package proctl import ( "encoding/binary" "fmt" sys "golang.org/x/sys/unix" "github.com/derekparker/delve/dwarf/frame" ) // ThreadContext represents a single thread in the traced process // Id represents the thread id, Process holds a reference to the // DebuggedProcess struct that contains info on the process as // a whole, and Status represents the last result of a `wait` call // on this thread. type ThreadContext struct { Id int Process *DebuggedProcess Status *sys.WaitStatus os *OSSpecificDetails } // An interface for a generic register type. The // interface encapsulates the generic values / actions // we need independant of arch. The concrete register types // will be different depending on OS/Arch. type Registers interface { PC() uint64 SP() uint64 SetPC(*ThreadContext, uint64) error } // Obtains register values from the debugged process. func (thread *ThreadContext) Registers() (Registers, error) { regs, err := registers(thread) if err != nil { return nil, fmt.Errorf("could not get registers %s", err) } return regs, nil } // Returns the current PC for this thread. func (thread *ThreadContext) CurrentPC() (uint64, error) { regs, err := thread.Registers() if err != nil { return 0, err } return regs.PC(), nil } // PrintInfo prints out the thread status // including: PC, tid, file, line, and function. func (thread *ThreadContext) PrintInfo() error { pc, err := thread.CurrentPC() if err != nil { return err } f, l, fn := thread.Process.GoSymTable.PCToLine(pc) if fn != nil { fmt.Printf("Thread %d at %#v %s:%d %s\n", thread.Id, pc, f, l, fn.Name) } else { fmt.Printf("Thread %d at %#v\n", thread.Id, pc) } return nil } // Continue the execution of this thread. This method takes // software breakpoints into consideration and ensures that // we step over any breakpoints. It will restore the instruction, // step, and then restore the breakpoint and continue. func (thread *ThreadContext) Continue() error { // Check whether we are stopped at a breakpoint, and // if so, single step over it before continuing. regs, err := thread.Registers() if err != nil { return fmt.Errorf("could not get registers %s", err) } if _, ok := thread.Process.BreakPoints[regs.PC()-1]; ok { err := thread.Step() if err != nil { return fmt.Errorf("could not step %s", err) } } return thread.resume() } // Single steps this thread a single instruction, ensuring that // we correctly handle the likely case that we are at a breakpoint. func (thread *ThreadContext) Step() (err error) { regs, err := thread.Registers() if err != nil { return err } bp, ok := thread.Process.BreakPoints[regs.PC()-1] if ok { // Clear the breakpoint so that we can continue execution. _, err = thread.Process.Clear(bp.Addr) if err != nil { return err } // Reset program counter to our restored instruction. err = regs.SetPC(thread, bp.Addr) if err != nil { return fmt.Errorf("could not set registers %s", err) } // Restore breakpoint now that we have passed it. defer func() { _, err = thread.Process.Break(bp.Addr) }() } err = thread.singleStep() if err != nil { return fmt.Errorf("step failed: %s", err.Error()) } return err } // Step to next source line. Next will step over functions, // and will follow through to the return address of a function. // Next is implemented on the thread context, however during the // course of this function running, it's very likely that the // goroutine our M is executing will switch to another M, therefore // this function cannot assume all execution will happen on this thread // in the traced process. func (thread *ThreadContext) Next() (err error) { pc, err := thread.CurrentPC() if err != nil { return err } if bp, ok := thread.Process.BreakPoints[pc-1]; ok { pc = bp.Addr } fde, err := thread.Process.FrameEntries.FDEForPC(pc) if err != nil { return err } _, l, _ := thread.Process.GoSymTable.PCToLine(pc) ret := thread.ReturnAddressFromOffset(fde.ReturnAddressOffset(pc)) for { if err = thread.Step(); err != nil { return err } if pc, err = thread.CurrentPC(); err != nil { return err } if !fde.Cover(pc) && pc != ret { if err := thread.continueToReturnAddress(pc, fde); err != nil { if _, ok := err.(InvalidAddressError); !ok { return err } } if pc, err = thread.CurrentPC(); err != nil { return err } } if _, nl, _ := thread.Process.GoSymTable.PCToLine(pc); nl != l { break } } return nil } func (thread *ThreadContext) continueToReturnAddress(pc uint64, fde *frame.FrameDescriptionEntry) error { for !fde.Cover(pc) { // Offset is 0 because we have just stepped into this function. addr := thread.ReturnAddressFromOffset(0) bp, err := thread.Process.Break(addr) if err != nil { if _, ok := err.(BreakPointExistsError); !ok { return err } } bp.Temp = true // Ensure we cleanup after ourselves no matter what. defer thread.clearTempBreakpoint(bp.Addr) for { err = thread.Continue() if err != nil { return err } // Wait on -1, just in case scheduler switches threads for this G. wpid, _, err := trapWait(thread.Process, -1) if err != nil { return err } if wpid != thread.Id { thread = thread.Process.Threads[wpid] } pc, err = thread.CurrentPC() if err != nil { return err } if (pc-1) == bp.Addr || pc == bp.Addr { break } } } return nil } // Takes an offset from RSP and returns the address of the // instruction the currect function is going to return to. func (thread *ThreadContext) ReturnAddressFromOffset(offset int64) uint64 { regs, err := thread.Registers() if err != nil { panic("Could not obtain register values") } retaddr := int64(regs.SP()) + offset data := make([]byte, 8) readMemory(thread, uintptr(retaddr), data) return binary.LittleEndian.Uint64(data) } func (thread *ThreadContext) clearTempBreakpoint(pc uint64) error { var software bool if _, ok := thread.Process.BreakPoints[pc]; ok { software = true } if _, err := thread.Process.Clear(pc); err != nil { return err } if software { // Reset program counter to our restored instruction. regs, err := thread.Registers() if err != nil { return err } return regs.SetPC(thread, pc) } return nil }