delve/pkg/proc/stack.go
Alessandro Arzilli 0843376018
proc/*: remove proc.Thread.Blocked, refactor memory access (#2206)
On linux we can not read memory if the thread we use to do it is
occupied doing certain system calls. The exact conditions when this
happens have never been clear.

This problem was worked around by using the Blocked method which
recognized the most common circumstances where this would happen.

However this is a hack: Blocked returning true doesn't mean that the
problem will manifest and Blocked returning false doesn't necessarily
mean the problem will not manifest. A side effect of this is issue
#2151 where sometimes we can't read the memory of a thread and find its
associated goroutine.

This commit fixes this problem by always reading memory using a thread
we know to be good for this, specifically the one returned by
ContinueOnce. In particular the changes are as follows:

1. Remove (ProcessInternal).CurrentThread and
(ProcessInternal).SetCurrentThread, the "current thread" becomes a
field of Target, CurrentThread becomes a (*Target) method and
(*Target).SwitchThread basically just sets a field Target.

2. The backends keep track of their own internal idea of what the
current thread is, to use it to read memory, this is the thread they
return from ContinueOnce as trapthread

3. The current thread in the backend and the current thread in Target
only ever get synchronized in two places: when the backend creates a
Target object the currentThread field of Target is initialized with the
backend's current thread and when (*Target).Restart gets called (when a
recording is rewound the currentThread used by Target might not exist
anymore).

4. We remove the MemoryReadWriter interface embedded in Thread and
instead add a Memory method to Process that returns a MemoryReadWriter.
The  backends will return something here that will read memory using
the current thread saved by the backend.

5. The Thread.Blocked method is removed

One possible problem with this change is processes that have threads
with different memory maps. As far as I can determine this could happen
on old versions of linux but this option was removed in linux 2.5.

Fixes #2151
2020-11-09 11:28:40 -08:00

692 lines
21 KiB
Go

package proc
import (
"debug/dwarf"
"errors"
"fmt"
"go/constant"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
)
// This code is partly adapted from runtime.gentraceback in
// $GOROOT/src/runtime/traceback.go
// Stackframe represents a frame in a system stack.
//
// Each stack frame has two locations Current and Call.
//
// For the topmost stackframe Current and Call are the same location.
//
// For stackframes after the first Current is the location corresponding to
// the return address and Call is the location of the CALL instruction that
// was last executed on the frame. Note however that Call.PC is always equal
// to Current.PC, because finding the correct value for Call.PC would
// require disassembling each function in the stacktrace.
//
// For synthetic stackframes generated for inlined function calls Current.Fn
// is the function containing the inlining and Call.Fn in the inlined
// function.
type Stackframe struct {
Current, Call Location
// Frame registers.
Regs op.DwarfRegisters
// High address of the stack.
stackHi uint64
// Return address for this stack frame (as read from the stack frame itself).
Ret uint64
// Address to the memory location containing the return address
addrret uint64
// Err is set if an error occurred during stacktrace
Err error
// SystemStack is true if this frame belongs to a system stack.
SystemStack bool
// Inlined is true if this frame is actually an inlined call.
Inlined bool
// Bottom is true if this is the bottom of the stack
Bottom bool
// lastpc is a memory address guaranteed to belong to the last instruction
// executed in this stack frame.
// For the topmost stack frame this will be the same as Current.PC and
// Call.PC, for other stack frames it will usually be Current.PC-1, but
// could be different when inlined calls are involved in the stacktrace.
// Note that this address isn't guaranteed to belong to the start of an
// instruction and, for this reason, should not be propagated outside of
// pkg/proc.
// Use this value to determine active lexical scopes for the stackframe.
lastpc uint64
// TopmostDefer is the defer that would be at the top of the stack when a
// panic unwind would get to this call frame, in other words it's the first
// deferred function that will be called if the runtime unwinds past this
// call frame.
TopmostDefer *Defer
// Defers is the list of functions deferred by this stack frame (so far).
Defers []*Defer
}
// FrameOffset returns the address of the stack frame, absolute for system
// stack frames or as an offset from stackhi for goroutine stacks (a
// negative value).
func (frame *Stackframe) FrameOffset() int64 {
if frame.SystemStack {
return frame.Regs.CFA
}
return frame.Regs.CFA - int64(frame.stackHi)
}
// FramePointerOffset returns the value of the frame pointer, absolute for
// system stack frames or as an offset from stackhi for goroutine stacks (a
// negative value).
func (frame *Stackframe) FramePointerOffset() int64 {
if frame.SystemStack {
return int64(frame.Regs.BP())
}
return int64(frame.Regs.BP()) - int64(frame.stackHi)
}
// ThreadStacktrace returns the stack trace for thread.
// Note the locations in the array are return addresses not call addresses.
func ThreadStacktrace(thread Thread, depth int) ([]Stackframe, error) {
g, _ := GetG(thread)
if g == nil {
regs, err := thread.Registers()
if err != nil {
return nil, err
}
so := thread.BinInfo().PCToImage(regs.PC())
it := newStackIterator(thread.BinInfo(), thread.ProcessMemory(), thread.BinInfo().Arch.RegistersToDwarfRegisters(so.StaticBase, regs), 0, nil, -1, nil, 0)
return it.stacktrace(depth)
}
return g.Stacktrace(depth, 0)
}
func (g *G) stackIterator(opts StacktraceOptions) (*stackIterator, error) {
stkbar, err := g.stkbar()
if err != nil {
return nil, err
}
bi := g.variable.bi
if g.Thread != nil {
regs, err := g.Thread.Registers()
if err != nil {
return nil, err
}
so := bi.PCToImage(regs.PC())
return newStackIterator(
bi, g.variable.mem,
bi.Arch.RegistersToDwarfRegisters(so.StaticBase, regs),
g.stack.hi, stkbar, g.stkbarPos, g, opts), nil
}
so := g.variable.bi.PCToImage(g.PC)
return newStackIterator(
bi, g.variable.mem,
bi.Arch.addrAndStackRegsToDwarfRegisters(so.StaticBase, g.PC, g.SP, g.BP, g.LR),
g.stack.hi, stkbar, g.stkbarPos, g, opts), nil
}
type StacktraceOptions uint16
const (
// StacktraceReadDefers requests a stacktrace decorated with deferred calls
// for each frame.
StacktraceReadDefers StacktraceOptions = 1 << iota
// StacktraceSimple requests a stacktrace where no stack switches will be
// attempted.
StacktraceSimple
// StacktraceG requests a stacktrace starting with the register
// values saved in the runtime.g structure.
StacktraceG
)
// Stacktrace returns the stack trace for a goroutine.
// Note the locations in the array are return addresses not call addresses.
func (g *G) Stacktrace(depth int, opts StacktraceOptions) ([]Stackframe, error) {
it, err := g.stackIterator(opts)
if err != nil {
return nil, err
}
frames, err := it.stacktrace(depth)
if err != nil {
return nil, err
}
if opts&StacktraceReadDefers != 0 {
g.readDefers(frames)
}
return frames, nil
}
// NullAddrError is an error for a null address.
type NullAddrError struct{}
func (n NullAddrError) Error() string {
return "NULL address"
}
// stackIterator holds information
// required to iterate and walk the program
// stack.
type stackIterator struct {
pc uint64
top bool
atend bool
frame Stackframe
bi *BinaryInfo
mem MemoryReadWriter
err error
stackhi uint64
systemstack bool
stackBarrierPC uint64
stkbar []savedLR
// regs is the register set for the current frame
regs op.DwarfRegisters
g *G // the goroutine being stacktraced, nil if we are stacktracing a goroutine-less thread
g0_sched_sp uint64 // value of g0.sched.sp (see comments around its use)
g0_sched_sp_loaded bool // g0_sched_sp was loaded from g0
opts StacktraceOptions
}
type savedLR struct {
ptr uint64
val uint64
}
func newStackIterator(bi *BinaryInfo, mem MemoryReadWriter, regs op.DwarfRegisters, stackhi uint64, stkbar []savedLR, stkbarPos int, g *G, opts StacktraceOptions) *stackIterator {
stackBarrierFunc := bi.LookupFunc["runtime.stackBarrier"] // stack barriers were removed in Go 1.9
var stackBarrierPC uint64
if stackBarrierFunc != nil && stkbar != nil {
stackBarrierPC = stackBarrierFunc.Entry
fn := bi.PCToFunc(regs.PC())
if fn != nil && fn.Name == "runtime.stackBarrier" {
// We caught the goroutine as it's executing the stack barrier, we must
// determine whether or not g.stackPos has already been incremented or not.
if len(stkbar) > 0 && stkbar[stkbarPos].ptr < regs.SP() {
// runtime.stackBarrier has not incremented stkbarPos.
} else if stkbarPos > 0 && stkbar[stkbarPos-1].ptr < regs.SP() {
// runtime.stackBarrier has incremented stkbarPos.
stkbarPos--
} else {
return &stackIterator{err: fmt.Errorf("failed to unwind through stackBarrier at SP %x", regs.SP())}
}
}
stkbar = stkbar[stkbarPos:]
}
systemstack := true
if g != nil {
systemstack = g.SystemStack
}
return &stackIterator{pc: regs.PC(), regs: regs, top: true, bi: bi, mem: mem, err: nil, atend: false, stackhi: stackhi, stackBarrierPC: stackBarrierPC, stkbar: stkbar, systemstack: systemstack, g: g, opts: opts}
}
// Next points the iterator to the next stack frame.
func (it *stackIterator) Next() bool {
if it.err != nil || it.atend {
return false
}
callFrameRegs, ret, retaddr := it.advanceRegs()
it.frame = it.newStackframe(ret, retaddr)
if it.stkbar != nil && it.frame.Ret == it.stackBarrierPC && it.frame.addrret == it.stkbar[0].ptr {
// Skip stack barrier frames
it.frame.Ret = it.stkbar[0].val
it.stkbar = it.stkbar[1:]
}
if it.opts&StacktraceSimple == 0 {
if it.bi.Arch.switchStack(it, &callFrameRegs) {
return true
}
}
if it.frame.Ret <= 0 {
it.atend = true
return true
}
it.top = false
it.pc = it.frame.Ret
it.regs = callFrameRegs
return true
}
func (it *stackIterator) switchToGoroutineStack() {
it.systemstack = false
it.top = false
it.pc = it.g.PC
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g.SP
it.regs.AddReg(it.regs.BPRegNum, op.DwarfRegisterFromUint64(it.g.BP))
if it.bi.Arch.Name == "arm64" {
it.regs.Reg(it.regs.LRRegNum).Uint64Val = it.g.LR
}
}
// Frame returns the frame the iterator is pointing at.
func (it *stackIterator) Frame() Stackframe {
it.frame.Bottom = it.atend
return it.frame
}
// Err returns the error encountered during stack iteration.
func (it *stackIterator) Err() error {
return it.err
}
// frameBase calculates the frame base pseudo-register for DWARF for fn and
// the current frame.
func (it *stackIterator) frameBase(fn *Function) int64 {
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return 0
}
fb, _, _, _ := it.bi.Location(dwarfTree.Entry, dwarf.AttrFrameBase, it.pc, it.regs)
return fb
}
func (it *stackIterator) newStackframe(ret, retaddr uint64) Stackframe {
if retaddr == 0 {
it.err = NullAddrError{}
return Stackframe{}
}
f, l, fn := it.bi.PCToLine(it.pc)
if fn == nil {
f = "?"
l = -1
} else {
it.regs.FrameBase = it.frameBase(fn)
}
r := Stackframe{Current: Location{PC: it.pc, File: f, Line: l, Fn: fn}, Regs: it.regs, Ret: ret, addrret: retaddr, stackHi: it.stackhi, SystemStack: it.systemstack, lastpc: it.pc}
r.Call = r.Current
if !it.top && r.Current.Fn != nil && it.pc != r.Current.Fn.Entry {
// if the return address is the entry point of the function that
// contains it then this is some kind of fake return frame (for example
// runtime.sigreturn) that didn't actually call the current frame,
// attempting to get the location of the CALL instruction would just
// obfuscate what's going on, since there is no CALL instruction.
switch r.Current.Fn.Name {
case "runtime.mstart", "runtime.systemstack_switch":
// these frames are inserted by runtime.systemstack and there is no CALL
// instruction to look for at pc - 1
default:
r.lastpc = it.pc - 1
r.Call.File, r.Call.Line = r.Current.Fn.cu.lineInfo.PCToLine(r.Current.Fn.Entry, it.pc-1)
}
}
return r
}
func (it *stackIterator) stacktrace(depth int) ([]Stackframe, error) {
if depth < 0 {
return nil, errors.New("negative maximum stack depth")
}
if it.opts&StacktraceG != 0 && it.g != nil {
it.switchToGoroutineStack()
it.top = true
}
frames := make([]Stackframe, 0, depth+1)
for it.Next() {
frames = it.appendInlineCalls(frames, it.Frame())
if len(frames) >= depth+1 {
break
}
}
if err := it.Err(); err != nil {
if len(frames) == 0 {
return nil, err
}
frames = append(frames, Stackframe{Err: err})
}
return frames, nil
}
func (it *stackIterator) appendInlineCalls(frames []Stackframe, frame Stackframe) []Stackframe {
if frame.Call.Fn == nil {
return append(frames, frame)
}
if frame.Call.Fn.cu.lineInfo == nil {
return append(frames, frame)
}
callpc := frame.Call.PC
if len(frames) > 0 {
callpc--
}
dwarfTree, err := frame.Call.Fn.cu.image.getDwarfTree(frame.Call.Fn.offset)
if err != nil {
return append(frames, frame)
}
for _, entry := range reader.InlineStack(dwarfTree, callpc) {
fnname, okname := entry.Val(dwarf.AttrName).(string)
fileidx, okfileidx := entry.Val(dwarf.AttrCallFile).(int64)
line, okline := entry.Val(dwarf.AttrCallLine).(int64)
if !okname || !okfileidx || !okline {
break
}
if fileidx-1 < 0 || fileidx-1 >= int64(len(frame.Current.Fn.cu.lineInfo.FileNames)) {
break
}
inlfn := &Function{Name: fnname, Entry: frame.Call.Fn.Entry, End: frame.Call.Fn.End, offset: entry.Offset, cu: frame.Call.Fn.cu}
frames = append(frames, Stackframe{
Current: frame.Current,
Call: Location{
frame.Call.PC,
frame.Call.File,
frame.Call.Line,
inlfn,
},
Regs: frame.Regs,
stackHi: frame.stackHi,
Ret: frame.Ret,
addrret: frame.addrret,
Err: frame.Err,
SystemStack: frame.SystemStack,
Inlined: true,
lastpc: frame.lastpc,
})
frame.Call.File = frame.Current.Fn.cu.lineInfo.FileNames[fileidx-1].Path
frame.Call.Line = int(line)
}
return append(frames, frame)
}
// advanceRegs calculates it.callFrameRegs using it.regs and the frame
// descriptor entry for the current stack frame.
// it.regs.CallFrameCFA is updated.
func (it *stackIterator) advanceRegs() (callFrameRegs op.DwarfRegisters, ret uint64, retaddr uint64) {
fde, err := it.bi.frameEntries.FDEForPC(it.pc)
var framectx *frame.FrameContext
if _, nofde := err.(*frame.ErrNoFDEForPC); nofde {
framectx = it.bi.Arch.fixFrameUnwindContext(nil, it.pc, it.bi)
} else {
framectx = it.bi.Arch.fixFrameUnwindContext(fde.EstablishFrame(it.pc), it.pc, it.bi)
}
cfareg, err := it.executeFrameRegRule(0, framectx.CFA, 0)
if cfareg == nil {
it.err = fmt.Errorf("CFA becomes undefined at PC %#x", it.pc)
return op.DwarfRegisters{}, 0, 0
}
it.regs.CFA = int64(cfareg.Uint64Val)
callimage := it.bi.PCToImage(it.pc)
callFrameRegs = op.DwarfRegisters{StaticBase: callimage.StaticBase, ByteOrder: it.regs.ByteOrder, PCRegNum: it.regs.PCRegNum, SPRegNum: it.regs.SPRegNum, BPRegNum: it.regs.BPRegNum, LRRegNum: it.regs.LRRegNum}
// According to the standard the compiler should be responsible for emitting
// rules for the RSP register so that it can then be used to calculate CFA,
// however neither Go nor GCC do this.
// In the following line we copy GDB's behaviour by assuming this is
// implicit.
// See also the comment in dwarf2_frame_default_init in
// $GDB_SOURCE/dwarf2-frame.c
callFrameRegs.AddReg(callFrameRegs.SPRegNum, cfareg)
for i, regRule := range framectx.Regs {
reg, err := it.executeFrameRegRule(i, regRule, it.regs.CFA)
callFrameRegs.AddReg(i, reg)
if i == framectx.RetAddrReg {
if reg == nil {
if err == nil {
err = fmt.Errorf("Undefined return address at %#x", it.pc)
}
it.err = err
} else {
ret = reg.Uint64Val
}
retaddr = uint64(it.regs.CFA + regRule.Offset)
}
}
if it.bi.Arch.Name == "arm64" {
if ret == 0 && it.regs.Reg(it.regs.LRRegNum) != nil {
ret = it.regs.Reg(it.regs.LRRegNum).Uint64Val
}
}
return callFrameRegs, ret, retaddr
}
func (it *stackIterator) executeFrameRegRule(regnum uint64, rule frame.DWRule, cfa int64) (*op.DwarfRegister, error) {
switch rule.Rule {
default:
fallthrough
case frame.RuleUndefined:
return nil, nil
case frame.RuleSameVal:
if it.regs.Reg(regnum) == nil {
return nil, nil
}
reg := *it.regs.Reg(regnum)
return &reg, nil
case frame.RuleOffset:
return it.readRegisterAt(regnum, uint64(cfa+rule.Offset))
case frame.RuleValOffset:
return op.DwarfRegisterFromUint64(uint64(cfa + rule.Offset)), nil
case frame.RuleRegister:
return it.regs.Reg(rule.Reg), nil
case frame.RuleExpression:
v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize())
if err != nil {
return nil, err
}
return it.readRegisterAt(regnum, uint64(v))
case frame.RuleValExpression:
v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize())
if err != nil {
return nil, err
}
return op.DwarfRegisterFromUint64(uint64(v)), nil
case frame.RuleArchitectural:
return nil, errors.New("architectural frame rules are unsupported")
case frame.RuleCFA:
if it.regs.Reg(rule.Reg) == nil {
return nil, nil
}
return op.DwarfRegisterFromUint64(uint64(int64(it.regs.Uint64Val(rule.Reg)) + rule.Offset)), nil
case frame.RuleFramePointer:
curReg := it.regs.Reg(rule.Reg)
if curReg == nil {
return nil, nil
}
if curReg.Uint64Val <= uint64(cfa) {
return it.readRegisterAt(regnum, curReg.Uint64Val)
}
newReg := *curReg
return &newReg, nil
}
}
func (it *stackIterator) readRegisterAt(regnum uint64, addr uint64) (*op.DwarfRegister, error) {
buf := make([]byte, it.bi.Arch.regSize(regnum))
_, err := it.mem.ReadMemory(buf, addr)
if err != nil {
return nil, err
}
return op.DwarfRegisterFromBytes(buf), nil
}
func (it *stackIterator) loadG0SchedSP() {
if it.g0_sched_sp_loaded {
return
}
it.g0_sched_sp_loaded = true
if it.g != nil {
mvar, _ := it.g.variable.structMember("m")
if mvar != nil {
g0var, _ := mvar.structMember("g0")
if g0var != nil {
g0, _ := g0var.parseG()
if g0 != nil {
it.g0_sched_sp = g0.SP
}
}
}
}
}
// Defer represents one deferred call
type Defer struct {
DeferredPC uint64 // Value of field _defer.fn.fn, the deferred function
DeferPC uint64 // PC address of instruction that added this defer
SP uint64 // Value of SP register when this function was deferred (this field gets adjusted when the stack is moved to match the new stack space)
link *Defer // Next deferred function
argSz int64
variable *Variable
Unreadable error
}
// readDefers decorates the frames with the function deferred at each stack frame.
func (g *G) readDefers(frames []Stackframe) {
curdefer := g.Defer()
i := 0
// scan simultaneously frames and the curdefer linked list, assigning
// defers to their associated frames.
for {
if curdefer == nil || i >= len(frames) {
return
}
if curdefer.Unreadable != nil {
// Current defer is unreadable, stick it into the first available frame
// (so that it can be reported to the user) and exit
frames[i].Defers = append(frames[i].Defers, curdefer)
return
}
if frames[i].Err != nil {
return
}
if frames[i].TopmostDefer == nil {
frames[i].TopmostDefer = curdefer
}
if frames[i].SystemStack || curdefer.SP >= uint64(frames[i].Regs.CFA) {
// frames[i].Regs.CFA is the value that SP had before the function of
// frames[i] was called.
// This means that when curdefer.SP == frames[i].Regs.CFA then curdefer
// was added by the previous frame.
//
// curdefer.SP < frames[i].Regs.CFA means curdefer was added by a
// function further down the stack.
//
// SystemStack frames live on a different physical stack and can't be
// compared with deferred frames.
i++
} else {
frames[i].Defers = append(frames[i].Defers, curdefer)
curdefer = curdefer.Next()
}
}
}
func (d *Defer) load() {
d.variable.loadValue(LoadConfig{false, 1, 0, 0, -1, 0})
if d.variable.Unreadable != nil {
d.Unreadable = d.variable.Unreadable
return
}
fnvar := d.variable.fieldVariable("fn").maybeDereference()
if fnvar.Addr != 0 {
fnvar = fnvar.loadFieldNamed("fn")
if fnvar.Unreadable == nil {
d.DeferredPC, _ = constant.Uint64Val(fnvar.Value)
}
}
d.DeferPC, _ = constant.Uint64Val(d.variable.fieldVariable("pc").Value)
d.SP, _ = constant.Uint64Val(d.variable.fieldVariable("sp").Value)
d.argSz, _ = constant.Int64Val(d.variable.fieldVariable("siz").Value)
linkvar := d.variable.fieldVariable("link").maybeDereference()
if linkvar.Addr != 0 {
d.link = &Defer{variable: linkvar}
}
}
// errSPDecreased is used when (*Defer).Next detects a corrupted linked
// list, specifically when after followin a link pointer the value of SP
// decreases rather than increasing or staying the same (the defer list is a
// FIFO list, nodes further down the list have been added by function calls
// further down the call stack and therefore the SP should always increase).
var errSPDecreased = errors.New("corrupted defer list: SP decreased")
// Next returns the next defer in the linked list
func (d *Defer) Next() *Defer {
if d.link == nil {
return nil
}
d.link.load()
if d.link.SP < d.SP {
d.link.Unreadable = errSPDecreased
}
return d.link
}
// EvalScope returns an EvalScope relative to the argument frame of this deferred call.
// The argument frame of a deferred call is stored in memory immediately
// after the deferred header.
func (d *Defer) EvalScope(thread Thread) (*EvalScope, error) {
scope, err := GoroutineScope(thread)
if err != nil {
return nil, fmt.Errorf("could not get scope: %v", err)
}
bi := thread.BinInfo()
scope.PC = d.DeferredPC
scope.File, scope.Line, scope.Fn = bi.PCToLine(d.DeferredPC)
if scope.Fn == nil {
return nil, fmt.Errorf("could not find function at %#x", d.DeferredPC)
}
// The arguments are stored immediately after the defer header struct, i.e.
// addr+sizeof(_defer).
if !bi.Arch.usesLR {
// On architectures that don't have a link register CFA is always the address of the first
// argument, that's what we use for the value of CFA.
// For SP we use CFA minus the size of one pointer because that would be
// the space occupied by pushing the return address on the stack during the
// CALL.
scope.Regs.CFA = (int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize)
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA - int64(bi.Arch.PtrSize()))
} else {
// On architectures that have a link register CFA and SP have the same
// value but the address of the first argument is at CFA+ptrSize so we set
// CFA to the start of the argument frame minus one pointer size.
scope.Regs.CFA = int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize - int64(bi.Arch.PtrSize())
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA)
}
rdr := scope.Fn.cu.image.dwarfReader
rdr.Seek(scope.Fn.offset)
e, err := rdr.Next()
if err != nil {
return nil, fmt.Errorf("could not read DWARF function entry: %v", err)
}
scope.Regs.FrameBase, _, _, _ = bi.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
scope.Mem = cacheMemory(scope.Mem, uint64(scope.Regs.CFA), int(d.argSz))
return scope, nil
}