delve/service/debugger/debugger.go
Alessandro Arzilli 13ad7dc1d5
*: misc improvements to config command and substitute-path rules (#3335)
A series of interconnected changes to both the terminal command
'config', DAP command 'dlv config', quality of life improvements to how
substitute-path works, and better documentation.

- Let 'config substitute-path' show the current substitute path rules
- Add a -clear command to 'config substitute-path'
- Support 'config-debug-info-directories'
- rewrite SubstitutePath to be platform independent (see below)
- document path substitution more

Regarding the rewrite of SubstitutePath: the previous version used
runtime.GOOS and filepath.IsAbs to determine which filepath separator to use
and if matching should be case insensitive. This is wrong in all situations
where the client and server run on different OSes, when examining core files
and when cross-compilation is involved.

The new version of SubstitutePath checks the rules and the input path to
determine if Windows is involved in the process, if it looks like it is it
switches to case-insensitive matching. It uses a lax version of
filepath.IsAbs to determine if a path is absolute and tries to avoid having
to select a path separator as much as possible

Fixes #2891, #2890, #2889, #3179, #3332, #3343
2023-05-02 12:23:59 -07:00

2361 lines
65 KiB
Go

package debugger
import (
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"errors"
"fmt"
"go/parser"
"go/token"
"io"
"os"
"os/exec"
"path/filepath"
"regexp"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/gobuild"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/locspec"
"github.com/go-delve/delve/pkg/logflags"
"github.com/go-delve/delve/pkg/proc"
"github.com/go-delve/delve/pkg/proc/core"
"github.com/go-delve/delve/pkg/proc/gdbserial"
"github.com/go-delve/delve/pkg/proc/native"
"github.com/go-delve/delve/service/api"
)
var (
// ErrCanNotRestart is returned when the target cannot be restarted.
// This is returned for targets that have been attached to, or when
// debugging core files.
ErrCanNotRestart = errors.New("can not restart this target")
// ErrNotRecording is returned when StopRecording is called while the
// debugger is not recording the target.
ErrNotRecording = errors.New("debugger is not recording")
// ErrCoreDumpInProgress is returned when a core dump is already in progress.
ErrCoreDumpInProgress = errors.New("core dump in progress")
// ErrCoreDumpNotSupported is returned when core dumping is not supported
ErrCoreDumpNotSupported = errors.New("core dumping not supported")
// ErrNotImplementedWithMultitarget is returned for operations that are not implemented with multiple targets
ErrNotImplementedWithMultitarget = errors.New("not implemented for multiple targets")
)
// Debugger service.
//
// Debugger provides a higher level of
// abstraction over proc.Process.
// It handles converting from internal types to
// the types expected by clients. It also handles
// functionality needed by clients, but not needed in
// lower lever packages such as proc.
type Debugger struct {
config *Config
// arguments to launch a new process.
processArgs []string
targetMutex sync.Mutex
target *proc.TargetGroup
log logflags.Logger
running bool
runningMutex sync.Mutex
stopRecording func() error
recordMutex sync.Mutex
dumpState proc.DumpState
breakpointIDCounter int
}
type ExecuteKind int
const (
ExecutingExistingFile = ExecuteKind(iota)
ExecutingGeneratedFile
ExecutingGeneratedTest
ExecutingOther
)
// Config provides the configuration to start a Debugger.
//
// Only one of ProcessArgs or AttachPid should be specified. If ProcessArgs is
// provided, a new process will be launched. Otherwise, the debugger will try
// to attach to an existing process with AttachPid.
type Config struct {
// WorkingDir is working directory of the new process. This field is used
// only when launching a new process.
WorkingDir string
// AttachPid is the PID of an existing process to which the debugger should
// attach.
AttachPid int
// CoreFile specifies the path to the core dump to open.
CoreFile string
// Backend specifies the debugger backend.
Backend string
// Foreground lets target process access stdin.
Foreground bool
// DebugInfoDirectories is the list of directories to look for
// when resolving external debug info files.
DebugInfoDirectories []string
// CheckGoVersion is true if the debugger should check the version of Go
// used to compile the executable and refuse to work on incompatible
// versions.
CheckGoVersion bool
// TTY is passed along to the target process on creation. Used to specify a
// TTY for that process.
TTY string
// Packages contains the packages that we are debugging.
Packages []string
// BuildFlags contains the flags passed to the compiler.
BuildFlags string
// ExecuteKind contains the kind of the executed program.
ExecuteKind ExecuteKind
// Redirects specifies redirect rules for stdin, stdout and stderr
Redirects [3]string
// DisableASLR disables ASLR
DisableASLR bool
RrOnProcessPid int
}
// New creates a new Debugger. ProcessArgs specify the commandline arguments for the
// new process.
func New(config *Config, processArgs []string) (*Debugger, error) {
logger := logflags.DebuggerLogger()
d := &Debugger{
config: config,
processArgs: processArgs,
log: logger,
}
// Create the process by either attaching or launching.
switch {
case d.config.AttachPid > 0:
d.log.Infof("attaching to pid %d", d.config.AttachPid)
path := ""
if len(d.processArgs) > 0 {
path = d.processArgs[0]
}
var err error
d.target, err = d.Attach(d.config.AttachPid, path)
if err != nil {
err = go11DecodeErrorCheck(err)
err = noDebugErrorWarning(err)
return nil, attachErrorMessage(d.config.AttachPid, err)
}
case d.config.CoreFile != "":
var err error
switch d.config.Backend {
case "rr":
d.log.Infof("opening trace %s", d.config.CoreFile)
d.target, err = gdbserial.Replay(d.config.CoreFile, false, false, d.config.DebugInfoDirectories, d.config.RrOnProcessPid)
default:
d.log.Infof("opening core file %s (executable %s)", d.config.CoreFile, d.processArgs[0])
d.target, err = core.OpenCore(d.config.CoreFile, d.processArgs[0], d.config.DebugInfoDirectories)
}
if err != nil {
err = go11DecodeErrorCheck(err)
return nil, err
}
if err := d.checkGoVersion(); err != nil {
d.target.Detach(true)
return nil, err
}
default:
d.log.Infof("launching process with args: %v", d.processArgs)
var err error
d.target, err = d.Launch(d.processArgs, d.config.WorkingDir)
if err != nil {
if _, ok := err.(*proc.ErrUnsupportedArch); !ok {
err = go11DecodeErrorCheck(err)
err = noDebugErrorWarning(err)
err = fmt.Errorf("could not launch process: %s", err)
}
return nil, err
}
if err := d.checkGoVersion(); err != nil {
d.target.Detach(true)
return nil, err
}
}
return d, nil
}
// canRestart returns true if the target was started with Launch and can be restarted
func (d *Debugger) canRestart() bool {
switch {
case d.config.AttachPid > 0:
return false
case d.config.CoreFile != "":
return false
default:
return true
}
}
func (d *Debugger) checkGoVersion() error {
if d.isRecording() {
// do not do anything if we are still recording
return nil
}
producer := d.target.Selected.BinInfo().Producer()
if producer == "" {
return nil
}
return goversion.Compatible(producer, !d.config.CheckGoVersion)
}
func (d *Debugger) TargetGoVersion() string {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().Producer()
}
// Launch will start a process with the given args and working directory.
func (d *Debugger) Launch(processArgs []string, wd string) (*proc.TargetGroup, error) {
fullpath, err := verifyBinaryFormat(processArgs[0])
if err != nil {
return nil, err
}
processArgs[0] = fullpath
launchFlags := proc.LaunchFlags(0)
if d.config.Foreground {
launchFlags |= proc.LaunchForeground
}
if d.config.DisableASLR {
launchFlags |= proc.LaunchDisableASLR
}
switch d.config.Backend {
case "native":
return native.Launch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Redirects)
case "lldb":
return betterGdbserialLaunchError(gdbserial.LLDBLaunch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Redirects))
case "rr":
if d.target != nil {
// restart should not call us if the backend is 'rr'
panic("internal error: call to Launch with rr backend and target already exists")
}
run, stop, err := gdbserial.RecordAsync(processArgs, wd, false, d.config.Redirects)
if err != nil {
return nil, err
}
// let the initialization proceed but hold the targetMutex lock so that
// any other request to debugger will block except State(nowait=true) and
// Command(halt).
d.targetMutex.Lock()
d.recordingStart(stop)
go func() {
defer d.targetMutex.Unlock()
grp, err := d.recordingRun(run)
if err != nil {
d.log.Errorf("could not record target: %v", err)
// this is ugly but we can't respond to any client requests at this
// point so it's better if we die.
os.Exit(1)
}
d.recordingDone()
d.target = grp
if err := d.checkGoVersion(); err != nil {
d.log.Error(err)
err := d.target.Detach(true)
if err != nil {
d.log.Errorf("Error detaching from target: %v", err)
}
}
}()
return nil, nil
case "default":
if runtime.GOOS == "darwin" {
return betterGdbserialLaunchError(gdbserial.LLDBLaunch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Redirects))
}
return native.Launch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Redirects)
default:
return nil, fmt.Errorf("unknown backend %q", d.config.Backend)
}
}
func (d *Debugger) recordingStart(stop func() error) {
d.recordMutex.Lock()
d.stopRecording = stop
d.recordMutex.Unlock()
}
func (d *Debugger) recordingDone() {
d.recordMutex.Lock()
d.stopRecording = nil
d.recordMutex.Unlock()
}
func (d *Debugger) isRecording() bool {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
return d.stopRecording != nil
}
func (d *Debugger) recordingRun(run func() (string, error)) (*proc.TargetGroup, error) {
tracedir, err := run()
if err != nil && tracedir == "" {
return nil, err
}
return gdbserial.Replay(tracedir, false, true, d.config.DebugInfoDirectories, 0)
}
// Attach will attach to the process specified by 'pid'.
func (d *Debugger) Attach(pid int, path string) (*proc.TargetGroup, error) {
switch d.config.Backend {
case "native":
return native.Attach(pid, d.config.DebugInfoDirectories)
case "lldb":
return betterGdbserialLaunchError(gdbserial.LLDBAttach(pid, path, d.config.DebugInfoDirectories))
case "default":
if runtime.GOOS == "darwin" {
return betterGdbserialLaunchError(gdbserial.LLDBAttach(pid, path, d.config.DebugInfoDirectories))
}
return native.Attach(pid, d.config.DebugInfoDirectories)
default:
return nil, fmt.Errorf("unknown backend %q", d.config.Backend)
}
}
var errMacOSBackendUnavailable = errors.New("debugserver or lldb-server not found: install Xcode's command line tools or lldb-server")
func betterGdbserialLaunchError(p *proc.TargetGroup, err error) (*proc.TargetGroup, error) {
if runtime.GOOS != "darwin" {
return p, err
}
if _, isUnavailable := err.(*gdbserial.ErrBackendUnavailable); !isUnavailable {
return p, err
}
return p, errMacOSBackendUnavailable
}
// ProcessPid returns the PID of the process
// the debugger is debugging.
func (d *Debugger) ProcessPid() int {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.Pid()
}
// LastModified returns the time that the process' executable was last
// modified.
func (d *Debugger) LastModified() time.Time {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().LastModified()
}
// FunctionReturnLocations returns all return locations
// for the given function, a list of addresses corresponding
// to 'ret' or 'call runtime.deferreturn'.
func (d *Debugger) FunctionReturnLocations(fnName string) ([]uint64, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if len(d.target.Targets()) > 1 {
return nil, ErrNotImplementedWithMultitarget
}
var (
p = d.target.Selected
g = p.SelectedGoroutine()
)
fns, err := p.BinInfo().FindFunction(fnName)
if err != nil {
return nil, err
}
var addrs []uint64
for _, fn := range fns {
var regs proc.Registers
mem := p.Memory()
if g != nil && g.Thread != nil {
regs, _ = g.Thread.Registers()
}
instructions, err := proc.Disassemble(mem, regs, p.Breakpoints(), p.BinInfo(), fn.Entry, fn.End)
if err != nil {
return nil, err
}
for _, instruction := range instructions {
if instruction.IsRet() {
addrs = append(addrs, instruction.Loc.PC)
}
}
addrs = append(addrs, proc.FindDeferReturnCalls(instructions)...)
}
return addrs, nil
}
// Detach detaches from the target process.
// If `kill` is true we will kill the process after
// detaching.
func (d *Debugger) Detach(kill bool) error {
d.log.Debug("detaching")
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if ok, _ := d.target.Valid(); !ok {
return nil
}
return d.detach(kill)
}
func (d *Debugger) detach(kill bool) error {
if d.config.AttachPid == 0 {
kill = true
}
return d.target.Detach(kill)
}
// Restart will restart the target process, first killing
// and then exec'ing it again.
// If the target process is a recording it will restart it from the given
// position. If pos starts with 'c' it's a checkpoint ID, otherwise it's an
// event number. If resetArgs is true, newArgs will replace the process args.
func (d *Debugger) Restart(rerecord bool, pos string, resetArgs bool, newArgs []string, newRedirects [3]string, rebuild bool) ([]api.DiscardedBreakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
recorded, _ := d.target.Recorded()
if recorded && !rerecord {
d.target.ResumeNotify(nil)
return nil, d.target.Restart(pos)
}
if pos != "" {
return nil, proc.ErrNotRecorded
}
if !d.canRestart() {
return nil, ErrCanNotRestart
}
if err := d.detach(true); err != nil {
return nil, err
}
if resetArgs {
d.processArgs = append([]string{d.processArgs[0]}, newArgs...)
d.config.Redirects = newRedirects
}
var grp *proc.TargetGroup
var err error
if rebuild {
switch d.config.ExecuteKind {
case ExecutingGeneratedFile:
err = gobuild.GoBuild(d.processArgs[0], d.config.Packages, d.config.BuildFlags)
if err != nil {
return nil, fmt.Errorf("could not rebuild process: %s", err)
}
case ExecutingGeneratedTest:
err = gobuild.GoTestBuild(d.processArgs[0], d.config.Packages, d.config.BuildFlags)
if err != nil {
return nil, fmt.Errorf("could not rebuild process: %s", err)
}
default:
// We cannot build a process that we didn't start, because we don't know how it was built.
return nil, fmt.Errorf("cannot rebuild a binary")
}
}
if recorded {
run, stop, err2 := gdbserial.RecordAsync(d.processArgs, d.config.WorkingDir, false, d.config.Redirects)
if err2 != nil {
return nil, err2
}
d.recordingStart(stop)
grp, err = d.recordingRun(run)
d.recordingDone()
} else {
grp, err = d.Launch(d.processArgs, d.config.WorkingDir)
}
if err != nil {
return nil, fmt.Errorf("could not launch process: %s", err)
}
discarded := []api.DiscardedBreakpoint{}
proc.Restart(grp, d.target, func(oldBp *proc.LogicalBreakpoint, err error) {
discarded = append(discarded, api.DiscardedBreakpoint{Breakpoint: api.ConvertLogicalBreakpoint(oldBp), Reason: err.Error()})
})
d.target = grp
return discarded, nil
}
// State returns the current state of the debugger.
func (d *Debugger) State(nowait bool) (*api.DebuggerState, error) {
if d.IsRunning() && nowait {
return &api.DebuggerState{Running: true}, nil
}
if d.isRecording() && nowait {
return &api.DebuggerState{Recording: true}, nil
}
d.dumpState.Mutex.Lock()
if d.dumpState.Dumping && nowait {
return &api.DebuggerState{CoreDumping: true}, nil
}
d.dumpState.Mutex.Unlock()
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.state(nil, false)
}
func (d *Debugger) state(retLoadCfg *proc.LoadConfig, withBreakpointInfo bool) (*api.DebuggerState, error) {
if _, err := d.target.Valid(); err != nil {
return nil, err
}
var (
state *api.DebuggerState
goroutine *api.Goroutine
)
tgt := d.target.Selected
if tgt.SelectedGoroutine() != nil {
goroutine = api.ConvertGoroutine(tgt, tgt.SelectedGoroutine())
}
exited := false
if _, err := tgt.Valid(); err != nil {
_, exited = err.(proc.ErrProcessExited)
}
state = &api.DebuggerState{
Pid: tgt.Pid(),
SelectedGoroutine: goroutine,
Exited: exited,
}
for _, thread := range d.target.ThreadList() {
th := api.ConvertThread(thread, d.ConvertThreadBreakpoint(thread))
th.CallReturn = thread.Common().CallReturn
if retLoadCfg != nil {
th.ReturnValues = api.ConvertVars(thread.Common().ReturnValues(*retLoadCfg))
}
if withBreakpointInfo {
err := d.collectBreakpointInformation(th, thread)
if err != nil {
return nil, err
}
}
state.Threads = append(state.Threads, th)
if thread.ThreadID() == tgt.CurrentThread().ThreadID() {
state.CurrentThread = th
}
}
state.NextInProgress = d.target.HasSteppingBreakpoints()
if recorded, _ := d.target.Recorded(); recorded {
state.When, _ = d.target.When()
}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().WatchOutOfScope {
abp := api.ConvertLogicalBreakpoint(bp.Logical)
api.ConvertPhysicalBreakpoints(abp, []int{t.Pid()}, []*proc.Breakpoint{bp})
state.WatchOutOfScope = append(state.WatchOutOfScope, abp)
}
}
return state, nil
}
// CreateBreakpoint creates a breakpoint using information from the provided `requestedBp`.
// This function accepts several different ways of specifying where and how to create the
// breakpoint that has been requested. Any error encountered during the attempt to set the
// breakpoint will be returned to the caller.
//
// The ways of specifying a breakpoint are listed below in the order they are considered by
// this function:
//
// - If requestedBp.TraceReturn is true then it is expected that
// requestedBp.Addrs will contain the list of return addresses
// supplied by the caller.
//
// - If requestedBp.File is not an empty string the breakpoint
// will be created on the specified file:line location
//
// - If requestedBp.FunctionName is not an empty string
// the breakpoint will be created on the specified function:line
// location.
//
// - If requestedBp.Addrs is filled it will create a logical breakpoint
// corresponding to all specified addresses.
//
// - Otherwise the value specified by arg.Breakpoint.Addr will be used.
//
// Note that this method will use the first successful method in order to
// create a breakpoint, so mixing different fields will not result is multiple
// breakpoints being set.
//
// If LocExpr is specified it will be used, along with substitutePathRules,
// to re-enable the breakpoint after it is disabled.
//
// If suspended is true a logical breakpoint will be created even if the
// location can not be found, the backend will attempt to enable the
// breakpoint every time a new plugin is loaded.
func (d *Debugger) CreateBreakpoint(requestedBp *api.Breakpoint, locExpr string, substitutePathRules [][2]string, suspended bool) (*api.Breakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
var (
setbp proc.SetBreakpoint
err error
)
if requestedBp.Name != "" {
if d.findBreakpointByName(requestedBp.Name) != nil {
return nil, errors.New("breakpoint name already exists")
}
}
if lbp := d.target.LogicalBreakpoints[requestedBp.ID]; lbp != nil {
abp := d.convertBreakpoint(lbp)
return abp, proc.BreakpointExistsError{File: lbp.File, Line: lbp.Line}
}
switch {
case requestedBp.TraceReturn:
if len(d.target.Targets()) != 1 {
return nil, ErrNotImplementedWithMultitarget
}
setbp.PidAddrs = []proc.PidAddr{{Pid: d.target.Selected.Pid(), Addr: requestedBp.Addr}}
case len(requestedBp.File) > 0:
fileName := requestedBp.File
if runtime.GOOS == "windows" {
// Accept fileName which is case-insensitive and slash-insensitive match
fileNameNormalized := strings.ToLower(filepath.ToSlash(fileName))
t := proc.ValidTargets{Group: d.target}
caseInsensitiveSearch:
for t.Next() {
for _, symFile := range t.BinInfo().Sources {
if fileNameNormalized == strings.ToLower(filepath.ToSlash(symFile)) {
fileName = symFile
break caseInsensitiveSearch
}
}
}
}
setbp.File = fileName
setbp.Line = requestedBp.Line
case len(requestedBp.FunctionName) > 0:
setbp.FunctionName = requestedBp.FunctionName
setbp.Line = requestedBp.Line
case len(requestedBp.Addrs) > 0:
setbp.PidAddrs = make([]proc.PidAddr, len(requestedBp.Addrs))
if len(d.target.Targets()) == 1 {
pid := d.target.Selected.Pid()
for i, addr := range requestedBp.Addrs {
setbp.PidAddrs[i] = proc.PidAddr{Pid: pid, Addr: addr}
}
} else {
if len(requestedBp.Addrs) != len(requestedBp.AddrPid) {
return nil, errors.New("mismatched length in addrs and addrpid")
}
for i, addr := range requestedBp.Addrs {
setbp.PidAddrs[i] = proc.PidAddr{Pid: requestedBp.AddrPid[i], Addr: addr}
}
}
default:
if requestedBp.Addr != 0 {
setbp.PidAddrs = []proc.PidAddr{{Pid: d.target.Selected.Pid(), Addr: requestedBp.Addr}}
}
}
if err != nil {
return nil, err
}
if locExpr != "" {
loc, err := locspec.Parse(locExpr)
if err != nil {
return nil, err
}
setbp.Expr = func(t *proc.Target) []uint64 {
locs, err := loc.Find(t, d.processArgs, nil, locExpr, false, substitutePathRules)
if err != nil || len(locs) != 1 {
logflags.DebuggerLogger().Debugf("could not evaluate breakpoint expression %q: %v (number of results %d)", locExpr, err, len(locs))
return nil
}
return locs[0].PCs
}
}
createdBp, err := createLogicalBreakpoint(d, requestedBp, &setbp, suspended)
if err != nil {
return nil, err
}
d.log.Infof("created breakpoint: %#v", createdBp)
return createdBp, nil
}
func (d *Debugger) convertBreakpoint(lbp *proc.LogicalBreakpoint) *api.Breakpoint {
abp := api.ConvertLogicalBreakpoint(lbp)
bps := []*proc.Breakpoint{}
pids := []int{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == lbp.LogicalID {
bps = append(bps, bp)
pids = append(pids, t.Pid())
}
}
}
api.ConvertPhysicalBreakpoints(abp, pids, bps)
return abp
}
func (d *Debugger) ConvertThreadBreakpoint(thread proc.Thread) *api.Breakpoint {
if b := thread.Breakpoint(); b.Active && b.Breakpoint.Logical != nil {
return d.convertBreakpoint(b.Breakpoint.Logical)
}
return nil
}
// createLogicalBreakpoint creates one physical breakpoint for each address
// in addrs and associates all of them with the same logical breakpoint.
func createLogicalBreakpoint(d *Debugger, requestedBp *api.Breakpoint, setbp *proc.SetBreakpoint, suspended bool) (*api.Breakpoint, error) {
id := requestedBp.ID
if id <= 0 {
d.breakpointIDCounter++
id = d.breakpointIDCounter
} else {
d.breakpointIDCounter = id
}
lbp := &proc.LogicalBreakpoint{LogicalID: id, HitCount: make(map[int64]uint64), Enabled: true}
d.target.LogicalBreakpoints[id] = lbp
err := copyLogicalBreakpointInfo(lbp, requestedBp)
if err != nil {
return nil, err
}
lbp.Set = *setbp
if lbp.Set.Expr != nil {
addrs := lbp.Set.Expr(d.Target())
if len(addrs) > 0 {
f, l, fn := d.Target().BinInfo().PCToLine(addrs[0])
lbp.File = f
lbp.Line = l
if fn != nil {
lbp.FunctionName = fn.Name
}
}
}
err = d.target.EnableBreakpoint(lbp)
if err != nil {
if suspended {
logflags.DebuggerLogger().Debugf("could not enable new breakpoint: %v (breakpoint will be suspended)", err)
} else {
delete(d.target.LogicalBreakpoints, lbp.LogicalID)
return nil, err
}
}
return d.convertBreakpoint(lbp), nil
}
func (d *Debugger) CreateEBPFTracepoint(fnName string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if len(d.target.Targets()) != 1 {
return ErrNotImplementedWithMultitarget
}
p := d.target.Selected
return p.SetEBPFTracepoint(fnName)
}
// amendBreakpoint will update the breakpoint with the matching ID.
// It also enables or disables the breakpoint.
// We can consume this function to avoid locking a goroutine.
func (d *Debugger) amendBreakpoint(amend *api.Breakpoint) error {
original := d.target.LogicalBreakpoints[amend.ID]
if original == nil {
return fmt.Errorf("no breakpoint with ID %d", amend.ID)
}
enabledBefore := original.Enabled
err := copyLogicalBreakpointInfo(original, amend)
if err != nil {
return err
}
original.Enabled = !amend.Disabled
switch {
case enabledBefore && !original.Enabled:
if d.isWatchpoint(original) {
return errors.New("can not disable watchpoints")
}
err = d.target.DisableBreakpoint(original)
case !enabledBefore && original.Enabled:
err = d.target.EnableBreakpoint(original)
}
if err != nil {
return err
}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == amend.ID {
bp.UserBreaklet().Cond = original.Cond
}
}
}
return nil
}
func (d *Debugger) isWatchpoint(lbp *proc.LogicalBreakpoint) bool {
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == lbp.LogicalID {
return bp.WatchType != 0
}
}
}
return false
}
// AmendBreakpoint will update the breakpoint with the matching ID.
// It also enables or disables the breakpoint.
func (d *Debugger) AmendBreakpoint(amend *api.Breakpoint) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.amendBreakpoint(amend)
}
// CancelNext will clear internal breakpoints, thus cancelling the 'next',
// 'step' or 'stepout' operation.
func (d *Debugger) CancelNext() error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.ClearSteppingBreakpoints()
}
func copyLogicalBreakpointInfo(lbp *proc.LogicalBreakpoint, requested *api.Breakpoint) error {
lbp.Name = requested.Name
lbp.Tracepoint = requested.Tracepoint
lbp.TraceReturn = requested.TraceReturn
lbp.Goroutine = requested.Goroutine
lbp.Stacktrace = requested.Stacktrace
lbp.Variables = requested.Variables
lbp.LoadArgs = api.LoadConfigToProc(requested.LoadArgs)
lbp.LoadLocals = api.LoadConfigToProc(requested.LoadLocals)
lbp.UserData = requested.UserData
lbp.Cond = nil
if requested.Cond != "" {
var err error
lbp.Cond, err = parser.ParseExpr(requested.Cond)
if err != nil {
return err
}
}
lbp.HitCond = nil
if requested.HitCond != "" {
opTok, val, err := parseHitCondition(requested.HitCond)
if err != nil {
return err
}
lbp.HitCond = &struct {
Op token.Token
Val int
}{opTok, val}
lbp.HitCondPerG = requested.HitCondPerG
}
return nil
}
func parseHitCondition(hitCond string) (token.Token, int, error) {
// A hit condition can be in the following formats:
// - "number"
// - "OP number"
hitConditionRegex := regexp.MustCompile(`((=|>|<|%|!)+|)( |)((\d|_)+)`)
match := hitConditionRegex.FindStringSubmatch(strings.TrimSpace(hitCond))
if match == nil || len(match) != 6 {
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\nhit conditions should be of the form \"number\" or \"OP number\"", hitCond)
}
opStr := match[1]
var opTok token.Token
switch opStr {
case "==", "":
opTok = token.EQL
case ">=":
opTok = token.GEQ
case "<=":
opTok = token.LEQ
case ">":
opTok = token.GTR
case "<":
opTok = token.LSS
case "%":
opTok = token.REM
case "!=":
opTok = token.NEQ
default:
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\ninvalid operator: %q", hitCond, opStr)
}
numStr := match[4]
val, parseErr := strconv.Atoi(numStr)
if parseErr != nil {
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\ninvalid number: %q", hitCond, numStr)
}
return opTok, val, nil
}
// ClearBreakpoint clears a breakpoint.
func (d *Debugger) ClearBreakpoint(requestedBp *api.Breakpoint) (*api.Breakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.clearBreakpoint(requestedBp)
}
// clearBreakpoint clears a breakpoint, we can consume this function to avoid locking a goroutine
func (d *Debugger) clearBreakpoint(requestedBp *api.Breakpoint) (*api.Breakpoint, error) {
if requestedBp.ID <= 0 {
if len(d.target.Targets()) != 1 {
return nil, ErrNotImplementedWithMultitarget
}
bp := d.target.Selected.Breakpoints().M[requestedBp.Addr]
requestedBp.ID = bp.LogicalID()
}
lbp := d.target.LogicalBreakpoints[requestedBp.ID]
clearedBp := d.convertBreakpoint(lbp)
err := d.target.DisableBreakpoint(lbp)
if err != nil {
return nil, err
}
delete(d.target.LogicalBreakpoints, requestedBp.ID)
d.log.Infof("cleared breakpoint: %#v", clearedBp)
return clearedBp, nil
}
// isBpHitCondNotSatisfiable returns true if the breakpoint bp has a hit
// condition that is no more satisfiable.
// The hit condition is considered no more satisfiable if it can no longer be
// hit again, for example with {Op: "==", Val: 1} and TotalHitCount == 1.
func isBpHitCondNotSatisfiable(bp *api.Breakpoint) bool {
if bp.HitCond == "" {
return false
}
tok, val, err := parseHitCondition(bp.HitCond)
if err != nil {
return false
}
switch tok {
case token.EQL, token.LEQ:
if int(bp.TotalHitCount) >= val {
return true
}
case token.LSS:
if int(bp.TotalHitCount) >= val-1 {
return true
}
}
return false
}
// Breakpoints returns the list of current breakpoints.
func (d *Debugger) Breakpoints(all bool) []*api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
abps := []*api.Breakpoint{}
if all {
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
var abp *api.Breakpoint
if bp.Logical != nil {
abp = api.ConvertLogicalBreakpoint(bp.Logical)
} else {
abp = &api.Breakpoint{}
}
api.ConvertPhysicalBreakpoints(abp, []int{t.Pid()}, []*proc.Breakpoint{bp})
abp.VerboseDescr = bp.VerboseDescr()
abps = append(abps, abp)
}
}
} else {
for _, lbp := range d.target.LogicalBreakpoints {
abps = append(abps, d.convertBreakpoint(lbp))
}
}
return abps
}
// FindBreakpoint returns the breakpoint specified by 'id'.
func (d *Debugger) FindBreakpoint(id int) *api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
lbp := d.target.LogicalBreakpoints[id]
if lbp == nil {
return nil
}
return d.convertBreakpoint(lbp)
}
// FindBreakpointByName returns the breakpoint specified by 'name'
func (d *Debugger) FindBreakpointByName(name string) *api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.findBreakpointByName(name)
}
func (d *Debugger) findBreakpointByName(name string) *api.Breakpoint {
for _, lbp := range d.target.LogicalBreakpoints {
if lbp.Name == name {
return d.convertBreakpoint(lbp)
}
}
return nil
}
// CreateWatchpoint creates a watchpoint on the specified expression.
func (d *Debugger) CreateWatchpoint(goid int64, frame, deferredCall int, expr string, wtype api.WatchType) (*api.Breakpoint, error) {
p := d.target.Selected
s, err := proc.ConvertEvalScope(p, goid, frame, deferredCall)
if err != nil {
return nil, err
}
d.breakpointIDCounter++
bp, err := p.SetWatchpoint(d.breakpointIDCounter, s, expr, proc.WatchType(wtype), nil)
if err != nil {
return nil, err
}
if d.findBreakpointByName(expr) == nil {
bp.Logical.Name = expr
}
return d.convertBreakpoint(bp.Logical), nil
}
// Threads returns the threads of the target process.
func (d *Debugger) Threads() ([]proc.Thread, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
return d.target.ThreadList(), nil
}
// FindThread returns the thread for the given 'id'.
func (d *Debugger) FindThread(id int) (proc.Thread, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
for _, th := range d.target.ThreadList() {
if th.ThreadID() == id {
return th, nil
}
}
return nil, nil
}
// FindGoroutine returns the goroutine for the given 'id'.
func (d *Debugger) FindGoroutine(id int64) (*proc.G, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return proc.FindGoroutine(d.target.Selected, id)
}
func (d *Debugger) setRunning(running bool) {
d.runningMutex.Lock()
d.running = running
d.runningMutex.Unlock()
}
func (d *Debugger) IsRunning() bool {
d.runningMutex.Lock()
defer d.runningMutex.Unlock()
return d.running
}
// Command handles commands which control the debugger lifecycle
func (d *Debugger) Command(command *api.DebuggerCommand, resumeNotify chan struct{}) (*api.DebuggerState, error) {
var err error
if command.Name == api.Halt {
// RequestManualStop does not invoke any ptrace syscalls, so it's safe to
// access the process directly.
d.log.Debug("halting")
d.recordMutex.Lock()
if d.stopRecording == nil {
err = d.target.RequestManualStop()
// The error returned from d.target.Valid will have more context
// about the exited process.
if _, valErr := d.target.Valid(); valErr != nil {
err = valErr
}
}
d.recordMutex.Unlock()
}
withBreakpointInfo := true
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
d.setRunning(true)
defer d.setRunning(false)
if command.Name != api.SwitchGoroutine && command.Name != api.SwitchThread && command.Name != api.Halt {
d.target.ResumeNotify(resumeNotify)
} else if resumeNotify != nil {
close(resumeNotify)
}
switch command.Name {
case api.Continue:
d.log.Debug("continuing")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Continue()
case api.DirectionCongruentContinue:
d.log.Debug("continuing (direction congruent)")
err = d.target.Continue()
case api.Call:
d.log.Debugf("function call %s", command.Expr)
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
if command.ReturnInfoLoadConfig == nil {
return nil, errors.New("can not call function with nil ReturnInfoLoadConfig")
}
g := d.target.Selected.SelectedGoroutine()
if command.GoroutineID > 0 {
g, err = proc.FindGoroutine(d.target.Selected, command.GoroutineID)
if err != nil {
return nil, err
}
}
err = proc.EvalExpressionWithCalls(d.target, g, command.Expr, *api.LoadConfigToProc(command.ReturnInfoLoadConfig), !command.UnsafeCall)
case api.Rewind:
d.log.Debug("rewinding")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Continue()
case api.Next:
d.log.Debug("nexting")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Next()
case api.ReverseNext:
d.log.Debug("reverse nexting")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Next()
case api.Step:
d.log.Debug("stepping")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Step()
case api.ReverseStep:
d.log.Debug("reverse stepping")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Step()
case api.StepInstruction:
d.log.Debug("single stepping")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.StepInstruction()
case api.ReverseStepInstruction:
d.log.Debug("reverse single stepping")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.StepInstruction()
case api.StepOut:
d.log.Debug("step out")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.StepOut()
case api.ReverseStepOut:
d.log.Debug("reverse step out")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.StepOut()
case api.SwitchThread:
d.log.Debugf("switching to thread %d", command.ThreadID)
t := proc.ValidTargets{Group: d.target}
for t.Next() {
if _, ok := t.FindThread(command.ThreadID); ok {
d.target.Selected = t.Target
break
}
}
err = d.target.Selected.SwitchThread(command.ThreadID)
withBreakpointInfo = false
case api.SwitchGoroutine:
d.log.Debugf("switching to goroutine %d", command.GoroutineID)
var g *proc.G
g, err = proc.FindGoroutine(d.target.Selected, command.GoroutineID)
if err == nil {
err = d.target.Selected.SwitchGoroutine(g)
}
withBreakpointInfo = false
case api.Halt:
// RequestManualStop already called
withBreakpointInfo = false
}
if err != nil {
if pe, ok := err.(proc.ErrProcessExited); ok && command.Name != api.SwitchGoroutine && command.Name != api.SwitchThread {
state := &api.DebuggerState{}
state.Pid = d.target.Selected.Pid()
state.Exited = true
state.ExitStatus = pe.Status
state.Err = pe
return state, nil
}
return nil, err
}
state, stateErr := d.state(api.LoadConfigToProc(command.ReturnInfoLoadConfig), withBreakpointInfo)
if stateErr != nil {
return state, stateErr
}
for _, th := range state.Threads {
if th.Breakpoint != nil && th.Breakpoint.TraceReturn {
for _, v := range th.BreakpointInfo.Arguments {
if (v.Flags & api.VariableReturnArgument) != 0 {
th.ReturnValues = append(th.ReturnValues, v)
}
}
}
}
if bp := state.CurrentThread.Breakpoint; bp != nil && isBpHitCondNotSatisfiable(bp) {
bp.Disabled = true
d.amendBreakpoint(bp)
}
return state, err
}
func (d *Debugger) collectBreakpointInformation(apiThread *api.Thread, thread proc.Thread) error {
if apiThread.Breakpoint == nil || apiThread.BreakpointInfo != nil {
return nil
}
bp := apiThread.Breakpoint
bpi := &api.BreakpointInfo{}
apiThread.BreakpointInfo = bpi
tgt := d.target.TargetForThread(thread.ThreadID())
if bp.Goroutine {
g, err := proc.GetG(thread)
if err != nil {
return err
}
bpi.Goroutine = api.ConvertGoroutine(tgt, g)
}
if bp.Stacktrace > 0 {
rawlocs, err := proc.ThreadStacktrace(thread, bp.Stacktrace)
if err != nil {
return err
}
bpi.Stacktrace, err = d.convertStacktrace(rawlocs, nil)
if err != nil {
return err
}
}
if len(bp.Variables) == 0 && bp.LoadArgs == nil && bp.LoadLocals == nil {
// don't try to create goroutine scope if there is nothing to load
return nil
}
s, err := proc.GoroutineScope(tgt, thread)
if err != nil {
return err
}
if len(bp.Variables) > 0 {
bpi.Variables = make([]api.Variable, len(bp.Variables))
}
for i := range bp.Variables {
v, err := s.EvalExpression(bp.Variables[i], proc.LoadConfig{FollowPointers: true, MaxVariableRecurse: 1, MaxStringLen: 64, MaxArrayValues: 64, MaxStructFields: -1})
if err != nil {
bpi.Variables[i] = api.Variable{Name: bp.Variables[i], Unreadable: fmt.Sprintf("eval error: %v", err)}
} else {
bpi.Variables[i] = *api.ConvertVar(v)
}
}
if bp.LoadArgs != nil {
if vars, err := s.FunctionArguments(*api.LoadConfigToProc(bp.LoadArgs)); err == nil {
bpi.Arguments = api.ConvertVars(vars)
}
}
if bp.LoadLocals != nil {
if locals, err := s.LocalVariables(*api.LoadConfigToProc(bp.LoadLocals)); err == nil {
bpi.Locals = api.ConvertVars(locals)
}
}
return nil
}
// Sources returns a list of the source files for target binary.
func (d *Debugger) Sources(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
files := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, f := range t.BinInfo().Sources {
if regex.MatchString(f) {
files = append(files, f)
}
}
}
sort.Strings(files)
files = uniq(files)
return files, nil
}
func uniq(s []string) []string {
if len(s) <= 0 {
return s
}
src, dst := 1, 1
for src < len(s) {
if s[src] != s[dst-1] {
s[dst] = s[src]
dst++
}
src++
}
return s[:dst]
}
// Functions returns a list of functions in the target process.
func (d *Debugger) Functions(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
funcs := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, f := range t.BinInfo().Functions {
if regex.MatchString(f.Name) {
funcs = append(funcs, f.Name)
}
}
}
sort.Strings(funcs)
funcs = uniq(funcs)
return funcs, nil
}
// Types returns all type information in the binary.
func (d *Debugger) Types(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
r := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
types, err := t.BinInfo().Types()
if err != nil {
return nil, err
}
for _, typ := range types {
if regex.MatchString(typ) {
r = append(r, typ)
}
}
}
sort.Strings(r)
r = uniq(r)
return r, nil
}
// PackageVariables returns a list of package variables for the thread,
// optionally regexp filtered using regexp described in 'filter'.
func (d *Debugger) PackageVariables(filter string, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
p := d.target.Selected
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
scope, err := proc.ThreadScope(p, p.CurrentThread())
if err != nil {
return nil, err
}
pv, err := scope.PackageVariables(cfg)
if err != nil {
return nil, err
}
pvr := pv[:0]
for i := range pv {
if regex.MatchString(pv[i].Name) {
pvr = append(pvr, pv[i])
}
}
return pvr, nil
}
// ThreadRegisters returns registers of the specified thread.
func (d *Debugger) ThreadRegisters(threadID int, floatingPoint bool) (*op.DwarfRegisters, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
thread, found := d.target.Selected.FindThread(threadID)
if !found {
return nil, fmt.Errorf("couldn't find thread %d", threadID)
}
regs, err := thread.Registers()
if err != nil {
return nil, err
}
return d.target.Selected.BinInfo().Arch.RegistersToDwarfRegisters(0, regs), nil
}
// ScopeRegisters returns registers for the specified scope.
func (d *Debugger) ScopeRegisters(goid int64, frame, deferredCall int, floatingPoint bool) (*op.DwarfRegisters, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return &s.Regs, nil
}
// DwarfRegisterToString returns the name and value representation of the given register.
func (d *Debugger) DwarfRegisterToString(i int, reg *op.DwarfRegister) (string, bool, string) {
return d.target.Selected.BinInfo().Arch.DwarfRegisterToString(i, reg)
}
// LocalVariables returns a list of the local variables.
func (d *Debugger) LocalVariables(goid int64, frame, deferredCall int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.LocalVariables(cfg)
}
// FunctionArguments returns the arguments to the current function.
func (d *Debugger) FunctionArguments(goid int64, frame, deferredCall int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.FunctionArguments(cfg)
}
// Function returns the current function.
func (d *Debugger) Function(goid int64, frame, deferredCall int, cfg proc.LoadConfig) (*proc.Function, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.Fn, nil
}
// EvalVariableInScope will attempt to evaluate the 'expr' in the scope
// corresponding to the given 'frame' on the goroutine identified by 'goid'.
func (d *Debugger) EvalVariableInScope(goid int64, frame, deferredCall int, expr string, cfg proc.LoadConfig) (*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.EvalExpression(expr, cfg)
}
// LoadResliced will attempt to 'reslice' a map, array or slice so that the values
// up to cfg.MaxArrayValues children are loaded starting from index start.
func (d *Debugger) LoadResliced(v *proc.Variable, start int, cfg proc.LoadConfig) (*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return v.LoadResliced(start, cfg)
}
// SetVariableInScope will set the value of the variable represented by
// 'symbol' to the value given, in the given scope.
func (d *Debugger) SetVariableInScope(goid int64, frame, deferredCall int, symbol, value string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return err
}
return s.SetVariable(symbol, value)
}
// Goroutines will return a list of goroutines in the target process.
func (d *Debugger) Goroutines(start, count int) ([]*proc.G, int, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return proc.GoroutinesInfo(d.target.Selected, start, count)
}
// FilterGoroutines returns the goroutines in gs that satisfy the specified filters.
func (d *Debugger) FilterGoroutines(gs []*proc.G, filters []api.ListGoroutinesFilter) []*proc.G {
if len(filters) == 0 {
return gs
}
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
r := []*proc.G{}
for _, g := range gs {
ok := true
for i := range filters {
if !matchGoroutineFilter(d.target.Selected, g, &filters[i]) {
ok = false
break
}
}
if ok {
r = append(r, g)
}
}
return r
}
func matchGoroutineFilter(tgt *proc.Target, g *proc.G, filter *api.ListGoroutinesFilter) bool {
var val bool
switch filter.Kind {
default:
fallthrough
case api.GoroutineFieldNone:
val = true
case api.GoroutineCurrentLoc:
val = matchGoroutineLocFilter(g.CurrentLoc, filter.Arg)
case api.GoroutineUserLoc:
val = matchGoroutineLocFilter(g.UserCurrent(), filter.Arg)
case api.GoroutineGoLoc:
val = matchGoroutineLocFilter(g.Go(), filter.Arg)
case api.GoroutineStartLoc:
val = matchGoroutineLocFilter(g.StartLoc(tgt), filter.Arg)
case api.GoroutineLabel:
idx := strings.Index(filter.Arg, "=")
if idx >= 0 {
val = g.Labels()[filter.Arg[:idx]] == filter.Arg[idx+1:]
} else {
_, val = g.Labels()[filter.Arg]
}
case api.GoroutineRunning:
val = g.Thread != nil
case api.GoroutineUser:
val = !g.System(tgt)
}
if filter.Negated {
val = !val
}
return val
}
func matchGoroutineLocFilter(loc proc.Location, arg string) bool {
return strings.Contains(formatLoc(loc), arg)
}
func formatLoc(loc proc.Location) string {
fnname := "?"
if loc.Fn != nil {
fnname = loc.Fn.Name
}
return fmt.Sprintf("%s:%d in %s", loc.File, loc.Line, fnname)
}
// GroupGoroutines divides goroutines in gs into groups as specified by groupBy and groupByArg.
// A maximum of maxGoroutinesPerGroup are saved in each group, but the total
// number of goroutines in each group is recorded.
func (d *Debugger) GroupGoroutines(gs []*proc.G, group *api.GoroutineGroupingOptions) ([]*proc.G, []api.GoroutineGroup, bool) {
if group.GroupBy == api.GoroutineFieldNone {
return gs, nil, false
}
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
groupMembers := map[string][]*proc.G{}
totals := map[string]int{}
for _, g := range gs {
var key string
switch group.GroupBy {
case api.GoroutineCurrentLoc:
key = formatLoc(g.CurrentLoc)
case api.GoroutineUserLoc:
key = formatLoc(g.UserCurrent())
case api.GoroutineGoLoc:
key = formatLoc(g.Go())
case api.GoroutineStartLoc:
key = formatLoc(g.StartLoc(d.target.Selected))
case api.GoroutineLabel:
key = fmt.Sprintf("%s=%s", group.GroupByKey, g.Labels()[group.GroupByKey])
case api.GoroutineRunning:
key = fmt.Sprintf("running=%v", g.Thread != nil)
case api.GoroutineUser:
key = fmt.Sprintf("user=%v", !g.System(d.target.Selected))
}
if len(groupMembers[key]) < group.MaxGroupMembers {
groupMembers[key] = append(groupMembers[key], g)
}
totals[key]++
}
keys := make([]string, 0, len(groupMembers))
for key := range groupMembers {
keys = append(keys, key)
}
sort.Strings(keys)
tooManyGroups := false
gsout := []*proc.G{}
groups := []api.GoroutineGroup{}
for _, key := range keys {
if group.MaxGroups > 0 && len(groups) >= group.MaxGroups {
tooManyGroups = true
break
}
groups = append(groups, api.GoroutineGroup{Name: key, Offset: len(gsout), Count: len(groupMembers[key]), Total: totals[key]})
gsout = append(gsout, groupMembers[key]...)
}
return gsout, groups, tooManyGroups
}
// Stacktrace returns a list of Stackframes for the given goroutine. The
// length of the returned list will be min(stack_len, depth).
// If 'full' is true, then local vars, function args, etc will be returned as well.
func (d *Debugger) Stacktrace(goroutineID int64, depth int, opts api.StacktraceOptions) ([]proc.Stackframe, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
if g == nil {
return proc.ThreadStacktrace(d.target.Selected.CurrentThread(), depth)
} else {
return g.Stacktrace(depth, proc.StacktraceOptions(opts))
}
}
// Ancestors returns the stacktraces for the ancestors of a goroutine.
func (d *Debugger) Ancestors(goroutineID int64, numAncestors, depth int) ([]api.Ancestor, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
if g == nil {
return nil, errors.New("no selected goroutine")
}
ancestors, err := proc.Ancestors(d.target.Selected, g, numAncestors)
if err != nil {
return nil, err
}
r := make([]api.Ancestor, len(ancestors))
for i := range ancestors {
r[i].ID = ancestors[i].ID
if ancestors[i].Unreadable != nil {
r[i].Unreadable = ancestors[i].Unreadable.Error()
continue
}
frames, err := ancestors[i].Stack(depth)
if err != nil {
r[i].Unreadable = fmt.Sprintf("could not read ancestor stacktrace: %v", err)
continue
}
r[i].Stack, err = d.convertStacktrace(frames, nil)
if err != nil {
r[i].Unreadable = fmt.Sprintf("could not read ancestor stacktrace: %v", err)
}
}
return r, nil
}
// ConvertStacktrace converts a slice of proc.Stackframe into a slice of
// api.Stackframe, loading local variables and arguments of each frame if
// cfg is not nil.
func (d *Debugger) ConvertStacktrace(rawlocs []proc.Stackframe, cfg *proc.LoadConfig) ([]api.Stackframe, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.convertStacktrace(rawlocs, cfg)
}
func (d *Debugger) convertStacktrace(rawlocs []proc.Stackframe, cfg *proc.LoadConfig) ([]api.Stackframe, error) {
locations := make([]api.Stackframe, 0, len(rawlocs))
for i := range rawlocs {
frame := api.Stackframe{
Location: api.ConvertLocation(rawlocs[i].Call),
FrameOffset: rawlocs[i].FrameOffset(),
FramePointerOffset: rawlocs[i].FramePointerOffset(),
Defers: d.convertDefers(rawlocs[i].Defers),
Bottom: rawlocs[i].Bottom,
}
if rawlocs[i].Err != nil {
frame.Err = rawlocs[i].Err.Error()
}
if cfg != nil && rawlocs[i].Current.Fn != nil {
var err error
scope := proc.FrameToScope(d.target.Selected, d.target.Selected.Memory(), nil, rawlocs[i:]...)
locals, err := scope.LocalVariables(*cfg)
if err != nil {
return nil, err
}
arguments, err := scope.FunctionArguments(*cfg)
if err != nil {
return nil, err
}
frame.Locals = api.ConvertVars(locals)
frame.Arguments = api.ConvertVars(arguments)
}
locations = append(locations, frame)
}
return locations, nil
}
func (d *Debugger) convertDefers(defers []*proc.Defer) []api.Defer {
r := make([]api.Defer, len(defers))
for i := range defers {
ddf, ddl, ddfn := defers[i].DeferredFunc(d.target.Selected)
drf, drl, drfn := d.target.Selected.BinInfo().PCToLine(defers[i].DeferPC)
if defers[i].Unreadable != nil {
r[i].Unreadable = defers[i].Unreadable.Error()
} else {
var entry uint64 = defers[i].DeferPC
if ddfn != nil {
entry = ddfn.Entry
}
r[i] = api.Defer{
DeferredLoc: api.ConvertLocation(proc.Location{
PC: entry,
File: ddf,
Line: ddl,
Fn: ddfn,
}),
DeferLoc: api.ConvertLocation(proc.Location{
PC: defers[i].DeferPC,
File: drf,
Line: drl,
Fn: drfn,
}),
SP: defers[i].SP,
}
}
}
return r
}
// CurrentPackage returns the fully qualified name of the
// package corresponding to the function location of the
// current thread.
func (d *Debugger) CurrentPackage() (string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return "", err
}
loc, err := d.target.Selected.CurrentThread().Location()
if err != nil {
return "", err
}
if loc.Fn == nil {
return "", fmt.Errorf("unable to determine current package due to unspecified function location")
}
return loc.Fn.PackageName(), nil
}
// FindLocation will find the location specified by 'locStr'.
func (d *Debugger) FindLocation(goid int64, frame, deferredCall int, locStr string, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
loc, err := locspec.Parse(locStr)
if err != nil {
return nil, err
}
return d.findLocation(goid, frame, deferredCall, locStr, loc, includeNonExecutableLines, substitutePathRules)
}
// FindLocationSpec will find the location specified by 'locStr' and 'locSpec'.
// 'locSpec' should be the result of calling 'locspec.Parse(locStr)'. 'locStr'
// is also passed, because it made be used to broaden the search criteria, if
// the parsed result did not find anything.
func (d *Debugger) FindLocationSpec(goid int64, frame, deferredCall int, locStr string, locSpec locspec.LocationSpec, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
return d.findLocation(goid, frame, deferredCall, locStr, locSpec, includeNonExecutableLines, substitutePathRules)
}
func (d *Debugger) findLocation(goid int64, frame, deferredCall int, locStr string, locSpec locspec.LocationSpec, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, error) {
locations := []api.Location{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
pid := t.Pid()
s, _ := proc.ConvertEvalScope(t.Target, goid, frame, deferredCall)
locs, err := locSpec.Find(t.Target, d.processArgs, s, locStr, includeNonExecutableLines, substitutePathRules)
if err != nil {
return nil, err
}
for i := range locs {
if locs[i].PC == 0 {
continue
}
file, line, fn := t.BinInfo().PCToLine(locs[i].PC)
locs[i].File = file
locs[i].Line = line
locs[i].Function = api.ConvertFunction(fn)
locs[i].PCPids = make([]int, len(locs[i].PCs))
for j := range locs[i].PCs {
locs[i].PCPids[j] = pid
}
}
locations = append(locations, locs...)
}
return locations, nil
}
// Disassemble code between startPC and endPC.
// if endPC == 0 it will find the function containing startPC and disassemble the whole function.
func (d *Debugger) Disassemble(goroutineID int64, addr1, addr2 uint64) ([]proc.AsmInstruction, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
if addr2 == 0 {
fn := d.target.Selected.BinInfo().PCToFunc(addr1)
if fn == nil {
return nil, fmt.Errorf("address %#x does not belong to any function", addr1)
}
addr1 = fn.Entry
addr2 = fn.End
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
curthread := d.target.Selected.CurrentThread()
if g != nil && g.Thread != nil {
curthread = g.Thread
}
regs, _ := curthread.Registers()
return proc.Disassemble(d.target.Selected.Memory(), regs, d.target.Selected.Breakpoints(), d.target.Selected.BinInfo(), addr1, addr2)
}
func (d *Debugger) AsmInstructionText(inst *proc.AsmInstruction, flavour proc.AssemblyFlavour) string {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return inst.Text(flavour, d.target.Selected.BinInfo())
}
// Recorded returns true if the target is a recording.
func (d *Debugger) Recorded() (recorded bool, tracedir string) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Recorded()
}
// FindThreadReturnValues returns the return values of the function that
// the thread of the given 'id' just stepped out of.
func (d *Debugger) FindThreadReturnValues(id int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
thread, found := d.target.Selected.FindThread(id)
if !found {
return nil, fmt.Errorf("could not find thread %d", id)
}
return thread.Common().ReturnValues(cfg), nil
}
// Checkpoint will set a checkpoint specified by the locspec.
func (d *Debugger) Checkpoint(where string) (int, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Checkpoint(where)
}
// Checkpoints will return a list of checkpoints.
func (d *Debugger) Checkpoints() ([]proc.Checkpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Checkpoints()
}
// ClearCheckpoint will clear the checkpoint of the given ID.
func (d *Debugger) ClearCheckpoint(id int) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.ClearCheckpoint(id)
}
// ListDynamicLibraries returns a list of loaded dynamic libraries.
func (d *Debugger) ListDynamicLibraries() []*proc.Image {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().Images[1:] // skips the first image because it's the executable file
}
// ExamineMemory returns the raw memory stored at the given address.
// The amount of data to be read is specified by length.
// This function will return an error if it reads less than `length` bytes.
func (d *Debugger) ExamineMemory(address uint64, length int) ([]byte, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
mem := d.target.Selected.Memory()
data := make([]byte, length)
n, err := mem.ReadMemory(data, address)
if err != nil {
return nil, err
}
if length != n {
return nil, errors.New("the specific range has exceeded readable area")
}
return data, nil
}
func (d *Debugger) GetVersion(out *api.GetVersionOut) error {
if d.config.CoreFile != "" {
if d.config.Backend == "rr" {
out.Backend = "rr"
} else {
out.Backend = "core"
}
} else {
if d.config.Backend == "default" {
if runtime.GOOS == "darwin" {
out.Backend = "lldb"
} else {
out.Backend = "native"
}
} else {
out.Backend = d.config.Backend
}
}
if !d.isRecording() && !d.IsRunning() {
out.TargetGoVersion = d.target.Selected.BinInfo().Producer()
}
out.MinSupportedVersionOfGo = fmt.Sprintf("%d.%d.0", goversion.MinSupportedVersionOfGoMajor, goversion.MinSupportedVersionOfGoMinor)
out.MaxSupportedVersionOfGo = fmt.Sprintf("%d.%d.0", goversion.MaxSupportedVersionOfGoMajor, goversion.MaxSupportedVersionOfGoMinor)
return nil
}
// ListPackagesBuildInfo returns the list of packages used by the program along with
// the directory where each package was compiled and optionally the list of
// files constituting the package.
func (d *Debugger) ListPackagesBuildInfo(includeFiles bool) []*proc.PackageBuildInfo {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().ListPackagesBuildInfo(includeFiles)
}
// StopRecording stops a recording (if one is in progress)
func (d *Debugger) StopRecording() error {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
if d.stopRecording == nil {
return ErrNotRecording
}
return d.stopRecording()
}
// StopReason returns the reason the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
func (d *Debugger) StopReason() proc.StopReason {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.StopReason
}
// LockTarget acquires the target mutex.
func (d *Debugger) LockTarget() {
d.targetMutex.Lock()
}
// UnlockTarget releases the target mutex.
func (d *Debugger) UnlockTarget() {
d.targetMutex.Unlock()
}
// DumpStart starts a core dump to dest.
func (d *Debugger) DumpStart(dest string) error {
d.targetMutex.Lock()
// targetMutex will only be unlocked when the dump is done
//TODO(aarzilli): what do we do if the user switches to a different target after starting a dump but before it's finished?
if !d.target.CanDump {
d.targetMutex.Unlock()
return ErrCoreDumpNotSupported
}
d.dumpState.Mutex.Lock()
defer d.dumpState.Mutex.Unlock()
if d.dumpState.Dumping {
d.targetMutex.Unlock()
return ErrCoreDumpInProgress
}
fh, err := os.Create(dest)
if err != nil {
d.targetMutex.Unlock()
return err
}
d.dumpState.Dumping = true
d.dumpState.AllDone = false
d.dumpState.Canceled = false
d.dumpState.DoneChan = make(chan struct{})
d.dumpState.ThreadsDone = 0
d.dumpState.ThreadsTotal = 0
d.dumpState.MemDone = 0
d.dumpState.MemTotal = 0
d.dumpState.Err = nil
go func() {
defer d.targetMutex.Unlock()
d.target.Selected.Dump(fh, 0, &d.dumpState)
}()
return nil
}
// DumpWait waits for the dump to finish, or for the duration of wait.
// Returns the state of the dump.
// If wait == 0 returns immediately.
func (d *Debugger) DumpWait(wait time.Duration) *proc.DumpState {
d.dumpState.Mutex.Lock()
if !d.dumpState.Dumping {
d.dumpState.Mutex.Unlock()
return &d.dumpState
}
d.dumpState.Mutex.Unlock()
if wait > 0 {
alarm := time.After(wait)
select {
case <-alarm:
case <-d.dumpState.DoneChan:
}
}
return &d.dumpState
}
// DumpCancel canels a dump in progress
func (d *Debugger) DumpCancel() error {
d.dumpState.Mutex.Lock()
d.dumpState.Canceled = true
d.dumpState.Mutex.Unlock()
return nil
}
func (d *Debugger) Target() *proc.Target {
return d.target.Selected
}
func (d *Debugger) TargetGroup() *proc.TargetGroup {
return d.target
}
func (d *Debugger) BuildID() string {
return d.target.Selected.BinInfo().BuildID
}
func (d *Debugger) AttachPid() int {
return d.config.AttachPid
}
func (d *Debugger) GetBufferedTracepoints() []api.TracepointResult {
traces := d.target.Selected.GetBufferedTracepoints()
if traces == nil {
return nil
}
results := make([]api.TracepointResult, len(traces))
for i, trace := range traces {
results[i].IsRet = trace.IsRet
f, l, fn := d.target.Selected.BinInfo().PCToLine(uint64(trace.FnAddr))
results[i].FunctionName = fn.Name
results[i].Line = l
results[i].File = f
results[i].GoroutineID = trace.GoroutineID
for _, p := range trace.InputParams {
results[i].InputParams = append(results[i].InputParams, *api.ConvertVar(p))
}
for _, p := range trace.ReturnParams {
results[i].ReturnParams = append(results[i].ReturnParams, *api.ConvertVar(p))
}
}
return results
}
// FollowExec enabled or disables follow exec mode.
func (d *Debugger) FollowExec(enabled bool, regex string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.FollowExec(enabled, regex)
}
// FollowExecEnabled returns true if follow exec mode is enabled.
func (d *Debugger) FollowExecEnabled() bool {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.FollowExecEnabled()
}
func (d *Debugger) SetDebugInfoDirectories(v []string) {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
it := proc.ValidTargets{Group: d.target}
for it.Next() {
it.BinInfo().DebugInfoDirectories = v
}
}
func (d *Debugger) DebugInfoDirectories() []string {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
return d.target.Selected.BinInfo().DebugInfoDirectories
}
func go11DecodeErrorCheck(err error) error {
if _, isdecodeerr := err.(dwarf.DecodeError); !isdecodeerr {
return err
}
gover, ok := goversion.Installed()
if !ok || !gover.AfterOrEqual(goversion.GoVersion{Major: 1, Minor: 11, Rev: -1}) || goversion.VersionAfterOrEqual(runtime.Version(), 1, 11) {
return err
}
return fmt.Errorf("executables built by Go 1.11 or later need Delve built by Go 1.11 or later")
}
const NoDebugWarning string = "debuggee must not be built with 'go run' or -ldflags='-s -w', which strip debug info"
func noDebugErrorWarning(err error) error {
if _, isdecodeerr := err.(dwarf.DecodeError); isdecodeerr || strings.Contains(err.Error(), "could not open debug info") {
return fmt.Errorf("%s - %s", err.Error(), NoDebugWarning)
}
return err
}
func verifyBinaryFormat(exePath string) (string, error) {
fullpath, err := filepath.Abs(exePath)
if err != nil {
return "", err
}
f, err := os.Open(fullpath)
if err != nil {
return "", err
}
defer f.Close()
// Skip this check on Windows.
// TODO(derekparker) exec.LookPath looks for valid Windows extensions.
// We don't create our binaries with valid extensions, even though we should.
// Skip this check for now.
if runtime.GOOS != "windows" {
_, err = exec.LookPath(fullpath)
if err != nil {
return "", api.ErrNotExecutable
}
}
// check that the binary format is what we expect for the host system
var exe io.Closer
switch runtime.GOOS {
case "darwin":
exe, err = macho.NewFile(f)
case "linux", "freebsd":
exe, err = elf.NewFile(f)
case "windows":
exe, err = pe.NewFile(f)
default:
panic("attempting to open file Delve cannot parse")
}
if err != nil {
return "", api.ErrNotExecutable
}
exe.Close()
return fullpath, nil
}
var attachErrorMessage = attachErrorMessageDefault
func attachErrorMessageDefault(pid int, err error) error {
return fmt.Errorf("could not attach to pid %d: %s", pid, err)
}