delve/proc/variables.go
2015-06-20 15:29:33 -05:00

816 lines
20 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"debug/gosym"
"encoding/binary"
"fmt"
"strconv"
"strings"
"unsafe"
"github.com/derekparker/delve/dwarf/op"
"github.com/derekparker/delve/dwarf/reader"
)
const (
maxVariableRecurse = 1 // How far to recurse when evaluating nested types.
maxArrayValues = 64 // Max value for reading large arrays.
ChanRecv = "chan receive"
ChanSend = "chan send"
)
// Represents an evaluated variable.
type Variable struct {
Name string
Value string
Type string
}
// Represents a runtime M (OS thread) structure.
type M struct {
procid int // Thread ID or port.
spinning uint8 // Busy looping.
blocked uint8 // Waiting on futex / semaphore.
curg uintptr // Current G running on this thread.
}
// Represents a runtime G (goroutine) structure (at least the
// fields that Delve is interested in).
type G struct {
Id int // Goroutine ID
PC uint64 // PC of goroutine when it was parked.
SP uint64 // SP of goroutine when it was parked.
GoPC uint64 // PC of 'go' statement that created this goroutine.
WaitReason string // Reason for goroutine being parked.
// Information on goroutine location.
File string
Line int
Func *gosym.Func
// PC of entry to top-most deferred function.
DeferPC uint64
// Thread that this goroutine is currently allocated to
thread *Thread
}
// Returns whether the goroutine is blocked on
// a channel read operation.
func (g *G) ChanRecvBlocked() bool {
return g.WaitReason == ChanRecv
}
// chanRecvReturnAddr returns the address of the return from a channel read.
func (g *G) chanRecvReturnAddr(dbp *DebuggedProcess) (uint64, error) {
locs, err := dbp.stacktrace(g.PC, g.SP, 4)
if err != nil {
return 0, err
}
topLoc := locs[len(locs)-1]
return topLoc.PC, nil
}
// NoGError returned when a G could not be found
// for a specific thread.
type NoGError struct {
tid int
}
func (ng NoGError) Error() string {
return fmt.Sprintf("no G executing on thread %d", ng.tid)
}
func parseG(thread *Thread, gaddr uint64, deref bool) (*G, error) {
initialInstructions := make([]byte, thread.dbp.arch.PtrSize()+1)
initialInstructions[0] = op.DW_OP_addr
binary.LittleEndian.PutUint64(initialInstructions[1:], gaddr)
if deref {
gaddrbytes, err := thread.readMemory(uintptr(gaddr), thread.dbp.arch.PtrSize())
if err != nil {
return nil, fmt.Errorf("error derefing *G %s", err)
}
initialInstructions = append([]byte{op.DW_OP_addr}, gaddrbytes...)
gaddr = binary.LittleEndian.Uint64(gaddrbytes)
if gaddr == 0 {
return nil, NoGError{tid: thread.Id}
}
}
rdr := thread.dbp.DwarfReader()
rdr.Seek(0)
entry, err := rdr.SeekToTypeNamed("runtime.g")
if err != nil {
return nil, err
}
// Parse defer
deferAddr, err := rdr.AddrForMember("_defer", initialInstructions)
if err != nil {
return nil, err
}
var deferPC uint64
// Dereference *defer pointer
deferAddrBytes, err := thread.readMemory(uintptr(deferAddr), thread.dbp.arch.PtrSize())
if err != nil {
return nil, fmt.Errorf("error derefing defer %s", err)
}
if binary.LittleEndian.Uint64(deferAddrBytes) != 0 {
initialDeferInstructions := append([]byte{op.DW_OP_addr}, deferAddrBytes...)
_, err = rdr.SeekToTypeNamed("runtime._defer")
if err != nil {
return nil, err
}
deferPCAddr, err := rdr.AddrForMember("fn", initialDeferInstructions)
deferPC, err = thread.readUintRaw(uintptr(deferPCAddr), 8)
if err != nil {
return nil, err
}
deferPC, err = thread.readUintRaw(uintptr(deferPC), 8)
if err != nil {
return nil, err
}
}
// Let's parse all of the members we care about in order so that
// we don't have to spend any extra time seeking.
err = rdr.SeekToEntry(entry)
if err != nil {
return nil, err
}
// Parse sched
schedAddr, err := rdr.AddrForMember("sched", initialInstructions)
if err != nil {
return nil, err
}
// From sched, let's parse PC and SP.
sp, err := thread.readUintRaw(uintptr(schedAddr), 8)
if err != nil {
return nil, err
}
pc, err := thread.readUintRaw(uintptr(schedAddr+uint64(thread.dbp.arch.PtrSize())), 8)
if err != nil {
return nil, err
}
// Parse goid
goidAddr, err := rdr.AddrForMember("goid", initialInstructions)
if err != nil {
return nil, err
}
goid, err := thread.readIntRaw(uintptr(goidAddr), 8)
if err != nil {
return nil, err
}
// Parse waitreason
waitReasonAddr, err := rdr.AddrForMember("waitreason", initialInstructions)
if err != nil {
return nil, err
}
waitreason, err := thread.readString(uintptr(waitReasonAddr))
if err != nil {
return nil, err
}
// Parse gopc
gopcAddr, err := rdr.AddrForMember("gopc", initialInstructions)
if err != nil {
return nil, err
}
gopc, err := thread.readUintRaw(uintptr(gopcAddr), 8)
if err != nil {
return nil, err
}
f, l, fn := thread.dbp.goSymTable.PCToLine(gopc)
g := &G{
Id: int(goid),
GoPC: gopc,
PC: pc,
SP: sp,
File: f,
Line: l,
Func: fn,
WaitReason: waitreason,
DeferPC: deferPC,
}
return g, nil
}
// Returns the value of the named variable.
func (thread *Thread) EvalVariable(name string) (*Variable, error) {
pc, err := thread.PC()
if err != nil {
return nil, err
}
reader := thread.dbp.DwarfReader()
_, err = reader.SeekToFunction(pc)
if err != nil {
return nil, err
}
varName := name
memberName := ""
if strings.Contains(name, ".") {
idx := strings.Index(name, ".")
varName = name[:idx]
memberName = name[idx+1:]
}
for entry, err := reader.NextScopeVariable(); entry != nil; entry, err = reader.NextScopeVariable() {
if err != nil {
return nil, err
}
n, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
continue
}
if n == varName {
if len(memberName) == 0 {
return thread.extractVariableFromEntry(entry)
}
return thread.evaluateStructMember(entry, reader, memberName)
}
}
return nil, fmt.Errorf("could not find symbol value for %s", name)
}
// LocalVariables returns all local variables from the current function scope.
func (thread *Thread) LocalVariables() ([]*Variable, error) {
return thread.variablesByTag(dwarf.TagVariable)
}
// FunctionArguments returns the name, value, and type of all current function arguments.
func (thread *Thread) FunctionArguments() ([]*Variable, error) {
return thread.variablesByTag(dwarf.TagFormalParameter)
}
// PackageVariables returns the name, value, and type of all package variables in the application.
func (thread *Thread) PackageVariables() ([]*Variable, error) {
reader := thread.dbp.DwarfReader()
vars := make([]*Variable, 0)
for entry, err := reader.NextPackageVariable(); entry != nil; entry, err = reader.NextPackageVariable() {
if err != nil {
return nil, err
}
// Ignore errors trying to extract values
val, err := thread.extractVariableFromEntry(entry)
if err != nil {
continue
}
vars = append(vars, val)
}
return vars, nil
}
func (thread *Thread) evaluateStructMember(parentEntry *dwarf.Entry, rdr *reader.Reader, memberName string) (*Variable, error) {
parentAddr, err := thread.extractVariableDataAddress(parentEntry, rdr)
if err != nil {
return nil, err
}
// Get parent variable name
parentName, ok := parentEntry.Val(dwarf.AttrName).(string)
if !ok {
return nil, fmt.Errorf("unable to retrive variable name")
}
// Seek reader to the type information so members can be iterated
_, err = rdr.SeekToType(parentEntry, true, true)
if err != nil {
return nil, err
}
// Iterate to find member by name
for memberEntry, err := rdr.NextMemberVariable(); memberEntry != nil; memberEntry, err = rdr.NextMemberVariable() {
if err != nil {
return nil, err
}
name, ok := memberEntry.Val(dwarf.AttrName).(string)
if !ok {
continue
}
if name == memberName {
// Nil ptr, wait until here to throw a nil pointer error to prioritize no such member error
if parentAddr == 0 {
return nil, fmt.Errorf("%s is nil", parentName)
}
memberInstr, err := rdr.InstructionsForEntry(memberEntry)
if err != nil {
return nil, err
}
offset, ok := memberEntry.Val(dwarf.AttrType).(dwarf.Offset)
if !ok {
return nil, fmt.Errorf("type assertion failed")
}
data := thread.dbp.dwarf
t, err := data.Type(offset)
if err != nil {
return nil, err
}
baseAddr := make([]byte, 8)
binary.LittleEndian.PutUint64(baseAddr, uint64(parentAddr))
parentInstructions := append([]byte{op.DW_OP_addr}, baseAddr...)
val, err := thread.extractValue(append(parentInstructions, memberInstr...), 0, t, true)
if err != nil {
return nil, err
}
return &Variable{Name: strings.Join([]string{parentName, memberName}, "."), Type: t.String(), Value: val}, nil
}
}
return nil, fmt.Errorf("%s has no member %s", parentName, memberName)
}
// Extracts the name, type, and value of a variable from a dwarf entry
func (thread *Thread) extractVariableFromEntry(entry *dwarf.Entry) (*Variable, error) {
if entry == nil {
return nil, fmt.Errorf("invalid entry")
}
if entry.Tag != dwarf.TagFormalParameter && entry.Tag != dwarf.TagVariable {
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", entry.Tag.String())
}
n, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
return nil, fmt.Errorf("type assertion failed")
}
offset, ok := entry.Val(dwarf.AttrType).(dwarf.Offset)
if !ok {
return nil, fmt.Errorf("type assertion failed")
}
data := thread.dbp.dwarf
t, err := data.Type(offset)
if err != nil {
return nil, err
}
instructions, ok := entry.Val(dwarf.AttrLocation).([]byte)
if !ok {
return nil, fmt.Errorf("type assertion failed")
}
val, err := thread.extractValue(instructions, 0, t, true)
if err != nil {
return nil, err
}
return &Variable{Name: n, Type: t.String(), Value: val}, nil
}
// Execute the stack program taking into account the current stack frame
func (thread *Thread) executeStackProgram(instructions []byte) (int64, error) {
regs, err := thread.Registers()
if err != nil {
return 0, err
}
fde, err := thread.dbp.frameEntries.FDEForPC(regs.PC())
if err != nil {
return 0, err
}
fctx := fde.EstablishFrame(regs.PC())
cfa := fctx.CFAOffset() + int64(regs.SP())
address, err := op.ExecuteStackProgram(cfa, instructions)
if err != nil {
return 0, err
}
return address, nil
}
// Extracts the address of a variable, dereferencing any pointers
func (thread *Thread) extractVariableDataAddress(entry *dwarf.Entry, rdr *reader.Reader) (int64, error) {
instructions, err := rdr.InstructionsForEntry(entry)
if err != nil {
return 0, err
}
address, err := thread.executeStackProgram(instructions)
if err != nil {
return 0, err
}
// Dereference pointers to get down the concrete type
for typeEntry, err := rdr.SeekToType(entry, true, false); typeEntry != nil; typeEntry, err = rdr.SeekToType(typeEntry, true, false) {
if err != nil {
return 0, err
}
if typeEntry.Tag != dwarf.TagPointerType {
break
}
ptraddress := uintptr(address)
ptr, err := thread.readMemory(ptraddress, thread.dbp.arch.PtrSize())
if err != nil {
return 0, err
}
address = int64(binary.LittleEndian.Uint64(ptr))
}
return address, nil
}
// Extracts the value from the instructions given in the DW_AT_location entry.
// We execute the stack program described in the DW_OP_* instruction stream, and
// then grab the value from the other processes memory.
func (thread *Thread) extractValue(instructions []byte, addr int64, typ interface{}, printStructName bool) (string, error) {
return thread.extractValueInternal(instructions, addr, typ, printStructName, 0)
}
func (thread *Thread) extractValueInternal(instructions []byte, addr int64, typ interface{}, printStructName bool, recurseLevel int) (string, error) {
var err error
if addr == 0 {
addr, err = thread.executeStackProgram(instructions)
if err != nil {
return "", err
}
}
// If we have a user defined type, find the
// underlying concrete type and use that.
for {
if tt, ok := typ.(*dwarf.TypedefType); ok {
typ = tt.Type
} else {
break
}
}
ptraddress := uintptr(addr)
switch t := typ.(type) {
case *dwarf.PtrType:
ptr, err := thread.readMemory(ptraddress, thread.dbp.arch.PtrSize())
if err != nil {
return "", err
}
intaddr := int64(binary.LittleEndian.Uint64(ptr))
if intaddr == 0 {
return fmt.Sprintf("%s nil", t.String()), nil
}
// Don't increase the recursion level when dereferencing pointers
val, err := thread.extractValueInternal(nil, intaddr, t.Type, printStructName, recurseLevel)
if err != nil {
return "", err
}
return fmt.Sprintf("*%s", val), nil
case *dwarf.StructType:
switch {
case t.StructName == "string":
return thread.readString(ptraddress)
case strings.HasPrefix(t.StructName, "[]"):
return thread.readSlice(ptraddress, t)
default:
// Recursively call extractValue to grab
// the value of all the members of the struct.
if recurseLevel <= maxVariableRecurse {
fields := make([]string, 0, len(t.Field))
for _, field := range t.Field {
val, err := thread.extractValueInternal(nil, field.ByteOffset+addr, field.Type, printStructName, recurseLevel+1)
if err != nil {
return "", err
}
fields = append(fields, fmt.Sprintf("%s: %s", field.Name, val))
}
if printStructName {
return fmt.Sprintf("%s {%s}", t.StructName, strings.Join(fields, ", ")), nil
}
return fmt.Sprintf("{%s}", strings.Join(fields, ", ")), nil
}
// no fields
if printStructName {
return fmt.Sprintf("%s {...}", t.StructName), nil
}
return "{...}", nil
}
case *dwarf.ArrayType:
return thread.readArray(ptraddress, t)
case *dwarf.IntType:
return thread.readInt(ptraddress, t.ByteSize)
case *dwarf.UintType:
return thread.readUint(ptraddress, t.ByteSize)
case *dwarf.FloatType:
return thread.readFloat(ptraddress, t.ByteSize)
case *dwarf.BoolType:
return thread.readBool(ptraddress)
case *dwarf.FuncType:
return thread.readFunctionPtr(ptraddress)
case *dwarf.VoidType:
return "(void)", nil
case *dwarf.UnspecifiedType:
return "(unknown)", nil
default:
fmt.Printf("Unknown type: %T\n", t)
}
return "", fmt.Errorf("could not find value for type %s", typ)
}
func (thread *Thread) readString(addr uintptr) (string, error) {
// string data structure is always two ptrs in size. Addr, followed by len
// http://research.swtch.com/godata
// read len
val, err := thread.readMemory(addr+uintptr(thread.dbp.arch.PtrSize()), thread.dbp.arch.PtrSize())
if err != nil {
return "", fmt.Errorf("could not read string len %s", err)
}
strlen := int(binary.LittleEndian.Uint64(val))
// read addr
val, err = thread.readMemory(addr, thread.dbp.arch.PtrSize())
if err != nil {
return "", fmt.Errorf("could not read string pointer %s", err)
}
addr = uintptr(binary.LittleEndian.Uint64(val))
if addr == 0 {
return "", nil
}
val, err = thread.readMemory(addr, strlen)
if err != nil {
return "", fmt.Errorf("could not read string at %#v due to %s", addr, err)
}
return *(*string)(unsafe.Pointer(&val)), nil
}
func (thread *Thread) readSlice(addr uintptr, t *dwarf.StructType) (string, error) {
var sliceLen, sliceCap int64
var arrayAddr uintptr
var arrayType dwarf.Type
for _, f := range t.Field {
switch f.Name {
case "array":
val, err := thread.readMemory(addr+uintptr(f.ByteOffset), thread.dbp.arch.PtrSize())
if err != nil {
return "", err
}
arrayAddr = uintptr(binary.LittleEndian.Uint64(val))
// Dereference array type to get value type
ptrType, ok := f.Type.(*dwarf.PtrType)
if !ok {
return "", fmt.Errorf("Invalid type %s in slice array", f.Type)
}
arrayType = ptrType.Type
case "len":
lstr, err := thread.extractValue(nil, int64(addr+uintptr(f.ByteOffset)), f.Type, true)
if err != nil {
return "", err
}
sliceLen, err = strconv.ParseInt(lstr, 10, 64)
if err != nil {
return "", err
}
case "cap":
cstr, err := thread.extractValue(nil, int64(addr+uintptr(f.ByteOffset)), f.Type, true)
if err != nil {
return "", err
}
sliceCap, err = strconv.ParseInt(cstr, 10, 64)
if err != nil {
return "", err
}
}
}
stride := arrayType.Size()
if _, ok := arrayType.(*dwarf.PtrType); ok {
stride = int64(thread.dbp.arch.PtrSize())
}
vals, err := thread.readArrayValues(arrayAddr, sliceLen, stride, arrayType)
if err != nil {
return "", err
}
return fmt.Sprintf("[]%s len: %d, cap: %d, [%s]", arrayType, sliceLen, sliceCap, strings.Join(vals, ",")), nil
}
func (thread *Thread) readArray(addr uintptr, t *dwarf.ArrayType) (string, error) {
if t.Count > 0 {
vals, err := thread.readArrayValues(addr, t.Count, t.ByteSize/t.Count, t.Type)
if err != nil {
return "", err
}
return fmt.Sprintf("%s [%s]", t, strings.Join(vals, ",")), nil
}
// because you can declare a zero-size array
return fmt.Sprintf("%s []", t), nil
}
func (thread *Thread) readArrayValues(addr uintptr, count int64, stride int64, t dwarf.Type) ([]string, error) {
vals := make([]string, 0)
for i := int64(0); i < count; i++ {
// Cap number of elements
if i >= maxArrayValues {
vals = append(vals, fmt.Sprintf("...+%d more", count-maxArrayValues))
break
}
val, err := thread.extractValue(nil, int64(addr+uintptr(i*stride)), t, false)
if err != nil {
return nil, err
}
vals = append(vals, val)
}
return vals, nil
}
func (thread *Thread) readInt(addr uintptr, size int64) (string, error) {
n, err := thread.readIntRaw(addr, size)
if err != nil {
return "", err
}
return strconv.FormatInt(n, 10), nil
}
func (thread *Thread) readIntRaw(addr uintptr, size int64) (int64, error) {
var n int64
val, err := thread.readMemory(addr, int(size))
if err != nil {
return 0, err
}
switch size {
case 1:
n = int64(val[0])
case 2:
n = int64(binary.LittleEndian.Uint16(val))
case 4:
n = int64(binary.LittleEndian.Uint32(val))
case 8:
n = int64(binary.LittleEndian.Uint64(val))
}
return n, nil
}
func (thread *Thread) readUint(addr uintptr, size int64) (string, error) {
n, err := thread.readUintRaw(addr, size)
if err != nil {
return "", err
}
return strconv.FormatUint(n, 10), nil
}
func (thread *Thread) readUintRaw(addr uintptr, size int64) (uint64, error) {
var n uint64
val, err := thread.readMemory(addr, int(size))
if err != nil {
return 0, err
}
switch size {
case 1:
n = uint64(val[0])
case 2:
n = uint64(binary.LittleEndian.Uint16(val))
case 4:
n = uint64(binary.LittleEndian.Uint32(val))
case 8:
n = uint64(binary.LittleEndian.Uint64(val))
}
return n, nil
}
func (thread *Thread) readFloat(addr uintptr, size int64) (string, error) {
val, err := thread.readMemory(addr, int(size))
if err != nil {
return "", err
}
buf := bytes.NewBuffer(val)
switch size {
case 4:
n := float32(0)
binary.Read(buf, binary.LittleEndian, &n)
return strconv.FormatFloat(float64(n), 'f', -1, int(size)*8), nil
case 8:
n := float64(0)
binary.Read(buf, binary.LittleEndian, &n)
return strconv.FormatFloat(n, 'f', -1, int(size)*8), nil
}
return "", fmt.Errorf("could not read float")
}
func (thread *Thread) readBool(addr uintptr) (string, error) {
val, err := thread.readMemory(addr, 1)
if err != nil {
return "", err
}
if val[0] == 0 {
return "false", nil
}
return "true", nil
}
func (thread *Thread) readFunctionPtr(addr uintptr) (string, error) {
val, err := thread.readMemory(addr, thread.dbp.arch.PtrSize())
if err != nil {
return "", err
}
// dereference pointer to find function pc
addr = uintptr(binary.LittleEndian.Uint64(val))
if addr == 0 {
return "nil", nil
}
val, err = thread.readMemory(addr, thread.dbp.arch.PtrSize())
if err != nil {
return "", err
}
funcAddr := binary.LittleEndian.Uint64(val)
fn := thread.dbp.goSymTable.PCToFunc(uint64(funcAddr))
if fn == nil {
return "", fmt.Errorf("could not find function for %#v", funcAddr)
}
return fn.Name, nil
}
func (thread *Thread) readMemory(addr uintptr, size int) ([]byte, error) {
if size == 0 {
return nil, nil
}
buf := make([]byte, size)
_, err := readMemory(thread, addr, buf)
if err != nil {
return nil, err
}
return buf, nil
}
// Fetches all variables of a specific type in the current function scope
func (thread *Thread) variablesByTag(tag dwarf.Tag) ([]*Variable, error) {
pc, err := thread.PC()
if err != nil {
return nil, err
}
reader := thread.dbp.DwarfReader()
_, err = reader.SeekToFunction(pc)
if err != nil {
return nil, err
}
vars := make([]*Variable, 0)
for entry, err := reader.NextScopeVariable(); entry != nil; entry, err = reader.NextScopeVariable() {
if err != nil {
return nil, err
}
if entry.Tag == tag {
val, err := thread.extractVariableFromEntry(entry)
if err != nil {
// skip variables that we can't parse yet
continue
}
vars = append(vars, val)
}
}
return vars, nil
}