpoint(bp); err != nil { return nil, err } delete(bpmap.M, addr) return bp, nil } // ClearInternalBreakpoints removes all internal breakpoints from the map, // calling clearBreakpoint on each one. func (t *Target) ClearInternalBreakpoints() error { bpmap := t.Breakpoints() threads := t.ThreadList() for addr, bp := range bpmap.M { bp.Kind = bp.Kind & UserBreakpoint bp.internalCond = nil bp.returnInfo = nil if bp.Kind != 0 { continue } if err := t.proc.EraseBreakpoint(bp); err != nil { return err } for _, thread := range threads { if thread.Breakpoint().Breakpoint == bp { thread.Breakpoint().Clear() } } delete(bpmap.M, addr) } return nil } // HasInternalBreakpoints returns true if bpmap has at least one internal // breakpoint set. func (bpmap *BreakpointMap) HasInternalBreakpoints() bool { for _, bp := range bpmap.M { if bp.IsInternal() { return true } } return false } // HasHWBreakpoints returns true if there are hardware breakpoints. func (bpmap *BreakpointMap) HasHWBreakpoints() bool { for _, bp := range bpmap.M { if bp.WatchType != 0 { return true } } return false } // BreakpointState describes the state of a breakpoint in a thread. type BreakpointState struct { *Breakpoint // Active is true if the breakpoint condition was met. Active bool // Internal is true if the breakpoint was matched as an internal // breakpoint. Internal bool // CondError contains any error encountered while evaluating the // breakpoint's condition. CondError error } // Clear zeros the struct. func (bpstate *BreakpointState) Clear() { bpstate.Breakpoint = nil bpstate.Active = false bpstate.Internal = false bpstate.CondError = nil } func (bpstate *BreakpointState) String() string { s := bpstate.Breakpoint.String() if bpstate.Active { s += " active" } if bpstate.Internal { s += " internal" } return s } func configureReturnBreakpoint(bi *BinaryInfo, bp *Breakpoint, topframe *Stackframe, retFrameCond ast.Expr) { if topframe.Current.Fn == nil { return } bp.returnInfo = &returnBreakpointInfo{ retFrameCond: retFrameCond, fn: topframe.Current.Fn, frameOffset: topframe.FrameOffset(), spOffset: topframe.FrameOffset() - int64(bi.Arch.PtrSize()), // must be the value that SP had at the entry point of the function } } func (rbpi *returnBreakpointInfo) Collect(t *Target, thread Thread) []*Variable { if rbpi == nil { return nil } g, err := GetG(thread) if err != nil { return returnInfoError("could not get g", err, thread.ProcessMemory()) } scope, err := GoroutineScope(t, thread) if err != nil { return returnInfoError("could not get scope", err, thread.ProcessMemory()) } v, err := scope.evalAST(rbpi.retFrameCond) if err != nil || v.Unreadable != nil || v.Kind != reflect.Bool { // This condition was evaluated as part of the breakpoint condition // evaluation, if the errors happen they will be reported as part of the // condition errors. return nil } if !constant.BoolVal(v.Value) { // Breakpoint not hit as a return breakpoint. return nil } oldFrameOffset := rbpi.frameOffset + int64(g.stack.hi) oldSP := uint64(rbpi.spOffset + int64(g.stack.hi)) err = fakeFunctionEntryScope(scope, rbpi.fn, oldFrameOffset, oldSP) if err != nil { return returnInfoError("could not read function entry", err, thread.ProcessMemory()) } vars, err := scope.Locals() if err != nil { return returnInfoError("could not evaluate return variables", err, thread.ProcessMemory()) } vars = filterVariables(vars, func(v *Variable) bool { return (v.Flags & VariableReturnArgument) != 0 }) return vars } func returnInfoError(descr string, err error, mem MemoryReadWriter) []*Variable { v := newConstant(constant.MakeString(fmt.Sprintf("%s: %v", descr, err.Error())), mem) v.Name = "return value read error" return []*Variable{v} }