delve/pkg/proc/mem.go
aarzilli a5574bcdc7 proc: change memCache to delay reading
Change memCache so that the preloaded memory is not read immediately
but only after the actual read to the preloaded range.

This allows us to request caching the entire stack frame every time we
create an eval scope and no unnecessary reads will be made even if the
user is just trying to evaluate a global variable.
2018-04-23 10:13:21 -07:00

139 lines
3.8 KiB
Go

package proc
import (
"errors"
"github.com/derekparker/delve/pkg/dwarf/op"
)
const cacheEnabled = true
// MemoryReader is like io.ReaderAt, but the offset is a uintptr so that it
// can address all of 64-bit memory.
// Redundant with memoryReadWriter but more easily suited to working with
// the standard io package.
type MemoryReader interface {
// ReadMemory is just like io.ReaderAt.ReadAt.
ReadMemory(buf []byte, addr uintptr) (n int, err error)
}
type MemoryReadWriter interface {
MemoryReader
WriteMemory(addr uintptr, data []byte) (written int, err error)
}
type memCache struct {
loaded bool
cacheAddr uintptr
cache []byte
mem MemoryReadWriter
}
func (m *memCache) contains(addr uintptr, size int) bool {
return addr >= m.cacheAddr && addr <= (m.cacheAddr+uintptr(len(m.cache)-size))
}
func (m *memCache) ReadMemory(data []byte, addr uintptr) (n int, err error) {
if m.contains(addr, len(data)) {
if !m.loaded {
_, err := m.mem.ReadMemory(m.cache, m.cacheAddr)
if err != nil {
return 0, err
}
m.loaded = true
}
copy(data, m.cache[addr-m.cacheAddr:])
return len(data), nil
}
return m.mem.ReadMemory(data, addr)
}
func (m *memCache) WriteMemory(addr uintptr, data []byte) (written int, err error) {
return m.mem.WriteMemory(addr, data)
}
func cacheMemory(mem MemoryReadWriter, addr uintptr, size int) MemoryReadWriter {
if !cacheEnabled {
return mem
}
if size <= 0 {
return mem
}
switch cacheMem := mem.(type) {
case *memCache:
if cacheMem.contains(addr, size) {
return mem
}
case *compositeMemory:
return mem
}
return &memCache{false, addr, make([]byte, size), mem}
}
// fakeAddress used by extractVarInfoFromEntry for variables that do not
// have a memory address, we can't use 0 because a lot of code (likely
// including client code) assumes that addr == 0 is nil
const fakeAddress = 0xbeef0000
// compositeMemory represents a chunk of memory that is stored in CPU
// registers or non-contiguously.
//
// When optimizations are enabled the compiler will store some variables
// into registers and sometimes it will also store structs non-contiguously
// with some fields stored into CPU registers and other fields stored in
// memory.
type compositeMemory struct {
realmem MemoryReadWriter
regs op.DwarfRegisters
pieces []op.Piece
data []byte
}
func newCompositeMemory(mem MemoryReadWriter, regs op.DwarfRegisters, pieces []op.Piece) *compositeMemory {
cmem := &compositeMemory{realmem: mem, regs: regs, pieces: pieces, data: []byte{}}
for _, piece := range pieces {
if piece.IsRegister {
reg := regs.Bytes(piece.RegNum)
sz := piece.Size
if sz == 0 && len(pieces) == 1 {
sz = len(reg)
}
cmem.data = append(cmem.data, reg[:sz]...)
} else {
buf := make([]byte, piece.Size)
mem.ReadMemory(buf, uintptr(piece.Addr))
cmem.data = append(cmem.data, buf...)
}
}
return cmem
}
func (mem *compositeMemory) ReadMemory(data []byte, addr uintptr) (int, error) {
addr -= fakeAddress
if addr >= uintptr(len(mem.data)) || addr+uintptr(len(data)) > uintptr(len(mem.data)) {
return 0, errors.New("read out of bounds")
}
copy(data, mem.data[addr:addr+uintptr(len(data))])
return len(data), nil
}
func (mem *compositeMemory) WriteMemory(addr uintptr, data []byte) (int, error) {
//TODO(aarzilli): implement
return 0, errors.New("can't write composite memory")
}
// DereferenceMemory returns a MemoryReadWriter that can read and write the
// memory pointed to by pointers in this memory.
// Normally mem and mem.Dereference are the same object, they are different
// only if this MemoryReadWriter is used to access memory outside of the
// normal address space of the inferior process (such as data contained in
// registers, or composite memory).
func DereferenceMemory(mem MemoryReadWriter) MemoryReadWriter {
switch mem := mem.(type) {
case *compositeMemory:
return mem.realmem
}
return mem
}