delve/pkg/proc/bininfo.go
Alessandro Arzilli 151de14d08 proc: support DW_AT_go_package_name (#1757)
Use the name specified by compile unit attribute DW_AT_go_package_name,
introduced in Go 1.13, to map package names to package paths, instead of
trying to deduce it from names of types.
Also use this mapping for resolving global variables and function
expressions.
2019-11-25 09:10:18 -08:00

1757 lines
52 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"go/ast"
"go/token"
"io"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/line"
"github.com/go-delve/delve/pkg/dwarf/loclist"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
"github.com/sirupsen/logrus"
)
// BinaryInfo holds information on the binaries being executed (this
// includes both the executable and also any loaded libraries).
type BinaryInfo struct {
// Architecture of this binary.
Arch Arch
// GOOS operating system this binary is executing on.
GOOS string
debugInfoDirectories []string
// Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point
Functions []Function
// Sources is a list of all source files found in debug_line.
Sources []string
// LookupFunc maps function names to a description of the function.
LookupFunc map[string]*Function
// Images is a list of loaded shared libraries (also known as
// shared objects on linux or DLLs on windows).
Images []*Image
ElfDynamicSection ElfDynamicSection
lastModified time.Time // Time the executable of this process was last modified
closer io.Closer
sepDebugCloser io.Closer
// PackageMap maps package names to package paths, needed to lookup types inside DWARF info.
// On Go1.12 this mapping is determined by using the last element of a package path, for example:
// github.com/go-delve/delve
// will map to 'delve' because it ends in '/delve'.
// Starting with Go1.13 debug_info will contain a special attribute
// (godwarf.AttrGoPackageName) containing the canonical package name for
// each package.
// If multiple packages have the same name the map entry will have more
// than one item in the slice.
PackageMap map[string][]string
frameEntries frame.FrameDescriptionEntries
compileUnits []*compileUnit // compileUnits is sorted by increasing DWARF offset
types map[string]dwarfRef
packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address
gStructOffset uint64
// nameOfRuntimeType maps an address of a runtime._type struct to its
// decoded name. Used with versions of Go <= 1.10 to figure out the DIE of
// the concrete type of interfaces.
nameOfRuntimeType map[uintptr]nameOfRuntimeTypeEntry
// consts[off] lists all the constants with the type defined at offset off.
consts constantsMap
// inlinedCallLines maps a file:line pair, corresponding to the header line
// of a function to a list of PC addresses where an inlined call to that
// function starts.
inlinedCallLines map[fileLine][]uint64
logger *logrus.Entry
}
// ErrUnsupportedLinuxArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedLinuxArch = errors.New("unsupported architecture - only linux/amd64 is supported")
// ErrUnsupportedWindowsArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedWindowsArch = errors.New("unsupported architecture of windows/386 - only windows/amd64 is supported")
// ErrUnsupportedDarwinArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedDarwinArch = errors.New("unsupported architecture - only darwin/amd64 is supported")
// ErrCouldNotDetermineRelocation is an error returned when Delve could not determine the base address of a
// position independant executable.
var ErrCouldNotDetermineRelocation = errors.New("could not determine the base address of a PIE")
// ErrNoDebugInfoFound is returned when Delve cannot open the debug_info
// section or find an external debug info file.
var ErrNoDebugInfoFound = errors.New("could not open debug info")
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)
type compileUnit struct {
name string // univocal name for non-go compile units
lowPC uint64
ranges [][2]uint64
entry *dwarf.Entry // debug_info entry describing this compile unit
isgo bool // true if this is the go compile unit
lineInfo *line.DebugLineInfo // debug_line segment associated with this compile unit
optimized bool // this compile unit is optimized
producer string // producer attribute
offset dwarf.Offset // offset of the entry describing the compile unit
image *Image // parent image of this compilation unit.
}
type fileLine struct {
file string
line int
}
// dwarfRef is a reference to a Debug Info Entry inside a shared object.
type dwarfRef struct {
imageIndex int
offset dwarf.Offset
}
// InlinedCall represents a concrete inlined call to a function.
type InlinedCall struct {
cu *compileUnit
LowPC, HighPC uint64 // Address range of the generated inlined instructions
}
// Function describes a function in the target program.
type Function struct {
Name string
Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc
offset dwarf.Offset
cu *compileUnit
// InlinedCalls lists all inlined calls to this function
InlinedCalls []InlinedCall
}
// PackageName returns the package part of the symbol name,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) PackageName() string {
return packageName(fn.Name)
}
func packageName(name string) string {
pathend := strings.LastIndex(name, "/")
if pathend < 0 {
pathend = 0
}
if i := strings.Index(name[pathend:], "."); i != -1 {
return name[:pathend+i]
}
return ""
}
// ReceiverName returns the receiver type name of this symbol,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) ReceiverName() string {
pathend := strings.LastIndex(fn.Name, "/")
if pathend < 0 {
pathend = 0
}
l := strings.Index(fn.Name[pathend:], ".")
r := strings.LastIndex(fn.Name[pathend:], ".")
if l == -1 || r == -1 || l == r {
return ""
}
return fn.Name[pathend+l+1 : pathend+r]
}
// BaseName returns the symbol name without the package or receiver name.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) BaseName() string {
if i := strings.LastIndex(fn.Name, "."); i != -1 {
return fn.Name[i+1:]
}
return fn.Name
}
// Optimized returns true if the function was optimized by the compiler.
func (fn *Function) Optimized() bool {
return fn.cu.optimized
}
// PrologueEndPC returns the PC just after the function prologue
func (fn *Function) PrologueEndPC() uint64 {
pc, _, _, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End)
if !ok {
return fn.Entry
}
return pc
}
type constantsMap map[dwarfRef]*constantType
type constantType struct {
initialized bool
values []constantValue
}
type constantValue struct {
name string
fullName string
value int64
singleBit bool
}
// packageVar represents a package-level variable (or a C global variable).
// If a global variable does not have an address (for example it's stored in
// a register, or non-contiguously) addr will be 0.
type packageVar struct {
name string
cu *compileUnit
offset dwarf.Offset
addr uint64
}
type buildIDHeader struct {
Namesz uint32
Descsz uint32
Type uint32
}
// ElfDynamicSection describes the .dynamic section of an ELF executable.
type ElfDynamicSection struct {
Addr uint64 // relocated address of where the .dynamic section is mapped in memory
Size uint64 // size of the .dynamic section of the executable
}
// NewBinaryInfo returns an initialized but unloaded BinaryInfo struct.
func NewBinaryInfo(goos, goarch string) *BinaryInfo {
r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uintptr]nameOfRuntimeTypeEntry), logger: logflags.DebuggerLogger()}
// TODO: find better way to determine proc arch (perhaps use executable file info).
switch goarch {
case "amd64":
r.Arch = AMD64Arch(goos)
}
return r
}
// LoadBinaryInfo will load and store the information from the binary at 'path'.
func (bi *BinaryInfo) LoadBinaryInfo(path string, entryPoint uint64, debugInfoDirs []string) error {
fi, err := os.Stat(path)
if err == nil {
bi.lastModified = fi.ModTime()
}
bi.debugInfoDirectories = debugInfoDirs
return bi.AddImage(path, entryPoint)
}
func loadBinaryInfo(bi *BinaryInfo, image *Image, path string, entryPoint uint64) error {
var wg sync.WaitGroup
defer wg.Wait()
switch bi.GOOS {
case "linux", "freebsd":
return loadBinaryInfoElf(bi, image, path, entryPoint, &wg)
case "windows":
return loadBinaryInfoPE(bi, image, path, entryPoint, &wg)
case "darwin":
return loadBinaryInfoMacho(bi, image, path, entryPoint, &wg)
}
return errors.New("unsupported operating system")
}
// GStructOffset returns the offset of the G
// struct in thread local storage.
func (bi *BinaryInfo) GStructOffset() uint64 {
return bi.gStructOffset
}
// LastModified returns the last modified time of the binary.
func (bi *BinaryInfo) LastModified() time.Time {
return bi.lastModified
}
// DwarfReader returns a reader for the dwarf data
func (so *Image) DwarfReader() *reader.Reader {
return reader.New(so.dwarf)
}
// Types returns list of types present in the debugged program.
func (bi *BinaryInfo) Types() ([]string, error) {
types := make([]string, 0, len(bi.types))
for k := range bi.types {
types = append(types, k)
}
return types, nil
}
// PCToLine converts an instruction address to a file/line/function.
func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) {
fn := bi.PCToFunc(pc)
if fn == nil {
return "", 0, nil
}
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc)
return f, ln, fn
}
type ErrCouldNotFindLine struct {
fileFound bool
filename string
lineno int
}
func (err *ErrCouldNotFindLine) Error() string {
if err.fileFound {
return fmt.Sprintf("could not find statement at %s:%d, please use a line with a statement", err.filename, err.lineno)
}
return fmt.Sprintf("could not find file %s", err.filename)
}
// LineToPC converts a file:line into a list of matching memory addresses,
// corresponding to the first instruction matching the specified file:line
// in the containing function and all its inlined calls.
func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pcs []uint64, err error) {
fileFound := false
var pc uint64
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] == nil {
continue
}
fileFound = true
pc = cu.lineInfo.LineToPC(filename, lineno)
if pc != 0 {
break
}
}
if pc == 0 {
// Check if the line contained a call to a function that was inlined, in
// that case it's possible for the line itself to not appear in debug_line
// at all, but it will still be in debug_info as the call site for an
// inlined subroutine entry.
if pcs := bi.inlinedCallLines[fileLine{filename, lineno}]; len(pcs) != 0 {
return pcs, nil
}
return nil, &ErrCouldNotFindLine{fileFound, filename, lineno}
}
// The code above will find the first occurence of an instruction
// corresponding to filename:line. If the function corresponding to that
// instruction has been inlined we don't just want to return the first
// occurence (which could be either the concrete version of the function or
// one of the inlinings) but instead:
// - the first instruction corresponding to filename:line in the concrete
// version of the function
// - the first instruction corresponding to filename:line in each inlined
// instance of the function.
fn := bi.PCToInlineFunc(pc)
if fn == nil {
return []uint64{pc}, nil
}
pcs = make([]uint64, 0, len(fn.InlinedCalls)+1)
pcs = appendLineToPCIn(pcs, filename, lineno, fn.cu, fn, fn.Entry, fn.End)
for _, call := range fn.InlinedCalls {
pcs = appendLineToPCIn(pcs, filename, lineno, call.cu, bi.PCToFunc(call.LowPC), call.LowPC, call.HighPC)
}
return pcs, nil
}
func appendLineToPCIn(pcs []uint64, filename string, lineno int, cu *compileUnit, containingFn *Function, lowPC, highPC uint64) []uint64 {
var entry uint64
if containingFn != nil {
entry = containingFn.Entry
}
pc := cu.lineInfo.LineToPCIn(filename, lineno, entry, lowPC, highPC)
if pc != 0 {
return append(pcs, pc)
}
return pcs
}
// AllPCsForFileLines returns a map providing all PC addresses for filename and each line in linenos
func (bi *BinaryInfo) AllPCsForFileLines(filename string, linenos []int) map[int][]uint64 {
r := make(map[int][]uint64)
for _, line := range linenos {
r[line] = make([]uint64, 0, 1)
}
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] != nil {
cu.lineInfo.AllPCsForFileLines(filename, r)
}
}
return r
}
// PCToFunc returns the concrete function containing the given PC address.
// If the PC address belongs to an inlined call it will return the containing function.
func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
i := sort.Search(len(bi.Functions), func(i int) bool {
fn := bi.Functions[i]
return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End)
})
if i != len(bi.Functions) {
fn := &bi.Functions[i]
if fn.Entry <= pc && pc < fn.End {
return fn
}
}
return nil
}
// PCToInlineFunc returns the function containing the given PC address.
// If the PC address belongs to an inlined call it will return the inlined function.
func (bi *BinaryInfo) PCToInlineFunc(pc uint64) *Function {
fn := bi.PCToFunc(pc)
irdr := reader.InlineStack(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(pc, fn.cu.image.StaticBase))
var inlineFnEntry *dwarf.Entry
for irdr.Next() {
inlineFnEntry = irdr.Entry()
}
if inlineFnEntry == nil {
return fn
}
e, _ := reader.LoadAbstractOrigin(inlineFnEntry, fn.cu.image.dwarfReader)
fnname, okname := e.Val(dwarf.AttrName).(string)
if !okname {
return fn
}
return bi.LookupFunc[fnname]
}
// PCToImage returns the image containing the given PC address.
func (bi *BinaryInfo) PCToImage(pc uint64) *Image {
fn := bi.PCToFunc(pc)
return bi.funcToImage(fn)
}
// Image represents a loaded library file (shared object on linux, DLL on windows).
type Image struct {
Path string
StaticBase uint64
addr uint64
index int // index of this object in BinaryInfo.SharedObjects
closer io.Closer
sepDebugCloser io.Closer
dwarf *dwarf.Data
dwarfReader *dwarf.Reader
loclist *loclist.Reader
typeCache map[dwarf.Offset]godwarf.Type
// runtimeTypeToDIE maps between the offset of a runtime._type in
// runtime.moduledata.types and the offset of the DIE in debug_info. This
// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
// which was added in go 1.11.
runtimeTypeToDIE map[uint64]runtimeTypeDIE
loadErrMu sync.Mutex
loadErr error
}
func (image *Image) registerRuntimeTypeToDIE(entry *dwarf.Entry, ardr *reader.Reader) {
if off, ok := entry.Val(godwarf.AttrGoRuntimeType).(uint64); ok {
if _, ok := image.runtimeTypeToDIE[off]; !ok {
image.runtimeTypeToDIE[off+image.StaticBase] = runtimeTypeDIE{entry.Offset, -1}
}
}
}
// AddImage adds the specified image to bi, loading data asynchronously.
// Addr is the relocated entry point for the executable and staticBase (i.e.
// the relocation offset) for all other images.
// The first image added must be the executable file.
func (bi *BinaryInfo) AddImage(path string, addr uint64) error {
// Check if the image is already present.
if len(bi.Images) > 0 && !strings.HasPrefix(path, "/") {
return nil
}
for _, image := range bi.Images {
if image.Path == path && image.addr == addr {
return nil
}
}
// Actually add the image.
image := &Image{Path: path, addr: addr, typeCache: make(map[dwarf.Offset]godwarf.Type)}
// add Image regardless of error so that we don't attempt to re-add it every time we stop
image.index = len(bi.Images)
bi.Images = append(bi.Images, image)
err := loadBinaryInfo(bi, image, path, addr)
if err != nil {
bi.Images[len(bi.Images)-1].loadErr = err
}
return err
}
// moduleDataToImage finds the image corresponding to the given module data object.
func (bi *BinaryInfo) moduleDataToImage(md *moduleData) *Image {
return bi.funcToImage(bi.PCToFunc(uint64(md.text)))
}
// imageToModuleData finds the module data in mds corresponding to the given image.
func (bi *BinaryInfo) imageToModuleData(image *Image, mds []moduleData) *moduleData {
for _, md := range mds {
im2 := bi.moduleDataToImage(&md)
if im2.index == image.index {
return &md
}
}
return nil
}
// typeToImage returns the image containing the give type.
func (bi *BinaryInfo) typeToImage(typ godwarf.Type) *Image {
return bi.Images[typ.Common().Index]
}
var errBinaryInfoClose = errors.New("multiple errors closing executable files")
// Close closes all internal readers.
func (bi *BinaryInfo) Close() error {
var errs []error
for _, image := range bi.Images {
if err := image.Close(); err != nil {
errs = append(errs, err)
}
}
switch len(errs) {
case 0:
return nil
case 1:
return errs[0]
default:
return errBinaryInfoClose
}
}
func (image *Image) Close() error {
var err1, err2 error
if image.sepDebugCloser != nil {
err := image.sepDebugCloser.Close()
if err != nil {
err1 = fmt.Errorf("closing shared object %q (split dwarf): %v", image.Path, err)
}
}
if image.closer != nil {
err := image.closer.Close()
if err != nil {
err2 = fmt.Errorf("closing shared object %q: %v", image.Path, err)
}
}
if err1 != nil && err2 != nil {
return errBinaryInfoClose
}
if err1 != nil {
return err1
}
return err2
}
func (image *Image) setLoadError(fmtstr string, args ...interface{}) {
image.loadErrMu.Lock()
image.loadErr = fmt.Errorf(fmtstr, args...)
image.loadErrMu.Unlock()
}
// LoadError returns any error incurred while loading this image.
func (image *Image) LoadError() error {
return image.loadErr
}
type nilCloser struct{}
func (c *nilCloser) Close() error { return nil }
// LoadImageFromData creates a new Image, using the specified data, and adds it to bi.
// This is used for debugging BinaryInfo, you should use LoadBinary instead.
func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) {
image := &Image{}
image.closer = (*nilCloser)(nil)
image.sepDebugCloser = (*nilCloser)(nil)
image.dwarf = dwdata
image.typeCache = make(map[dwarf.Offset]godwarf.Type)
if debugFrameBytes != nil {
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), 0)
}
image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
bi.loadDebugInfoMaps(image, debugLineBytes, nil, nil)
bi.Images = append(bi.Images, image)
}
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
a := entry.Val(attr)
if a == nil {
return nil, "", fmt.Errorf("no location attribute %s", attr)
}
if instr, ok := a.([]byte); ok {
var descr bytes.Buffer
fmt.Fprintf(&descr, "[block] ")
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
off, ok := a.(int64)
if !ok {
return nil, "", fmt.Errorf("could not interpret location attribute %s", attr)
}
instr := bi.loclistEntry(off, pc)
if instr == nil {
return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc)
}
var descr bytes.Buffer
fmt.Fprintf(&descr, "[%#x:%#x] ", off, pc)
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
// LocationCovers returns the list of PC addresses that is covered by the
// location attribute 'attr' of entry 'entry'.
func (bi *BinaryInfo) LocationCovers(entry *dwarf.Entry, attr dwarf.Attr) ([][2]uint64, error) {
a := entry.Val(attr)
if a == nil {
return nil, fmt.Errorf("attribute %s not found", attr)
}
if _, isblock := a.([]byte); isblock {
return [][2]uint64{[2]uint64{0, ^uint64(0)}}, nil
}
off, ok := a.(int64)
if !ok {
return nil, fmt.Errorf("attribute %s of unsupported type %T", attr, a)
}
cu := bi.findCompileUnitForOffset(entry.Offset)
if cu == nil {
return nil, errors.New("could not find compile unit")
}
image := cu.image
base := cu.lowPC
if image == nil || image.loclist.Empty() {
return nil, errors.New("malformed executable")
}
r := [][2]uint64{}
var e loclist.Entry
image.loclist.Seek(int(off))
for image.loclist.Next(&e) {
if e.BaseAddressSelection() {
base = e.HighPC
continue
}
r = append(r, [2]uint64{e.LowPC + base, e.HighPC + base})
}
return r, nil
}
// Location returns the location described by attribute attr of entry.
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
instr, descr, err := bi.locationExpr(entry, attr, pc)
if err != nil {
return 0, nil, "", err
}
addr, pieces, err := op.ExecuteStackProgram(regs, instr)
return addr, pieces, descr, err
}
// loclistEntry returns the loclist entry in the loclist starting at off,
// for address pc.
func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte {
var base uint64
image := bi.Images[0]
if cu := bi.findCompileUnit(pc); cu != nil {
base = cu.lowPC
image = cu.image
}
if image == nil || image.loclist.Empty() {
return nil
}
image.loclist.Seek(int(off))
var e loclist.Entry
for image.loclist.Next(&e) {
if e.BaseAddressSelection() {
base = e.HighPC
continue
}
if pc >= e.LowPC+base && pc < e.HighPC+base {
return e.Instr
}
}
return nil
}
// findCompileUnit returns the compile unit containing address pc.
func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit {
for _, cu := range bi.compileUnits {
for _, rng := range cu.ranges {
if pc >= rng[0] && pc < rng[1] {
return cu
}
}
}
return nil
}
func (bi *BinaryInfo) findCompileUnitForOffset(off dwarf.Offset) *compileUnit {
i := sort.Search(len(bi.compileUnits), func(i int) bool {
return bi.compileUnits[i].offset >= off
})
if i > 0 {
i--
}
return bi.compileUnits[i]
}
// Producer returns the value of DW_AT_producer.
func (bi *BinaryInfo) Producer() string {
for _, cu := range bi.compileUnits {
if cu.isgo && cu.producer != "" {
return cu.producer
}
}
return ""
}
// Type returns the Dwarf type entry at `offset`.
func (image *Image) Type(offset dwarf.Offset) (godwarf.Type, error) {
return godwarf.ReadType(image.dwarf, image.index, offset, image.typeCache)
}
// funcToImage returns the Image containing function fn, or the
// executable file as a fallback.
func (bi *BinaryInfo) funcToImage(fn *Function) *Image {
if fn == nil {
return bi.Images[0]
}
return fn.cu.image
}
// ELF ///////////////////////////////////////////////////////////////
// ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no
// build-id note on the binary, so LoadBinaryInfoElf will return
// the error message coming from elfFile.DWARF() instead.
type ErrNoBuildIDNote struct{}
func (e *ErrNoBuildIDNote) Error() string {
return "can't find build-id note on binary"
}
// openSeparateDebugInfo searches for a file containing the separate
// debug info for the binary using the "build ID" method as described
// in GDB's documentation [1], and if found returns two handles, one
// for the bare file, and another for its corresponding elf.File.
// [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
//
// Alternatively, if the debug file cannot be found be the build-id, Delve
// will look in directories specified by the debug-info-directories config value.
func (bi *BinaryInfo) openSeparateDebugInfo(image *Image, exe *elf.File, debugInfoDirectories []string) (*os.File, *elf.File, error) {
var debugFilePath string
for _, dir := range debugInfoDirectories {
var potentialDebugFilePath string
if strings.Contains(dir, "build-id") {
desc1, desc2, err := parseBuildID(exe)
if err != nil {
continue
}
potentialDebugFilePath = fmt.Sprintf("%s/%s/%s.debug", dir, desc1, desc2)
} else {
potentialDebugFilePath = fmt.Sprintf("%s/%s.debug", dir, filepath.Base(image.Path))
}
_, err := os.Stat(potentialDebugFilePath)
if err == nil {
debugFilePath = potentialDebugFilePath
break
}
}
if debugFilePath == "" {
return nil, nil, ErrNoDebugInfoFound
}
sepFile, err := os.OpenFile(debugFilePath, 0, os.ModePerm)
if err != nil {
return nil, nil, errors.New("can't open separate debug file: " + err.Error())
}
elfFile, err := elf.NewFile(sepFile)
if err != nil {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, err.Error())
}
if elfFile.Machine != elf.EM_X86_64 {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, ErrUnsupportedLinuxArch.Error())
}
return sepFile, elfFile, nil
}
func parseBuildID(exe *elf.File) (string, string, error) {
buildid := exe.Section(".note.gnu.build-id")
if buildid == nil {
return "", "", &ErrNoBuildIDNote{}
}
br := buildid.Open()
bh := new(buildIDHeader)
if err := binary.Read(br, binary.LittleEndian, bh); err != nil {
return "", "", errors.New("can't read build-id header: " + err.Error())
}
name := make([]byte, bh.Namesz)
if err := binary.Read(br, binary.LittleEndian, name); err != nil {
return "", "", errors.New("can't read build-id name: " + err.Error())
}
if strings.TrimSpace(string(name)) != "GNU\x00" {
return "", "", errors.New("invalid build-id signature")
}
descBinary := make([]byte, bh.Descsz)
if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil {
return "", "", errors.New("can't read build-id desc: " + err.Error())
}
desc := hex.EncodeToString(descBinary)
return desc[:2], desc[2:], nil
}
// loadBinaryInfoElf specifically loads information from an ELF binary.
func loadBinaryInfoElf(bi *BinaryInfo, image *Image, path string, addr uint64, wg *sync.WaitGroup) error {
exe, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return err
}
image.closer = exe
elfFile, err := elf.NewFile(exe)
if err != nil {
return err
}
if elfFile.Machine != elf.EM_X86_64 {
return ErrUnsupportedLinuxArch
}
if image.index == 0 {
// adding executable file:
// - addr is entryPoint therefore staticBase needs to be calculated by
// subtracting the entry point specified in the executable file from addr.
// - memory address of the .dynamic section needs to be recorded in
// BinaryInfo so that we can find loaded libraries.
if addr != 0 {
image.StaticBase = addr - elfFile.Entry
} else if elfFile.Type == elf.ET_DYN {
return ErrCouldNotDetermineRelocation
}
if dynsec := elfFile.Section(".dynamic"); dynsec != nil {
bi.ElfDynamicSection.Addr = dynsec.Addr + image.StaticBase
bi.ElfDynamicSection.Size = dynsec.Size
}
} else {
image.StaticBase = addr
}
dwarfFile := elfFile
image.dwarf, err = elfFile.DWARF()
if err != nil {
var sepFile *os.File
var serr error
sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(image, elfFile, bi.debugInfoDirectories)
if serr != nil {
return serr
}
image.sepDebugCloser = sepFile
image.dwarf, err = dwarfFile.DWARF()
if err != nil {
return err
}
}
image.dwarfReader = image.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc")
image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
wg.Add(2)
go bi.parseDebugFrameElf(image, dwarfFile, wg)
go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
if image.index == 0 {
// determine g struct offset only when loading the executable file
wg.Add(1)
go bi.setGStructOffsetElf(image, dwarfFile, wg)
}
return nil
}
func (bi *BinaryInfo) parseDebugFrameElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameData, err := godwarf.GetDebugSectionElf(exe, "frame")
if err != nil {
image.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoData, err := godwarf.GetDebugSectionElf(exe, "info")
if err != nil {
image.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameData, frame.DwarfEndian(debugInfoData), image.StaticBase))
}
func (bi *BinaryInfo) setGStructOffsetElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
// This is a bit arcane. Essentially:
// - If the program is pure Go, it can do whatever it wants, and puts the G
// pointer at %fs-8.
// - Otherwise, Go asks the external linker to place the G pointer by
// emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen
// offset in libc's TLS block.
symbols, err := exe.Symbols()
if err != nil {
image.setLoadError("could not parse ELF symbols: %v", err)
return
}
var tlsg *elf.Symbol
for _, symbol := range symbols {
if symbol.Name == "runtime.tlsg" {
s := symbol
tlsg = &s
break
}
}
if tlsg == nil {
bi.gStructOffset = ^uint64(8) + 1 // -8
return
}
var tls *elf.Prog
for _, prog := range exe.Progs {
if prog.Type == elf.PT_TLS {
tls = prog
break
}
}
if tls == nil {
bi.gStructOffset = ^uint64(8) + 1 // -8
return
}
// According to https://reviews.llvm.org/D61824, linkers must pad the actual
// size of the TLS segment to ensure that (tlsoffset%align) == (vaddr%align).
// This formula, copied from the lld code, matches that.
// https://github.com/llvm-mirror/lld/blob/9aef969544981d76bea8e4d1961d3a6980980ef9/ELF/InputSection.cpp#L643
memsz := tls.Memsz + (-tls.Vaddr-tls.Memsz)&(tls.Align-1)
// The TLS register points to the end of the TLS block, which is
// tls.Memsz long. runtime.tlsg is an offset from the beginning of that block.
bi.gStructOffset = ^(memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value
}
// PE ////////////////////////////////////////////////////////////////
const _IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE = 0x0040
// loadBinaryInfoPE specifically loads information from a PE binary.
func loadBinaryInfoPE(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
peFile, closer, err := openExecutablePathPE(path)
if err != nil {
return err
}
image.closer = closer
if peFile.Machine != pe.IMAGE_FILE_MACHINE_AMD64 {
return ErrUnsupportedWindowsArch
}
image.dwarf, err = peFile.DWARF()
if err != nil {
return err
}
//TODO(aarzilli): actually test this when Go supports PIE buildmode on Windows.
opth := peFile.OptionalHeader.(*pe.OptionalHeader64)
if entryPoint != 0 {
image.StaticBase = entryPoint - opth.ImageBase
} else {
if opth.DllCharacteristics&_IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE != 0 {
return ErrCouldNotDetermineRelocation
}
}
image.dwarfReader = image.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc")
image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
wg.Add(2)
go bi.parseDebugFramePE(image, peFile, wg)
go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
// Use ArbitraryUserPointer (0x28) as pointer to pointer
// to G struct per:
// https://golang.org/src/runtime/cgo/gcc_windows_amd64.c
bi.gStructOffset = 0x28
return nil
}
func openExecutablePathPE(path string) (*pe.File, io.Closer, error) {
f, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return nil, nil, err
}
peFile, err := pe.NewFile(f)
if err != nil {
f.Close()
return nil, nil, err
}
return peFile, f, nil
}
func (bi *BinaryInfo) parseDebugFramePE(image *Image, exe *pe.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame")
if err != nil {
image.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionPE(exe, "info")
if err != nil {
image.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
}
// Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go
func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) {
for _, s := range f.Symbols {
if s.Name != name {
continue
}
if s.SectionNumber <= 0 {
return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber)
}
if len(f.Sections) < int(s.SectionNumber) {
return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections))
}
return s, nil
}
return nil, fmt.Errorf("no %s symbol found", name)
}
// MACH-O ////////////////////////////////////////////////////////////
// loadBinaryInfoMacho specifically loads information from a Mach-O binary.
func loadBinaryInfoMacho(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
exe, err := macho.Open(path)
if err != nil {
return err
}
image.closer = exe
if exe.Cpu != macho.CpuAmd64 {
return ErrUnsupportedDarwinArch
}
image.dwarf, err = exe.DWARF()
if err != nil {
return err
}
image.dwarfReader = image.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc")
image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
wg.Add(2)
go bi.parseDebugFrameMacho(image, exe, wg)
go bi.loadDebugInfoMaps(image, debugLineBytes, wg, bi.setGStructOffsetMacho)
return nil
}
func (bi *BinaryInfo) setGStructOffsetMacho() {
// In go1.11 it's 0x30, before 0x8a0, see:
// https://github.com/golang/go/issues/23617
// and go commit b3a854c733257c5249c3435ffcee194f8439676a
producer := bi.Producer()
if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
bi.gStructOffset = 0x30
return
}
bi.gStructOffset = 0x8a0
}
func (bi *BinaryInfo) parseDebugFrameMacho(image *Image, exe *macho.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionMacho(exe, "frame")
if err != nil {
image.setLoadError("could not get __debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info")
if err != nil {
image.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
}
// Do not call this function directly it isn't able to deal correctly with package paths
func (bi *BinaryInfo) findType(name string) (godwarf.Type, error) {
ref, found := bi.types[name]
if !found {
return nil, reader.TypeNotFoundErr
}
image := bi.Images[ref.imageIndex]
return godwarf.ReadType(image.dwarf, ref.imageIndex, ref.offset, image.typeCache)
}
func (bi *BinaryInfo) findTypeExpr(expr ast.Expr) (godwarf.Type, error) {
if lit, islit := expr.(*ast.BasicLit); islit && lit.Kind == token.STRING {
// Allow users to specify type names verbatim as quoted
// string. Useful as a catch-all workaround for cases where we don't
// parse/serialize types correctly or can not resolve package paths.
typn, _ := strconv.Unquote(lit.Value)
// Check if the type in question is an array type, in which case we try to
// fake it.
if len(typn) > 0 && typn[0] == '[' {
closedBrace := strings.Index(typn, "]")
if closedBrace > 1 {
n, err := strconv.Atoi(typn[1:closedBrace])
if err == nil {
return bi.findArrayType(n, typn[closedBrace+1:])
}
}
}
return bi.findType(typn)
}
bi.expandPackagesInType(expr)
if snode, ok := expr.(*ast.StarExpr); ok {
// Pointer types only appear in the dwarf informations when
// a pointer to the type is used in the target program, here
// we create a pointer type on the fly so that the user can
// specify a pointer to any variable used in the target program
ptyp, err := bi.findTypeExpr(snode.X)
if err != nil {
return nil, err
}
return pointerTo(ptyp, bi.Arch), nil
}
if anode, ok := expr.(*ast.ArrayType); ok {
// Array types (for example [N]byte) are only present in DWARF if they are
// used by the program, but it's convenient to make all of them available
// to the user for two reasons:
// 1. to allow reading arbitrary memory byte-by-byte (by casting an
// address to an array of bytes).
// 2. to read the contents of a channel's buffer (we create fake array
// types for them)
alen, litlen := anode.Len.(*ast.BasicLit)
if litlen && alen.Kind == token.INT {
n, _ := strconv.Atoi(alen.Value)
return bi.findArrayType(n, exprToString(anode.Elt))
}
}
return bi.findType(exprToString(expr))
}
func (bi *BinaryInfo) findArrayType(n int, etyp string) (godwarf.Type, error) {
switch etyp {
case "byte", "uint8":
etyp = "uint8"
fallthrough
default:
btyp, err := bi.findType(etyp)
if err != nil {
return nil, err
}
return fakeArrayType(uint64(n), btyp), nil
}
}
func complexType(typename string) bool {
for _, ch := range typename {
switch ch {
case '*', '[', '<', '{', '(', ' ':
return true
}
}
return false
}
func (bi *BinaryInfo) registerTypeToPackageMap(entry *dwarf.Entry) {
if entry.Tag != dwarf.TagTypedef && entry.Tag != dwarf.TagBaseType && entry.Tag != dwarf.TagClassType && entry.Tag != dwarf.TagStructType {
return
}
typename, ok := entry.Val(dwarf.AttrName).(string)
if !ok || complexType(typename) {
return
}
dot := strings.LastIndex(typename, ".")
if dot < 0 {
return
}
path := typename[:dot]
slash := strings.LastIndex(path, "/")
if slash < 0 || slash+1 >= len(path) {
return
}
name := path[slash+1:]
bi.PackageMap[name] = []string{path}
}
func (bi *BinaryInfo) loadDebugInfoMaps(image *Image, debugLineBytes []byte, wg *sync.WaitGroup, cont func()) {
if wg != nil {
defer wg.Done()
}
if bi.types == nil {
bi.types = make(map[string]dwarfRef)
}
if bi.consts == nil {
bi.consts = make(map[dwarfRef]*constantType)
}
if bi.PackageMap == nil {
bi.PackageMap = make(map[string][]string)
}
if bi.inlinedCallLines == nil {
bi.inlinedCallLines = make(map[fileLine][]uint64)
}
image.runtimeTypeToDIE = make(map[uint64]runtimeTypeDIE)
ctxt := newLoadDebugInfoMapsContext(bi, image)
reader := image.DwarfReader()
for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
if err != nil {
image.setLoadError("error reading debug_info: %v", err)
break
}
switch entry.Tag {
case dwarf.TagCompileUnit:
cu := &compileUnit{}
cu.image = image
cu.entry = entry
cu.offset = entry.Offset
if lang, _ := entry.Val(dwarf.AttrLanguage).(int64); lang == dwarfGoLanguage {
cu.isgo = true
}
cu.name, _ = entry.Val(dwarf.AttrName).(string)
compdir, _ := entry.Val(dwarf.AttrCompDir).(string)
if compdir != "" {
cu.name = filepath.Join(compdir, cu.name)
}
cu.ranges, _ = image.dwarf.Ranges(entry)
for i := range cu.ranges {
cu.ranges[i][0] += image.StaticBase
cu.ranges[i][1] += image.StaticBase
}
if len(cu.ranges) >= 1 {
cu.lowPC = cu.ranges[0][0]
}
lineInfoOffset, _ := entry.Val(dwarf.AttrStmtList).(int64)
if lineInfoOffset >= 0 && lineInfoOffset < int64(len(debugLineBytes)) {
var logfn func(string, ...interface{})
if logflags.DebugLineErrors() {
logger := logrus.New().WithFields(logrus.Fields{"layer": "dwarf-line"})
logger.Logger.Level = logrus.DebugLevel
logfn = func(fmt string, args ...interface{}) {
logger.Printf(fmt, args)
}
}
cu.lineInfo = line.Parse(compdir, bytes.NewBuffer(debugLineBytes[lineInfoOffset:]), logfn, image.StaticBase)
}
cu.producer, _ = entry.Val(dwarf.AttrProducer).(string)
if cu.isgo && cu.producer != "" {
semicolon := strings.Index(cu.producer, ";")
if semicolon < 0 {
cu.optimized = goversion.ProducerAfterOrEqual(cu.producer, 1, 10)
} else {
cu.optimized = !strings.Contains(cu.producer[semicolon:], "-N") || !strings.Contains(cu.producer[semicolon:], "-l")
cu.producer = cu.producer[:semicolon]
}
}
gopkg, _ := entry.Val(godwarf.AttrGoPackageName).(string)
if cu.isgo && gopkg != "" {
bi.PackageMap[gopkg] = append(bi.PackageMap[gopkg], escapePackagePath(strings.Replace(cu.name, "\\", "/", -1)))
}
bi.compileUnits = append(bi.compileUnits, cu)
if entry.Children {
bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
}
case dwarf.TagPartialUnit:
reader.SkipChildren()
default:
// ignore unknown tags
reader.SkipChildren()
}
}
sort.Sort(compileUnitsByOffset(bi.compileUnits))
sort.Sort(functionsDebugInfoByEntry(bi.Functions))
sort.Sort(packageVarsByAddr(bi.packageVars))
bi.LookupFunc = make(map[string]*Function)
for i := range bi.Functions {
bi.LookupFunc[bi.Functions[i].Name] = &bi.Functions[i]
}
bi.Sources = []string{}
for _, cu := range bi.compileUnits {
if cu.lineInfo != nil {
for _, fileEntry := range cu.lineInfo.FileNames {
bi.Sources = append(bi.Sources, fileEntry.Path)
}
}
}
sort.Strings(bi.Sources)
bi.Sources = uniq(bi.Sources)
if cont != nil {
cont()
}
}
// loadDebugInfoMapsCompileUnit loads entry from a single compile unit.
func (bi *BinaryInfo) loadDebugInfoMapsCompileUnit(ctxt *loadDebugInfoMapsContext, image *Image, reader *reader.Reader, cu *compileUnit) {
hasAttrGoPkgName := goversion.ProducerAfterOrEqual(cu.producer, 1, 13)
for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
if err != nil {
image.setLoadError("error reading debug_info: %v", err)
return
}
switch entry.Tag {
case 0:
return
case dwarf.TagImportedUnit:
bi.loadDebugInfoMapsImportedUnit(entry, ctxt, image, cu)
reader.SkipChildren()
case dwarf.TagArrayType, dwarf.TagBaseType, dwarf.TagClassType, dwarf.TagStructType, dwarf.TagUnionType, dwarf.TagConstType, dwarf.TagVolatileType, dwarf.TagRestrictType, dwarf.TagEnumerationType, dwarf.TagPointerType, dwarf.TagSubroutineType, dwarf.TagTypedef, dwarf.TagUnspecifiedType:
if name, ok := entry.Val(dwarf.AttrName).(string); ok {
if !cu.isgo {
name = "C." + name
}
if _, exists := bi.types[name]; !exists {
bi.types[name] = dwarfRef{image.index, entry.Offset}
}
}
if cu != nil && cu.isgo && !hasAttrGoPkgName {
bi.registerTypeToPackageMap(entry)
}
image.registerRuntimeTypeToDIE(entry, ctxt.ardr)
reader.SkipChildren()
case dwarf.TagVariable:
if n, ok := entry.Val(dwarf.AttrName).(string); ok {
var addr uint64
if loc, ok := entry.Val(dwarf.AttrLocation).([]byte); ok {
if len(loc) == bi.Arch.PtrSize()+1 && op.Opcode(loc[0]) == op.DW_OP_addr {
addr = binary.LittleEndian.Uint64(loc[1:])
}
}
if !cu.isgo {
n = "C." + n
}
if _, known := ctxt.knownPackageVars[n]; !known {
bi.packageVars = append(bi.packageVars, packageVar{n, cu, entry.Offset, addr + image.StaticBase})
}
}
reader.SkipChildren()
case dwarf.TagConstant:
name, okName := entry.Val(dwarf.AttrName).(string)
typ, okType := entry.Val(dwarf.AttrType).(dwarf.Offset)
val, okVal := entry.Val(dwarf.AttrConstValue).(int64)
if okName && okType && okVal {
if !cu.isgo {
name = "C." + name
}
ct := bi.consts[dwarfRef{image.index, typ}]
if ct == nil {
ct = &constantType{}
bi.consts[dwarfRef{image.index, typ}] = ct
}
ct.values = append(ct.values, constantValue{name: name, fullName: name, value: val})
}
reader.SkipChildren()
case dwarf.TagSubprogram:
inlined := false
if inval, ok := entry.Val(dwarf.AttrInline).(int64); ok {
inlined = inval == 1
}
if inlined {
bi.addAbstractSubprogram(entry, ctxt, reader, image, cu)
} else {
originOffset, hasAbstractOrigin := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if hasAbstractOrigin {
bi.addConcreteInlinedSubprogram(entry, originOffset, ctxt, reader, cu)
} else {
bi.addConcreteSubprogram(entry, ctxt, reader, cu)
}
}
}
}
}
// loadDebugInfoMapsImportedUnit loads entries into cu from the partial unit
// referenced in a DW_TAG_imported_unit entry.
func (bi *BinaryInfo) loadDebugInfoMapsImportedUnit(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, image *Image, cu *compileUnit) {
off, ok := entry.Val(dwarf.AttrImport).(dwarf.Offset)
if !ok {
return
}
reader := image.DwarfReader()
reader.Seek(off)
imentry, err := reader.Next()
if err != nil {
return
}
if imentry.Tag != dwarf.TagPartialUnit {
return
}
bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
}
// addAbstractSubprogram adds the abstract entry for an inlined function.
func (bi *BinaryInfo) addAbstractSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, image *Image, cu *compileUnit) {
name, ok := subprogramEntryName(entry, cu)
if !ok {
bi.logger.Warnf("reading debug_info: abstract subprogram without name at %#x", entry.Offset)
if entry.Children {
reader.SkipChildren()
}
return
}
fn := Function{
Name: name,
offset: entry.Offset,
cu: cu,
}
if entry.Children {
bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
}
bi.Functions = append(bi.Functions, fn)
ctxt.abstractOriginTable[entry.Offset] = len(bi.Functions) - 1
}
// addConcreteInlinedSubprogram adds the concrete entry of a subprogram that was also inlined.
func (bi *BinaryInfo) addConcreteInlinedSubprogram(entry *dwarf.Entry, originOffset dwarf.Offset, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
if !ok {
bi.logger.Warnf("reading debug_info: concrete inlined subprogram without address range at %#x", entry.Offset)
if entry.Children {
reader.SkipChildren()
}
return
}
originIdx, ok := ctxt.abstractOriginTable[originOffset]
if !ok {
bi.logger.Warnf("reading debug_info: could not find abstract origin of concrete inlined subprogram at %#x (origin offset %#x)", entry.Offset, originOffset)
if entry.Children {
reader.SkipChildren()
}
return
}
fn := &bi.Functions[originIdx]
fn.offset = entry.Offset
fn.Entry = lowpc
fn.End = highpc
if entry.Children {
bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
}
}
// addConcreteSubprogram adds a concrete subprogram (a normal subprogram
// that doesn't have abstract or inlined entries)
func (bi *BinaryInfo) addConcreteSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
if !ok {
bi.logger.Warnf("reading debug_info: concrete subprogram without address range at %#x", entry.Offset)
if entry.Children {
reader.SkipChildren()
}
return
}
name, ok := subprogramEntryName(entry, cu)
if !ok {
bi.logger.Warnf("reading debug_info: concrete subprogram without name at %#x", entry.Offset)
if entry.Children {
reader.SkipChildren()
}
return
}
fn := Function{
Name: name,
Entry: lowpc,
End: highpc,
offset: entry.Offset,
cu: cu,
}
bi.Functions = append(bi.Functions, fn)
if entry.Children {
bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
}
}
func subprogramEntryName(entry *dwarf.Entry, cu *compileUnit) (string, bool) {
name, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
return "", false
}
if !cu.isgo {
name = "C." + name
}
return name, true
}
func subprogramEntryRange(entry *dwarf.Entry, image *Image) (lowpc, highpc uint64, ok bool) {
ok = false
if ranges, _ := image.dwarf.Ranges(entry); len(ranges) >= 1 {
ok = true
lowpc = ranges[0][0] + image.StaticBase
highpc = ranges[0][1] + image.StaticBase
}
return lowpc, highpc, ok
}
func (bi *BinaryInfo) loadDebugInfoMapsInlinedCalls(ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
for {
entry, err := reader.Next()
if err != nil {
cu.image.setLoadError("error reading debug_info: %v", err)
return
}
switch entry.Tag {
case 0:
return
case dwarf.TagInlinedSubroutine:
originOffset, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if !ok {
bi.logger.Warnf("reading debug_info: inlined call without origin offset at %#x", entry.Offset)
reader.SkipChildren()
continue
}
originIdx, ok := ctxt.abstractOriginTable[originOffset]
if !ok {
bi.logger.Warnf("reading debug_info: could not find abstract origin (%#x) of inlined call at %#x", originOffset, entry.Offset)
reader.SkipChildren()
continue
}
fn := &bi.Functions[originIdx]
lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
if !ok {
bi.logger.Warnf("reading debug_info: inlined call without address range at %#x", entry.Offset)
reader.SkipChildren()
continue
}
callfileidx, ok1 := entry.Val(dwarf.AttrCallFile).(int64)
callline, ok2 := entry.Val(dwarf.AttrCallLine).(int64)
if !ok1 || !ok2 {
bi.logger.Warnf("reading debug_info: inlined call without CallFile/CallLine at %#x", entry.Offset)
reader.SkipChildren()
continue
}
if cu.lineInfo == nil {
bi.logger.Warnf("reading debug_info: inlined call on a compilation unit without debug_line section at %#x", entry.Offset)
reader.SkipChildren()
continue
}
if int(callfileidx-1) >= len(cu.lineInfo.FileNames) {
bi.logger.Warnf("reading debug_info: CallFile (%d) of inlined call does not exist in compile unit file table at %#x", callfileidx, entry.Offset)
reader.SkipChildren()
continue
}
callfile := cu.lineInfo.FileNames[callfileidx-1].Path
fn.InlinedCalls = append(fn.InlinedCalls, InlinedCall{
cu: cu,
LowPC: lowpc,
HighPC: highpc,
})
fl := fileLine{callfile, int(callline)}
bi.inlinedCallLines[fl] = append(bi.inlinedCallLines[fl], lowpc)
}
reader.SkipChildren()
}
}
func uniq(s []string) []string {
if len(s) <= 0 {
return s
}
src, dst := 1, 1
for src < len(s) {
if s[src] != s[dst-1] {
s[dst] = s[src]
dst++
}
src++
}
return s[:dst]
}
func (bi *BinaryInfo) expandPackagesInType(expr ast.Expr) {
switch e := expr.(type) {
case *ast.ArrayType:
bi.expandPackagesInType(e.Elt)
case *ast.ChanType:
bi.expandPackagesInType(e.Value)
case *ast.FuncType:
for i := range e.Params.List {
bi.expandPackagesInType(e.Params.List[i].Type)
}
if e.Results != nil {
for i := range e.Results.List {
bi.expandPackagesInType(e.Results.List[i].Type)
}
}
case *ast.MapType:
bi.expandPackagesInType(e.Key)
bi.expandPackagesInType(e.Value)
case *ast.ParenExpr:
bi.expandPackagesInType(e.X)
case *ast.SelectorExpr:
switch x := e.X.(type) {
case *ast.Ident:
if len(bi.PackageMap[x.Name]) > 0 {
// There's no particular reason to expect the first entry to be the
// correct one if the package name is ambiguous, but trying all possible
// expansions of all types mentioned in the expression is complicated
// and, besides type assertions, users can always specify the type they
// want exactly, using a string.
x.Name = bi.PackageMap[x.Name][0]
}
default:
bi.expandPackagesInType(e.X)
}
case *ast.StarExpr:
bi.expandPackagesInType(e.X)
default:
// nothing to do
}
}
// escapePackagePath returns pkg with '.' replaced with '%2e' (in all
// elements of the path except the first one) like Go does in variable and
// type names.
func escapePackagePath(pkg string) string {
slash := strings.Index(pkg, "/")
if slash < 0 {
slash = 0
}
return pkg[:slash] + strings.Replace(pkg[slash:], ".", "%2e", -1)
}
// Looks up symbol (either functions or global variables) at address addr.
// Used by disassembly formatter.
func (bi *BinaryInfo) symLookup(addr uint64) (string, uint64) {
fn := bi.PCToFunc(addr)
if fn != nil {
if fn.Entry == addr {
// only report the function name if it's the exact address because it's
// easier to read the absolute address than function_name+offset.
return fn.Name, fn.Entry
}
return "", 0
}
i := sort.Search(len(bi.packageVars), func(i int) bool {
return bi.packageVars[i].addr >= addr
})
if i >= len(bi.packageVars) {
return "", 0
}
if bi.packageVars[i].addr > addr {
// report previous variable + offset if i-th variable starts after addr
i--
}
if i >= 0 && bi.packageVars[i].addr != 0 {
return bi.packageVars[i].name, bi.packageVars[i].addr
}
return "", 0
}