
Delve represents registerized variables (fully or partially) using compositeMemory, implementing proc.(*compositeMemory).WriteMemory is necessary to make SetVariable and function calls work when Go will switch to using the register calling convention in 1.17. This commit also makes some refactoring by moving the code that converts between register numbers and register names out of pkg/proc into a different package.
183 lines
4.9 KiB
Go
183 lines
4.9 KiB
Go
package native
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/go-delve/delve/pkg/proc"
|
|
)
|
|
|
|
// Thread represents a single thread in the traced process
|
|
// ID represents the thread id or port, Process holds a reference to the
|
|
// Process struct that contains info on the process as
|
|
// a whole, and Status represents the last result of a `wait` call
|
|
// on this thread.
|
|
type nativeThread struct {
|
|
ID int // Thread ID or mach port
|
|
Status *waitStatus // Status returned from last wait call
|
|
CurrentBreakpoint proc.BreakpointState // Breakpoint thread is currently stopped at
|
|
|
|
dbp *nativeProcess
|
|
singleStepping bool
|
|
os *osSpecificDetails
|
|
common proc.CommonThread
|
|
}
|
|
|
|
// Continue the execution of this thread.
|
|
//
|
|
// If we are currently at a breakpoint, we'll clear it
|
|
// first and then resume execution. Thread will continue until
|
|
// it hits a breakpoint or is signaled.
|
|
func (t *nativeThread) Continue() error {
|
|
pc, err := t.PC()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// Check whether we are stopped at a breakpoint, and
|
|
// if so, single step over it before continuing.
|
|
if _, ok := t.dbp.FindBreakpoint(pc, false); ok {
|
|
if err := t.StepInstruction(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return t.resume()
|
|
}
|
|
|
|
// StepInstruction steps a single instruction.
|
|
//
|
|
// Executes exactly one instruction and then returns.
|
|
// If the thread is at a breakpoint, we first clear it,
|
|
// execute the instruction, and then replace the breakpoint.
|
|
// Otherwise we simply execute the next instruction.
|
|
func (t *nativeThread) StepInstruction() (err error) {
|
|
t.singleStepping = true
|
|
defer func() {
|
|
t.singleStepping = false
|
|
}()
|
|
pc, err := t.PC()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
bp, ok := t.dbp.FindBreakpoint(pc, false)
|
|
if ok {
|
|
// Clear the breakpoint so that we can continue execution.
|
|
err = t.ClearBreakpoint(bp)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Restore breakpoint now that we have passed it.
|
|
defer func() {
|
|
err = t.dbp.writeSoftwareBreakpoint(t, bp.Addr)
|
|
}()
|
|
}
|
|
|
|
err = t.singleStep()
|
|
if err != nil {
|
|
if _, exited := err.(proc.ErrProcessExited); exited {
|
|
return err
|
|
}
|
|
return fmt.Errorf("step failed: %s", err.Error())
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Location returns the threads location, including the file:line
|
|
// of the corresponding source code, the function we're in
|
|
// and the current instruction address.
|
|
func (t *nativeThread) Location() (*proc.Location, error) {
|
|
pc, err := t.PC()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
f, l, fn := t.dbp.bi.PCToLine(pc)
|
|
return &proc.Location{PC: pc, File: f, Line: l, Fn: fn}, nil
|
|
}
|
|
|
|
// BinInfo returns information on the binary.
|
|
func (t *nativeThread) BinInfo() *proc.BinaryInfo {
|
|
return t.dbp.bi
|
|
}
|
|
|
|
// Common returns information common across Process
|
|
// implementations.
|
|
func (t *nativeThread) Common() *proc.CommonThread {
|
|
return &t.common
|
|
}
|
|
|
|
// SetCurrentBreakpoint sets the current breakpoint that this
|
|
// thread is stopped at as CurrentBreakpoint on the thread struct.
|
|
func (t *nativeThread) SetCurrentBreakpoint(adjustPC bool) error {
|
|
t.CurrentBreakpoint.Clear()
|
|
pc, err := t.PC()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If the breakpoint instruction does not change the value
|
|
// of PC after being executed we should look for breakpoints
|
|
// with bp.Addr == PC and there is no need to call SetPC
|
|
// after finding one.
|
|
adjustPC = adjustPC && t.BinInfo().Arch.BreakInstrMovesPC()
|
|
|
|
if bp, ok := t.dbp.FindBreakpoint(pc, adjustPC); ok {
|
|
if adjustPC {
|
|
if err = t.setPC(bp.Addr); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
t.CurrentBreakpoint = bp.CheckCondition(t)
|
|
if t.CurrentBreakpoint.Breakpoint != nil && t.CurrentBreakpoint.Active {
|
|
if g, err := proc.GetG(t); err == nil {
|
|
t.CurrentBreakpoint.HitCount[g.ID]++
|
|
}
|
|
t.CurrentBreakpoint.TotalHitCount++
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Breakpoint returns the current breakpoint that is active
|
|
// on this thread.
|
|
func (t *nativeThread) Breakpoint() *proc.BreakpointState {
|
|
return &t.CurrentBreakpoint
|
|
}
|
|
|
|
// ThreadID returns the ID of this thread.
|
|
func (t *nativeThread) ThreadID() int {
|
|
return t.ID
|
|
}
|
|
|
|
// ClearBreakpoint clears the specified breakpoint.
|
|
func (t *nativeThread) ClearBreakpoint(bp *proc.Breakpoint) error {
|
|
if _, err := t.WriteMemory(bp.Addr, bp.OriginalData); err != nil {
|
|
return fmt.Errorf("could not clear breakpoint %s", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Registers obtains register values from the debugged process.
|
|
func (t *nativeThread) Registers() (proc.Registers, error) {
|
|
return registers(t)
|
|
}
|
|
|
|
// RestoreRegisters will set the value of the CPU registers to those
|
|
// passed in via 'savedRegs'.
|
|
func (t *nativeThread) RestoreRegisters(savedRegs proc.Registers) error {
|
|
return t.restoreRegisters(savedRegs)
|
|
}
|
|
|
|
// PC returns the current program counter value for this thread.
|
|
func (t *nativeThread) PC() (uint64, error) {
|
|
regs, err := t.Registers()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
return regs.PC(), nil
|
|
}
|
|
|
|
// ProcessMemory returns this thread's process memory.
|
|
func (t *nativeThread) ProcessMemory() proc.MemoryReadWriter {
|
|
return t.dbp.Memory()
|
|
}
|