
We told clients that further loading of variables can be done by specifying a type cast using the address of a variable that we returned. This does not work for registerized variables (or, in general, variables that have a complex location expression) because we don't give them unique addresses and we throw away the compositeMemory object we made to read them. This commit changes proc so that: 1. variables with location expression divided in pieces do get a unique memory address 2. the compositeMemory object is saved somewhere 3. when an integer is cast back into a pointer type we look through our saved compositeMemory objects to see if there is one that covers the specified address and use it. The unique memory addresses we generate have the MSB set to 1, as specified by the Intel 86x64 manual addresses in this form are reserved for kernel memory (which we can not read anyway) so we are guaranteed to never generate a fake memory address that overlaps a real memory address of the application. The unfortunate side effect of this is that it will break clients that do not deserialize the address to a 64bit integer. This practice is contrary to how we defined our types and contrary to the specification of the JSON format, as of json.org, however it is also fairly common, due to javascript itself having only 53bit integers. We could come up with a new mechanism but then even more old clients would have to be changed.
1019 lines
32 KiB
Go
1019 lines
32 KiB
Go
package proc
|
|
|
|
import (
|
|
"debug/dwarf"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/constant"
|
|
"go/token"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/go-delve/delve/pkg/dwarf/godwarf"
|
|
"github.com/go-delve/delve/pkg/dwarf/op"
|
|
"github.com/go-delve/delve/pkg/dwarf/reader"
|
|
"github.com/go-delve/delve/pkg/dwarf/regnum"
|
|
"github.com/go-delve/delve/pkg/goversion"
|
|
"github.com/go-delve/delve/pkg/logflags"
|
|
)
|
|
|
|
// This file implements the function call injection introduced in go1.11.
|
|
//
|
|
// The protocol is described in $GOROOT/src/runtime/asm_amd64.s in the
|
|
// comments for function runtime·debugCallV1.
|
|
//
|
|
// The main entry point is EvalExpressionWithCalls which will start a goroutine to
|
|
// evaluate the provided expression.
|
|
// This goroutine can either return immediately, if no function calls were
|
|
// needed, or write a continue request to the scope.callCtx.continueRequest
|
|
// channel. When this happens EvalExpressionWithCalls will call Continue and
|
|
// return.
|
|
//
|
|
// The Continue loop will write to scope.callCtx.continueCompleted when it
|
|
// hits a breakpoint in the call injection protocol.
|
|
//
|
|
// The work of setting up the function call and executing the protocol is
|
|
// done by evalFunctionCall and funcCallStep.
|
|
|
|
const (
|
|
debugCallFunctionNamePrefix1 = "debugCall"
|
|
debugCallFunctionNamePrefix2 = "runtime.debugCall"
|
|
debugCallFunctionName = "runtime.debugCallV1"
|
|
maxArgFrameSize = 65535
|
|
)
|
|
|
|
var (
|
|
errFuncCallUnsupported = errors.New("function calls not supported by this version of Go")
|
|
errFuncCallUnsupportedBackend = errors.New("backend does not support function calls")
|
|
errFuncCallInProgress = errors.New("cannot call function while another function call is already in progress")
|
|
errNoGoroutine = errors.New("no goroutine selected")
|
|
errGoroutineNotRunning = errors.New("selected goroutine not running")
|
|
errNotEnoughStack = errors.New("not enough stack space")
|
|
errTooManyArguments = errors.New("too many arguments")
|
|
errNotEnoughArguments = errors.New("not enough arguments")
|
|
errNotAGoFunction = errors.New("not a Go function")
|
|
errFuncCallNotAllowed = errors.New("function calls not allowed without using 'call'")
|
|
errFuncCallNotAllowedStrAlloc = errors.New("literal string can not be allocated because function calls are not allowed without using 'call'")
|
|
)
|
|
|
|
type functionCallState struct {
|
|
// savedRegs contains the saved registers
|
|
savedRegs Registers
|
|
// err contains a saved error
|
|
err error
|
|
// expr is the expression being evaluated
|
|
expr *ast.CallExpr
|
|
// fn is the function that is being called
|
|
fn *Function
|
|
// receiver is the receiver argument for the function
|
|
receiver *Variable
|
|
// closureAddr is the address of the closure being called
|
|
closureAddr uint64
|
|
// formalArgs are the formal arguments of fn
|
|
formalArgs []funcCallArg
|
|
// argFrameSize contains the size of the arguments
|
|
argFrameSize int64
|
|
// retvars contains the return variables after the function call terminates without panic'ing
|
|
retvars []*Variable
|
|
// panicvar is a variable used to store the value of the panic, if the
|
|
// called function panics.
|
|
panicvar *Variable
|
|
// lateCallFailure is set to true if the function call could not be
|
|
// completed after we started evaluating the arguments.
|
|
lateCallFailure bool
|
|
}
|
|
|
|
type callContext struct {
|
|
p *Target
|
|
|
|
// checkEscape is true if the escape check should be performed.
|
|
// See service/api.DebuggerCommand.UnsafeCall in service/api/types.go.
|
|
checkEscape bool
|
|
|
|
// retLoadCfg is the load configuration used to load return values
|
|
retLoadCfg LoadConfig
|
|
|
|
// Write to continueRequest to request a call to Continue from the
|
|
// debugger's main goroutine.
|
|
// Read from continueCompleted to wait for the target process to stop at
|
|
// one of the interaction point of the function call protocol.
|
|
// To signal that evaluation is completed a value will be written to
|
|
// continueRequest having cont == false and the return values in ret.
|
|
continueRequest chan<- continueRequest
|
|
continueCompleted <-chan *G
|
|
|
|
// injectionThread is the thread to use for nested call injections if the
|
|
// original injection goroutine isn't running (because we are in Go 1.15)
|
|
injectionThread Thread
|
|
|
|
// stacks is a slice of known goroutine stacks used to check for
|
|
// inappropriate escapes
|
|
stacks []stack
|
|
}
|
|
|
|
type continueRequest struct {
|
|
cont bool
|
|
err error
|
|
ret *Variable
|
|
}
|
|
|
|
type callInjection struct {
|
|
// if continueCompleted is not nil it means we are in the process of
|
|
// executing an injected function call, see comments throughout
|
|
// pkg/proc/fncall.go for a description of how this works.
|
|
continueCompleted chan<- *G
|
|
continueRequest <-chan continueRequest
|
|
startThreadID int
|
|
}
|
|
|
|
func (callCtx *callContext) doContinue() *G {
|
|
callCtx.continueRequest <- continueRequest{cont: true}
|
|
return <-callCtx.continueCompleted
|
|
}
|
|
|
|
func (callCtx *callContext) doReturn(ret *Variable, err error) {
|
|
if callCtx == nil {
|
|
return
|
|
}
|
|
callCtx.continueRequest <- continueRequest{cont: false, ret: ret, err: err}
|
|
}
|
|
|
|
// EvalExpressionWithCalls is like EvalExpression but allows function calls in 'expr'.
|
|
// Because this can only be done in the current goroutine, unlike
|
|
// EvalExpression, EvalExpressionWithCalls is not a method of EvalScope.
|
|
func EvalExpressionWithCalls(t *Target, g *G, expr string, retLoadCfg LoadConfig, checkEscape bool) error {
|
|
bi := t.BinInfo()
|
|
if !t.SupportsFunctionCalls() {
|
|
return errFuncCallUnsupportedBackend
|
|
}
|
|
|
|
// check that the target goroutine is running
|
|
if g == nil {
|
|
return errNoGoroutine
|
|
}
|
|
if g.Status != Grunning || g.Thread == nil {
|
|
return errGoroutineNotRunning
|
|
}
|
|
|
|
if callinj := t.fncallForG[g.ID]; callinj != nil && callinj.continueCompleted != nil {
|
|
return errFuncCallInProgress
|
|
}
|
|
|
|
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
|
|
if dbgcallfn == nil {
|
|
return errFuncCallUnsupported
|
|
}
|
|
|
|
scope, err := GoroutineScope(t, g.Thread)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
continueRequest := make(chan continueRequest)
|
|
continueCompleted := make(chan *G)
|
|
|
|
scope.callCtx = &callContext{
|
|
p: t,
|
|
checkEscape: checkEscape,
|
|
retLoadCfg: retLoadCfg,
|
|
continueRequest: continueRequest,
|
|
continueCompleted: continueCompleted,
|
|
}
|
|
|
|
t.fncallForG[g.ID] = &callInjection{
|
|
continueCompleted: continueCompleted,
|
|
continueRequest: continueRequest,
|
|
startThreadID: 0,
|
|
}
|
|
|
|
go scope.EvalExpression(expr, retLoadCfg)
|
|
|
|
contReq, ok := <-continueRequest
|
|
if contReq.cont {
|
|
return t.Continue()
|
|
}
|
|
|
|
return finishEvalExpressionWithCalls(t, g, contReq, ok)
|
|
}
|
|
|
|
func finishEvalExpressionWithCalls(t *Target, g *G, contReq continueRequest, ok bool) error {
|
|
fncallLog("stashing return values for %d in thread=%d", g.ID, g.Thread.ThreadID())
|
|
g.Thread.Common().CallReturn = true
|
|
var err error
|
|
if !ok {
|
|
err = errors.New("internal error EvalExpressionWithCalls didn't return anything")
|
|
} else if contReq.err != nil {
|
|
if fpe, ispanic := contReq.err.(fncallPanicErr); ispanic {
|
|
g.Thread.Common().returnValues = []*Variable{fpe.panicVar}
|
|
} else {
|
|
err = contReq.err
|
|
}
|
|
} else if contReq.ret == nil {
|
|
g.Thread.Common().returnValues = nil
|
|
} else if contReq.ret.Addr == 0 && contReq.ret.DwarfType == nil && contReq.ret.Kind == reflect.Invalid {
|
|
// this is a variable returned by a function call with multiple return values
|
|
r := make([]*Variable, len(contReq.ret.Children))
|
|
for i := range contReq.ret.Children {
|
|
r[i] = &contReq.ret.Children[i]
|
|
}
|
|
g.Thread.Common().returnValues = r
|
|
} else {
|
|
g.Thread.Common().returnValues = []*Variable{contReq.ret}
|
|
}
|
|
|
|
close(t.fncallForG[g.ID].continueCompleted)
|
|
delete(t.fncallForG, g.ID)
|
|
return err
|
|
}
|
|
|
|
// evalFunctionCall evaluates a function call.
|
|
// If this is a built-in function it's evaluated directly.
|
|
// Otherwise this will start the function call injection protocol and
|
|
// request that the target process resumes.
|
|
// See the comment describing the field EvalScope.callCtx for a description
|
|
// of the preconditions that make starting the function call protocol
|
|
// possible.
|
|
// See runtime.debugCallV1 in $GOROOT/src/runtime/asm_amd64.s for a
|
|
// description of the protocol.
|
|
func evalFunctionCall(scope *EvalScope, node *ast.CallExpr) (*Variable, error) {
|
|
r, err := scope.evalBuiltinCall(node)
|
|
if r != nil || err != nil {
|
|
// it was a builtin call
|
|
return r, err
|
|
}
|
|
if scope.callCtx == nil {
|
|
return nil, errFuncCallNotAllowed
|
|
}
|
|
thread := scope.g.Thread
|
|
stacklo := scope.g.stack.lo
|
|
if thread == nil {
|
|
// We are doing a nested function call and using Go 1.15, the original
|
|
// injection goroutine was suspended and now we are using a different
|
|
// goroutine, evaluation still happend on the original goroutine but we
|
|
// need to use a different thread to do the nested call injection.
|
|
thread = scope.callCtx.injectionThread
|
|
g2, err := GetG(thread)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
stacklo = g2.stack.lo
|
|
}
|
|
if thread == nil {
|
|
return nil, errGoroutineNotRunning
|
|
}
|
|
|
|
p := scope.callCtx.p
|
|
bi := scope.BinInfo
|
|
if !p.SupportsFunctionCalls() {
|
|
return nil, errFuncCallUnsupportedBackend
|
|
}
|
|
|
|
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
|
|
if dbgcallfn == nil {
|
|
return nil, errFuncCallUnsupported
|
|
}
|
|
|
|
// check that there are at least 256 bytes free on the stack
|
|
regs, err := thread.Registers()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
regs, err = regs.Copy()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if regs.SP()-256 <= stacklo {
|
|
return nil, errNotEnoughStack
|
|
}
|
|
if bi.Arch.RegistersToDwarfRegisters(0, regs).Reg(regnum.AMD64_Rax) == nil { //TODO(aarzilli): make this generic when call injection is supported on other architectures
|
|
return nil, errFuncCallUnsupportedBackend
|
|
}
|
|
|
|
fncall := functionCallState{
|
|
expr: node,
|
|
savedRegs: regs,
|
|
}
|
|
|
|
err = funcCallEvalFuncExpr(scope, &fncall, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := callOP(bi, thread, regs, dbgcallfn.Entry); err != nil {
|
|
return nil, err
|
|
}
|
|
// write the desired argument frame size at SP-(2*pointer_size) (the extra pointer is the saved PC)
|
|
if err := writePointer(bi, scope.Mem, regs.SP()-3*uint64(bi.Arch.PtrSize()), uint64(fncall.argFrameSize)); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fncallLog("function call initiated %v frame size %d goroutine %d (thread %d)", fncall.fn, fncall.argFrameSize, scope.g.ID, thread.ThreadID())
|
|
|
|
thread.Breakpoint().Clear() // since we moved address in PC the thread is no longer stopped at a breakpoint, leaving the breakpoint set will confuse Continue
|
|
p.fncallForG[scope.g.ID].startThreadID = thread.ThreadID()
|
|
|
|
spoff := int64(scope.Regs.Uint64Val(scope.Regs.SPRegNum)) - int64(scope.g.stack.hi)
|
|
bpoff := int64(scope.Regs.Uint64Val(scope.Regs.BPRegNum)) - int64(scope.g.stack.hi)
|
|
fboff := scope.Regs.FrameBase - int64(scope.g.stack.hi)
|
|
|
|
for {
|
|
scope.callCtx.injectionThread = nil
|
|
g := scope.callCtx.doContinue()
|
|
// Go 1.15 will move call injection execution to a different goroutine,
|
|
// but we want to keep evaluation on the original goroutine.
|
|
if g.ID == scope.g.ID {
|
|
scope.g = g
|
|
} else {
|
|
// We are in Go 1.15 and we switched to a new goroutine, the original
|
|
// goroutine is now parked and therefore does not have a thread
|
|
// associated.
|
|
scope.g.Thread = nil
|
|
scope.g.Status = Gwaiting
|
|
scope.callCtx.injectionThread = g.Thread
|
|
}
|
|
|
|
// adjust the value of registers inside scope
|
|
pcreg, bpreg, spreg := scope.Regs.Reg(scope.Regs.PCRegNum), scope.Regs.Reg(scope.Regs.BPRegNum), scope.Regs.Reg(scope.Regs.SPRegNum)
|
|
scope.Regs.ClearRegisters()
|
|
scope.Regs.AddReg(scope.Regs.PCRegNum, pcreg)
|
|
scope.Regs.AddReg(scope.Regs.BPRegNum, bpreg)
|
|
scope.Regs.AddReg(scope.Regs.SPRegNum, spreg)
|
|
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(spoff + int64(scope.g.stack.hi))
|
|
scope.Regs.Reg(scope.Regs.BPRegNum).Uint64Val = uint64(bpoff + int64(scope.g.stack.hi))
|
|
scope.Regs.FrameBase = fboff + int64(scope.g.stack.hi)
|
|
scope.Regs.CFA = scope.frameOffset + int64(scope.g.stack.hi)
|
|
|
|
finished := funcCallStep(scope, &fncall, g.Thread)
|
|
if finished {
|
|
break
|
|
}
|
|
}
|
|
|
|
if fncall.err != nil {
|
|
return nil, fncall.err
|
|
}
|
|
|
|
if fncall.panicvar != nil {
|
|
return nil, fncallPanicErr{fncall.panicvar}
|
|
}
|
|
switch len(fncall.retvars) {
|
|
case 0:
|
|
r := newVariable("", 0, nil, scope.BinInfo, nil)
|
|
r.loaded = true
|
|
r.Unreadable = errors.New("no return values")
|
|
return r, nil
|
|
case 1:
|
|
return fncall.retvars[0], nil
|
|
default:
|
|
// create a fake variable without address or type to return multiple values
|
|
r := newVariable("", 0, nil, scope.BinInfo, nil)
|
|
r.loaded = true
|
|
r.Children = make([]Variable, len(fncall.retvars))
|
|
for i := range fncall.retvars {
|
|
r.Children[i] = *fncall.retvars[i]
|
|
}
|
|
return r, nil
|
|
}
|
|
}
|
|
|
|
// fncallPanicErr is the error returned if a called function panics
|
|
type fncallPanicErr struct {
|
|
panicVar *Variable
|
|
}
|
|
|
|
func (err fncallPanicErr) Error() string {
|
|
return "panic calling a function"
|
|
}
|
|
|
|
func fncallLog(fmtstr string, args ...interface{}) {
|
|
logflags.FnCallLogger().Infof(fmtstr, args...)
|
|
}
|
|
|
|
// writePointer writes val as an architecture pointer at addr in mem.
|
|
func writePointer(bi *BinaryInfo, mem MemoryReadWriter, addr, val uint64) error {
|
|
ptrbuf := make([]byte, bi.Arch.PtrSize())
|
|
|
|
// TODO: use target architecture endianness instead of LittleEndian
|
|
switch len(ptrbuf) {
|
|
case 4:
|
|
binary.LittleEndian.PutUint32(ptrbuf, uint32(val))
|
|
case 8:
|
|
binary.LittleEndian.PutUint64(ptrbuf, val)
|
|
default:
|
|
panic(fmt.Errorf("unsupported pointer size %d", len(ptrbuf)))
|
|
}
|
|
_, err := mem.WriteMemory(addr, ptrbuf)
|
|
return err
|
|
}
|
|
|
|
// callOP simulates a call instruction on the given thread:
|
|
// * pushes the current value of PC on the stack (adjusting SP)
|
|
// * changes the value of PC to callAddr
|
|
// Note: regs are NOT updated!
|
|
func callOP(bi *BinaryInfo, thread Thread, regs Registers, callAddr uint64) error {
|
|
sp := regs.SP()
|
|
// push PC on the stack
|
|
sp -= uint64(bi.Arch.PtrSize())
|
|
if err := setSP(thread, sp); err != nil {
|
|
return err
|
|
}
|
|
if err := writePointer(bi, thread.ProcessMemory(), sp, regs.PC()); err != nil {
|
|
return err
|
|
}
|
|
return setPC(thread, callAddr)
|
|
}
|
|
|
|
// funcCallEvalFuncExpr evaluates expr.Fun and returns the function that we're trying to call.
|
|
// If allowCalls is false function calls will be disabled even if scope.callCtx != nil
|
|
func funcCallEvalFuncExpr(scope *EvalScope, fncall *functionCallState, allowCalls bool) error {
|
|
bi := scope.BinInfo
|
|
|
|
if !allowCalls {
|
|
callCtx := scope.callCtx
|
|
scope.callCtx = nil
|
|
defer func() {
|
|
scope.callCtx = callCtx
|
|
}()
|
|
}
|
|
|
|
fnvar, err := scope.evalAST(fncall.expr.Fun)
|
|
if err == errFuncCallNotAllowed {
|
|
// we can't determine the frame size because callexpr.Fun can't be
|
|
// evaluated without enabling function calls, just set up an argument
|
|
// frame for the maximum possible argument size.
|
|
fncall.argFrameSize = maxArgFrameSize
|
|
return nil
|
|
} else if err != nil {
|
|
return err
|
|
}
|
|
if fnvar.Kind != reflect.Func {
|
|
return fmt.Errorf("expression %q is not a function", exprToString(fncall.expr.Fun))
|
|
}
|
|
fnvar.loadValue(LoadConfig{false, 0, 0, 0, 0, 0})
|
|
if fnvar.Unreadable != nil {
|
|
return fnvar.Unreadable
|
|
}
|
|
if fnvar.Base == 0 {
|
|
return errors.New("nil pointer dereference")
|
|
}
|
|
fncall.fn = bi.PCToFunc(uint64(fnvar.Base))
|
|
if fncall.fn == nil {
|
|
return fmt.Errorf("could not find DIE for function %q", exprToString(fncall.expr.Fun))
|
|
}
|
|
if !fncall.fn.cu.isgo {
|
|
return errNotAGoFunction
|
|
}
|
|
fncall.closureAddr = fnvar.closureAddr
|
|
|
|
fncall.argFrameSize, fncall.formalArgs, err = funcCallArgs(fncall.fn, bi, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
argnum := len(fncall.expr.Args)
|
|
|
|
// If the function variable has a child then that child is the method
|
|
// receiver. However, if the method receiver is not being used (e.g.
|
|
// func (_ X) Foo()) then it will not actually be listed as a formal
|
|
// argument. Ensure that we are really off by 1 to add the receiver to
|
|
// the function call.
|
|
if len(fnvar.Children) > 0 && argnum == (len(fncall.formalArgs)-1) {
|
|
argnum++
|
|
fncall.receiver = &fnvar.Children[0]
|
|
fncall.receiver.Name = exprToString(fncall.expr.Fun)
|
|
}
|
|
|
|
if argnum > len(fncall.formalArgs) {
|
|
return errTooManyArguments
|
|
}
|
|
if argnum < len(fncall.formalArgs) {
|
|
return errNotEnoughArguments
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type funcCallArg struct {
|
|
name string
|
|
typ godwarf.Type
|
|
off int64
|
|
isret bool
|
|
}
|
|
|
|
// funcCallEvalArgs evaluates the arguments of the function call, copying
|
|
// the into the argument frame starting at argFrameAddr.
|
|
func funcCallEvalArgs(scope *EvalScope, fncall *functionCallState, argFrameAddr uint64) error {
|
|
if scope.g == nil {
|
|
// this should never happen
|
|
return errNoGoroutine
|
|
}
|
|
|
|
if fncall.receiver != nil {
|
|
err := funcCallCopyOneArg(scope, fncall, fncall.receiver, &fncall.formalArgs[0], argFrameAddr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
fncall.formalArgs = fncall.formalArgs[1:]
|
|
}
|
|
|
|
for i := range fncall.formalArgs {
|
|
formalArg := &fncall.formalArgs[i]
|
|
|
|
actualArg, err := scope.evalAST(fncall.expr.Args[i])
|
|
if err != nil {
|
|
return fmt.Errorf("error evaluating %q as argument %s in function %s: %v", exprToString(fncall.expr.Args[i]), formalArg.name, fncall.fn.Name, err)
|
|
}
|
|
actualArg.Name = exprToString(fncall.expr.Args[i])
|
|
|
|
err = funcCallCopyOneArg(scope, fncall, actualArg, formalArg, argFrameAddr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func funcCallCopyOneArg(scope *EvalScope, fncall *functionCallState, actualArg *Variable, formalArg *funcCallArg, argFrameAddr uint64) error {
|
|
if scope.callCtx.checkEscape {
|
|
//TODO(aarzilli): only apply the escapeCheck to leaking parameters.
|
|
if err := escapeCheck(actualArg, formalArg.name, scope.g.stack); err != nil {
|
|
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
|
|
}
|
|
for _, stack := range scope.callCtx.stacks {
|
|
if err := escapeCheck(actualArg, formalArg.name, stack); err != nil {
|
|
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
//TODO(aarzilli): autmoatic wrapping in interfaces for cases not handled
|
|
// by convertToEface.
|
|
|
|
formalArgVar := newVariable(formalArg.name, uint64(formalArg.off+int64(argFrameAddr)), formalArg.typ, scope.BinInfo, scope.Mem)
|
|
if err := scope.setValue(formalArgVar, actualArg, actualArg.Name); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
|
|
const CFA = 0x1000
|
|
|
|
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
|
|
if err != nil {
|
|
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
|
|
}
|
|
|
|
varEntries := reader.Variables(dwarfTree, fn.Entry, int(^uint(0)>>1), reader.VariablesSkipInlinedSubroutines)
|
|
|
|
trustArgOrder := bi.Producer() != "" && goversion.ProducerAfterOrEqual(bi.Producer(), 1, 12)
|
|
|
|
// typechecks arguments, calculates argument frame size
|
|
for _, entry := range varEntries {
|
|
if entry.Tag != dwarf.TagFormalParameter {
|
|
continue
|
|
}
|
|
argname, typ, err := readVarEntry(entry.Tree, fn.cu.image)
|
|
if err != nil {
|
|
return 0, nil, err
|
|
}
|
|
typ = resolveTypedef(typ)
|
|
var off int64
|
|
|
|
locprog, _, err := bi.locationExpr(entry, dwarf.AttrLocation, fn.Entry)
|
|
if err != nil {
|
|
err = fmt.Errorf("could not get argument location of %s: %v", argname, err)
|
|
} else {
|
|
var pieces []op.Piece
|
|
off, pieces, err = op.ExecuteStackProgram(op.DwarfRegisters{CFA: CFA, FrameBase: CFA}, locprog, bi.Arch.PtrSize())
|
|
if err != nil {
|
|
err = fmt.Errorf("unsupported location expression for argument %s: %v", argname, err)
|
|
}
|
|
if pieces != nil {
|
|
err = fmt.Errorf("unsupported location expression for argument %s (uses DW_OP_piece)", argname)
|
|
}
|
|
off -= CFA
|
|
}
|
|
if err != nil {
|
|
if !trustArgOrder {
|
|
return 0, nil, err
|
|
}
|
|
|
|
// With Go version 1.12 or later we can trust that the arguments appear
|
|
// in the same order as declared, which means we can calculate their
|
|
// address automatically.
|
|
// With this we can call optimized functions (which sometimes do not have
|
|
// an argument address, due to a compiler bug) as well as runtime
|
|
// functions (which are always optimized).
|
|
off = argFrameSize
|
|
off = alignAddr(off, typ.Align())
|
|
}
|
|
|
|
if e := off + typ.Size(); e > argFrameSize {
|
|
argFrameSize = e
|
|
}
|
|
|
|
if isret, _ := entry.Val(dwarf.AttrVarParam).(bool); !isret || includeRet {
|
|
formalArgs = append(formalArgs, funcCallArg{name: argname, typ: typ, off: off, isret: isret})
|
|
}
|
|
}
|
|
|
|
sort.Slice(formalArgs, func(i, j int) bool {
|
|
return formalArgs[i].off < formalArgs[j].off
|
|
})
|
|
|
|
return argFrameSize, formalArgs, nil
|
|
}
|
|
|
|
// alignAddr rounds up addr to a multiple of align. Align must be a power of 2.
|
|
func alignAddr(addr, align int64) int64 {
|
|
return (addr + int64(align-1)) &^ int64(align-1)
|
|
}
|
|
|
|
func escapeCheck(v *Variable, name string, stack stack) error {
|
|
switch v.Kind {
|
|
case reflect.Ptr:
|
|
var w *Variable
|
|
if len(v.Children) == 1 {
|
|
// this branch is here to support pointers constructed with typecasts from ints or the '&' operator
|
|
w = &v.Children[0]
|
|
} else {
|
|
w = v.maybeDereference()
|
|
}
|
|
return escapeCheckPointer(w.Addr, name, stack)
|
|
case reflect.Chan, reflect.String, reflect.Slice:
|
|
return escapeCheckPointer(v.Base, name, stack)
|
|
case reflect.Map:
|
|
sv := v.clone()
|
|
sv.RealType = resolveTypedef(&(v.RealType.(*godwarf.MapType).TypedefType))
|
|
sv = sv.maybeDereference()
|
|
return escapeCheckPointer(sv.Addr, name, stack)
|
|
case reflect.Struct:
|
|
t := v.RealType.(*godwarf.StructType)
|
|
for _, field := range t.Field {
|
|
fv, _ := v.toField(field)
|
|
if err := escapeCheck(fv, fmt.Sprintf("%s.%s", name, field.Name), stack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
case reflect.Array:
|
|
for i := int64(0); i < v.Len; i++ {
|
|
sv, _ := v.sliceAccess(int(i))
|
|
if err := escapeCheck(sv, fmt.Sprintf("%s[%d]", name, i), stack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
case reflect.Func:
|
|
if err := escapeCheckPointer(v.funcvalAddr(), name, stack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func escapeCheckPointer(addr uint64, name string, stack stack) error {
|
|
if uint64(addr) >= stack.lo && uint64(addr) < stack.hi {
|
|
return fmt.Errorf("stack object passed to escaping pointer: %s", name)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
const (
|
|
debugCallAXPrecheckFailed = 8
|
|
debugCallAXCompleteCall = 0
|
|
debugCallAXReadReturn = 1
|
|
debugCallAXReadPanic = 2
|
|
debugCallAXRestoreRegisters = 16
|
|
)
|
|
|
|
// funcCallStep executes one step of the function call injection protocol.
|
|
func funcCallStep(callScope *EvalScope, fncall *functionCallState, thread Thread) bool {
|
|
p := callScope.callCtx.p
|
|
bi := p.BinInfo()
|
|
|
|
regs, err := thread.Registers()
|
|
if err != nil {
|
|
fncall.err = err
|
|
return true
|
|
}
|
|
|
|
rax := bi.Arch.RegistersToDwarfRegisters(0, regs).Uint64Val(regnum.AMD64_Rax) //TODO(aarzilli): make this generic when call injection is supported on other architectures
|
|
|
|
if logflags.FnCall() {
|
|
loc, _ := thread.Location()
|
|
var pc uint64
|
|
var fnname string
|
|
if loc != nil {
|
|
pc = loc.PC
|
|
if loc.Fn != nil {
|
|
fnname = loc.Fn.Name
|
|
}
|
|
}
|
|
fncallLog("function call interrupt gid=%d (original) thread=%d rax=%#x (PC=%#x in %s)", callScope.g.ID, thread.ThreadID(), rax, pc, fnname)
|
|
}
|
|
|
|
switch rax {
|
|
case debugCallAXPrecheckFailed:
|
|
// get error from top of the stack and return it to user
|
|
errvar, err := readTopstackVariable(p, thread, regs, "string", loadFullValue)
|
|
if err != nil {
|
|
fncall.err = fmt.Errorf("could not get precheck error reason: %v", err)
|
|
break
|
|
}
|
|
errvar.Name = "err"
|
|
fncall.err = fmt.Errorf("%v", constant.StringVal(errvar.Value))
|
|
|
|
case debugCallAXCompleteCall:
|
|
p.fncallForG[callScope.g.ID].startThreadID = 0
|
|
// evaluate arguments of the target function, copy them into its argument frame and call the function
|
|
if fncall.fn == nil || fncall.receiver != nil || fncall.closureAddr != 0 {
|
|
// if we couldn't figure out which function we are calling before
|
|
// (because the function we are calling is the return value of a call to
|
|
// another function) now we have to figure it out by recursively
|
|
// evaluating the function calls.
|
|
// This also needs to be done if the function call has a receiver
|
|
// argument or a closure address (because those addresses could be on the stack
|
|
// and have changed position between the start of the call and now).
|
|
|
|
err := funcCallEvalFuncExpr(callScope, fncall, true)
|
|
if err != nil {
|
|
fncall.err = err
|
|
fncall.lateCallFailure = true
|
|
break
|
|
}
|
|
//TODO: double check that function call size isn't too big
|
|
}
|
|
|
|
// instead of evaluating the arguments we start first by pushing the call
|
|
// on the stack, this is the opposite of what would happen normally but
|
|
// it's necessary because otherwise the GC wouldn't be able to deal with
|
|
// the argument frame.
|
|
if fncall.closureAddr != 0 {
|
|
// When calling a function pointer we must set the DX register to the
|
|
// address of the function pointer itself.
|
|
setClosureReg(thread, fncall.closureAddr)
|
|
}
|
|
cfa := regs.SP()
|
|
oldpc := regs.PC()
|
|
callOP(bi, thread, regs, fncall.fn.Entry)
|
|
|
|
err := funcCallEvalArgs(callScope, fncall, cfa)
|
|
if err != nil {
|
|
// rolling back the call, note: this works because we called regs.Copy() above
|
|
setSP(thread, cfa)
|
|
setPC(thread, oldpc)
|
|
fncall.err = err
|
|
fncall.lateCallFailure = true
|
|
break
|
|
}
|
|
|
|
case debugCallAXRestoreRegisters:
|
|
// runtime requests that we restore the registers (all except pc and sp),
|
|
// this is also the last step of the function call protocol.
|
|
pc, sp := regs.PC(), regs.SP()
|
|
if err := thread.RestoreRegisters(fncall.savedRegs); err != nil {
|
|
fncall.err = fmt.Errorf("could not restore registers: %v", err)
|
|
}
|
|
if err := setPC(thread, pc); err != nil {
|
|
fncall.err = fmt.Errorf("could not restore PC: %v", err)
|
|
}
|
|
if err := setSP(thread, sp); err != nil {
|
|
fncall.err = fmt.Errorf("could not restore SP: %v", err)
|
|
}
|
|
if err := stepInstructionOut(p, thread, debugCallFunctionName, debugCallFunctionName); err != nil {
|
|
fncall.err = fmt.Errorf("could not step out of %s: %v", debugCallFunctionName, err)
|
|
}
|
|
return true
|
|
|
|
case debugCallAXReadReturn:
|
|
// read return arguments from stack
|
|
if fncall.panicvar != nil || fncall.lateCallFailure {
|
|
break
|
|
}
|
|
retScope, err := ThreadScope(p, thread)
|
|
if err != nil {
|
|
fncall.err = fmt.Errorf("could not get return values: %v", err)
|
|
break
|
|
}
|
|
|
|
// pretend we are still inside the function we called
|
|
fakeFunctionEntryScope(retScope, fncall.fn, int64(regs.SP()), regs.SP()-uint64(bi.Arch.PtrSize()))
|
|
retScope.trustArgOrder = true
|
|
|
|
fncall.retvars, err = retScope.Locals()
|
|
if err != nil {
|
|
fncall.err = fmt.Errorf("could not get return values: %v", err)
|
|
break
|
|
}
|
|
fncall.retvars = filterVariables(fncall.retvars, func(v *Variable) bool {
|
|
return (v.Flags & VariableReturnArgument) != 0
|
|
})
|
|
|
|
loadValues(fncall.retvars, callScope.callCtx.retLoadCfg)
|
|
for _, v := range fncall.retvars {
|
|
v.Flags |= VariableFakeAddress
|
|
}
|
|
|
|
// Store the stack span of the currently running goroutine (which in Go >=
|
|
// 1.15 might be different from the original injection goroutine) so that
|
|
// later on we can use it to perform the escapeCheck
|
|
if threadg, _ := GetG(thread); threadg != nil {
|
|
callScope.callCtx.stacks = append(callScope.callCtx.stacks, threadg.stack)
|
|
}
|
|
|
|
case debugCallAXReadPanic:
|
|
// read panic value from stack
|
|
fncall.panicvar, err = readTopstackVariable(p, thread, regs, "interface {}", callScope.callCtx.retLoadCfg)
|
|
if err != nil {
|
|
fncall.err = fmt.Errorf("could not get panic: %v", err)
|
|
break
|
|
}
|
|
fncall.panicvar.Name = "~panic"
|
|
|
|
default:
|
|
// Got an unknown AX value, this is probably bad but the safest thing
|
|
// possible is to ignore it and hope it didn't matter.
|
|
fncallLog("unknown value of AX %#x", rax)
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func readTopstackVariable(t *Target, thread Thread, regs Registers, typename string, loadCfg LoadConfig) (*Variable, error) {
|
|
bi := thread.BinInfo()
|
|
scope, err := ThreadScope(t, thread)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
typ, err := bi.findType(typename)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
v := newVariable("", regs.SP(), typ, scope.BinInfo, scope.Mem)
|
|
v.loadValue(loadCfg)
|
|
if v.Unreadable != nil {
|
|
return nil, v.Unreadable
|
|
}
|
|
v.Flags |= VariableFakeAddress
|
|
return v, nil
|
|
}
|
|
|
|
// fakeEntryScope alters scope to pretend that we are at the entry point of
|
|
// fn and CFA and SP are the ones passed as argument.
|
|
// This function is used to create a scope for a call frame that doesn't
|
|
// exist anymore, to read the return variables of an injected function call,
|
|
// or after a stepout command.
|
|
func fakeFunctionEntryScope(scope *EvalScope, fn *Function, cfa int64, sp uint64) error {
|
|
scope.PC = fn.Entry
|
|
scope.Fn = fn
|
|
scope.File, scope.Line, _ = scope.BinInfo.PCToLine(fn.Entry)
|
|
|
|
scope.Regs.CFA = cfa
|
|
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = sp
|
|
|
|
fn.cu.image.dwarfReader.Seek(fn.offset)
|
|
e, err := fn.cu.image.dwarfReader.Next()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
scope.Regs.FrameBase, _, _, _ = scope.BinInfo.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
|
|
return nil
|
|
}
|
|
|
|
// allocString allocates spaces for the contents of v if it needs to be allocated
|
|
func allocString(scope *EvalScope, v *Variable) error {
|
|
if v.Base != 0 || v.Len == 0 {
|
|
// already allocated
|
|
return nil
|
|
}
|
|
|
|
if scope.callCtx == nil {
|
|
return errFuncCallNotAllowedStrAlloc
|
|
}
|
|
savedLoadCfg := scope.callCtx.retLoadCfg
|
|
scope.callCtx.retLoadCfg = loadFullValue
|
|
defer func() {
|
|
scope.callCtx.retLoadCfg = savedLoadCfg
|
|
}()
|
|
mallocv, err := evalFunctionCall(scope, &ast.CallExpr{
|
|
Fun: &ast.SelectorExpr{
|
|
X: &ast.Ident{Name: "runtime"},
|
|
Sel: &ast.Ident{Name: "mallocgc"},
|
|
},
|
|
Args: []ast.Expr{
|
|
&ast.BasicLit{Kind: token.INT, Value: strconv.Itoa(int(v.Len))},
|
|
&ast.Ident{Name: "nil"},
|
|
&ast.Ident{Name: "false"},
|
|
},
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if mallocv.Unreadable != nil {
|
|
return mallocv.Unreadable
|
|
}
|
|
if mallocv.DwarfType.String() != "*void" {
|
|
return fmt.Errorf("unexpected return type for mallocgc call: %v", mallocv.DwarfType.String())
|
|
}
|
|
if len(mallocv.Children) != 1 {
|
|
return errors.New("internal error, could not interpret return value of mallocgc call")
|
|
}
|
|
v.Base = mallocv.Children[0].Addr
|
|
_, err = scope.Mem.WriteMemory(v.Base, []byte(constant.StringVal(v.Value)))
|
|
return err
|
|
}
|
|
|
|
func isCallInjectionStop(t *Target, thread Thread, loc *Location) bool {
|
|
if loc.Fn == nil {
|
|
return false
|
|
}
|
|
if !strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix1) && !strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix2) {
|
|
return false
|
|
}
|
|
if loc.PC == loc.Fn.Entry {
|
|
// call injection just started, did not make any progress before being interrupted by a concurrent breakpoint.
|
|
return false
|
|
}
|
|
text, err := disassembleCurrentInstruction(t, thread, -1)
|
|
if err != nil || len(text) <= 0 {
|
|
return false
|
|
}
|
|
return text[0].IsHardBreak()
|
|
}
|
|
|
|
// callInjectionProtocol is the function called from Continue to progress
|
|
// the injection protocol for all threads.
|
|
// Returns true if a call injection terminated
|
|
func callInjectionProtocol(t *Target, threads []Thread) (done bool, err error) {
|
|
if len(t.fncallForG) == 0 {
|
|
// we aren't injecting any calls, no need to check the threads.
|
|
return false, nil
|
|
}
|
|
for _, thread := range threads {
|
|
loc, err := thread.Location()
|
|
if err != nil {
|
|
continue
|
|
}
|
|
if !isCallInjectionStop(t, thread, loc) {
|
|
continue
|
|
}
|
|
|
|
g, callinj, err := findCallInjectionStateForThread(t, thread)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
fncallLog("step for injection on goroutine %d (current) thread=%d (location %s)", g.ID, thread.ThreadID(), loc.Fn.Name)
|
|
callinj.continueCompleted <- g
|
|
contReq, ok := <-callinj.continueRequest
|
|
if !contReq.cont {
|
|
err := finishEvalExpressionWithCalls(t, g, contReq, ok)
|
|
if err != nil {
|
|
return done, err
|
|
}
|
|
done = true
|
|
}
|
|
}
|
|
return done, nil
|
|
}
|
|
|
|
func findCallInjectionStateForThread(t *Target, thread Thread) (*G, *callInjection, error) {
|
|
g, err := GetG(thread)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("could not determine running goroutine for thread %#x currently executing the function call injection protocol: %v", thread.ThreadID(), err)
|
|
}
|
|
fncallLog("findCallInjectionStateForThread thread=%d goroutine=%d", thread.ThreadID(), g.ID)
|
|
notfound := func() error {
|
|
return fmt.Errorf("could not recover call injection state for goroutine %d (thread %d)", g.ID, thread.ThreadID())
|
|
}
|
|
callinj := t.fncallForG[g.ID]
|
|
if callinj != nil {
|
|
if callinj.continueCompleted == nil {
|
|
return nil, nil, notfound()
|
|
}
|
|
return g, callinj, nil
|
|
}
|
|
|
|
// In Go 1.15 and later the call injection protocol will switch to a
|
|
// different goroutine.
|
|
// Here we try to recover the injection goroutine by checking the injection
|
|
// thread.
|
|
|
|
for goid, callinj := range t.fncallForG {
|
|
if callinj != nil && callinj.continueCompleted != nil && callinj.startThreadID != 0 && callinj.startThreadID == thread.ThreadID() {
|
|
t.fncallForG[g.ID] = callinj
|
|
fncallLog("goroutine %d is the goroutine executing the call injection started in goroutine %d", g.ID, goid)
|
|
return g, callinj, nil
|
|
}
|
|
}
|
|
|
|
return nil, nil, notfound()
|
|
}
|