delve/pkg/proc/i386_arch.go
Alessandro Arzilli c5d58f494a
proc: add way to use CPU registers in expressions (#2446)
Changes the expression evaluation code so that register names, when not
shadowed by local or global variables, will evaluate to the current
value of the corresponding CPU register.

This allows a greater flexibility with displaying CPU registers than is
possible with using the ListRegisters API call. Also it allows
debuggers users to view register values even if the frontend they are
using does not implement a register view.
2021-05-04 12:56:17 -07:00

244 lines
8.7 KiB
Go

package proc
import (
"encoding/binary"
"fmt"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var i386BreakInstruction = []byte{0xCC}
// I386Arch returns an initialized I386Arch
// struct.
func I386Arch(goos string) *Arch {
return &Arch{
Name: "386",
ptrSize: 4,
maxInstructionLength: 15,
breakpointInstruction: i386BreakInstruction,
altBreakpointInstruction: []byte{0xcd, 0x03},
breakInstrMovesPC: true,
derefTLS: false,
prologues: prologuesI386,
fixFrameUnwindContext: i386FixFrameUnwindContext,
switchStack: i386SwitchStack,
regSize: i386RegSize,
RegistersToDwarfRegisters: i386RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: i386AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: i386DwarfRegisterToString,
inhibitStepInto: i386InhibitStepInto,
asmDecode: i386AsmDecode,
PCRegNum: regnum.I386_Eip,
SPRegNum: regnum.I386_Esp,
asmRegisters: i386AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.I386NameToDwarf),
}
}
func i386FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
i := bi.Arch
if i.sigreturnfn == nil {
i.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
}
if fctxt == nil || (i.sigreturnfn != nil && pc >= i.sigreturnfn.Entry && pc < i.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + i.PtrSize()] (i.e. [cfa-i.PtrSize()])
// - cfa is bp + i.PtrSize()*2
// - bp is [bp] (i.e. [cfa-i.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't i proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute i stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.I386_Eip,
Regs: map[uint64]frame.DWRule{
regnum.I386_Eip: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-i.PtrSize()),
},
regnum.I386_Ebp: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-2 * i.PtrSize()),
},
regnum.I386_Esp: frame.DWRule{
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.I386_Ebp,
Offset: int64(2 * i.PtrSize()),
},
}
}
if i.crosscall2fn == nil {
i.crosscall2fn = bi.LookupFunc["crosscall2"]
}
// TODO(chainhelen), need to check whether there is a bad frame descriptor like amd64.
// crosscall2 is defined in $GOROOT/src/runtime/cgo/asm_386.s.
if i.crosscall2fn != nil && pc >= i.crosscall2fn.Entry && pc < i.crosscall2fn.End {
rule := fctxt.CFA
fctxt.CFA = rule
}
// We assume that EBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't i rule already we emit one.
if fctxt.Regs[regnum.I386_Ebp].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.I386_Ebp] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.I386_Ebp,
Offset: 0,
}
}
return fctxt
}
// SwitchStack will use the current frame to determine if it's time to
func i386SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall", "runtime.cgocallback_gofunc": // TODO(chainhelen), need to support cgo stacktraces.
return false
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
default:
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
// The runtime switches to the system stack in multiple places.
// This usually happens through a call to runtime.systemstack but there
// are functions that switch to the system stack manually (for example
// runtime.morestack).
// Since we are only interested in printing the system stack for cgo
// calls we switch directly to the goroutine stack if we detect that the
// function at the top of the stack is a runtime function.
//
// The function "runtime.fatalthrow" is deliberately excluded from this
// because it can end up in the stack during a cgo call and switching to
// the goroutine stack will exclude all the C functions from the stack
// trace.
it.switchToGoroutineStack()
return true
}
return false
}
}
// RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI Intel386 Architecture Processor Supplement page 25,
// table 2.14
// https://www.uclibc.org/docs/psABI-i386.pdf
func i386RegSize(regnum uint64) int {
// XMM registers
if regnum >= 21 && regnum <= 36 {
return 16
}
// x87 registers
if regnum >= 11 && regnum <= 18 {
return 10
}
return 4
}
func i386RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(regnum.I386MaxRegNum(), regs, regnum.I386NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.I386NameToDwarf))
return dr
}
func i386AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.I386_Eip+1)
dregs[regnum.I386_Eip] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.I386_Esp] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.I386_Ebp] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
}
func i386DwarfRegisterToString(j int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.I386ToName(j)
if reg == nil {
return name, false, ""
}
switch n := strings.ToLower(name); n {
case "eflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 32)
case "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(name, reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
// i386InhibitStepInto returns whether StepBreakpoint can be set at pc.
// When cgo or pie on 386 linux, compiler will insert more instructions (ex: call __x86.get_pc_thunk.).
// StepBreakpoint shouldn't be set on __x86.get_pc_thunk and skip it.
// See comments on stacksplit in $GOROOT/src/cmd/internal/obj/x86/obj6.go for generated instructions details.
func i386InhibitStepInto(bi *BinaryInfo, pc uint64) bool {
if bi.SymNames != nil && bi.SymNames[pc] != nil &&
strings.HasPrefix(bi.SymNames[pc].Name, "__x86.get_pc_thunk.") {
return true
}
return false
}