delve/pkg/proc/stack.go
Alessandro Arzilli 1b0c4310c4
proc: give unique addresses to registerized variables (#2527)
We told clients that further loading of variables can be done by
specifying a type cast using the address of a variable that we
returned.
This does not work for registerized variables (or, in general,
variables that have a complex location expression) because we don't
give them unique addresses and we throw away the compositeMemory object
we made to read them.

This commit changes proc so that:

1. variables with location expression divided in pieces do get a unique
   memory address
2. the compositeMemory object is saved somewhere
3. when an integer is cast back into a pointer type we look through our
   saved compositeMemory objects to see if there is one that covers the
   specified address and use it.

The unique memory addresses we generate have the MSB set to 1, as
specified by the Intel 86x64 manual addresses in this form are reserved
for kernel memory (which we can not read anyway) so we are guaranteed
to never generate a fake memory address that overlaps a real memory
address of the application.

The unfortunate side effect of this is that it will break clients that
do not deserialize the address to a 64bit integer. This practice is
contrary to how we defined our types and contrary to the specification
of the JSON format, as of json.org, however it is also fairly common,
due to javascript itself having only 53bit integers.

We could come up with a new mechanism but then even more old clients
would have to be changed.
2021-07-02 18:37:55 +02:00

667 lines
20 KiB
Go

package proc
import (
"debug/dwarf"
"errors"
"fmt"
"go/constant"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
)
// This code is partly adapted from runtime.gentraceback in
// $GOROOT/src/runtime/traceback.go
// Stackframe represents a frame in a system stack.
//
// Each stack frame has two locations Current and Call.
//
// For the topmost stackframe Current and Call are the same location.
//
// For stackframes after the first Current is the location corresponding to
// the return address and Call is the location of the CALL instruction that
// was last executed on the frame. Note however that Call.PC is always equal
// to Current.PC, because finding the correct value for Call.PC would
// require disassembling each function in the stacktrace.
//
// For synthetic stackframes generated for inlined function calls Current.Fn
// is the function containing the inlining and Call.Fn in the inlined
// function.
type Stackframe struct {
Current, Call Location
// Frame registers.
Regs op.DwarfRegisters
// High address of the stack.
stackHi uint64
// Return address for this stack frame (as read from the stack frame itself).
Ret uint64
// Address to the memory location containing the return address
addrret uint64
// Err is set if an error occurred during stacktrace
Err error
// SystemStack is true if this frame belongs to a system stack.
SystemStack bool
// Inlined is true if this frame is actually an inlined call.
Inlined bool
// Bottom is true if this is the bottom of the stack
Bottom bool
// lastpc is a memory address guaranteed to belong to the last instruction
// executed in this stack frame.
// For the topmost stack frame this will be the same as Current.PC and
// Call.PC, for other stack frames it will usually be Current.PC-1, but
// could be different when inlined calls are involved in the stacktrace.
// Note that this address isn't guaranteed to belong to the start of an
// instruction and, for this reason, should not be propagated outside of
// pkg/proc.
// Use this value to determine active lexical scopes for the stackframe.
lastpc uint64
// TopmostDefer is the defer that would be at the top of the stack when a
// panic unwind would get to this call frame, in other words it's the first
// deferred function that will be called if the runtime unwinds past this
// call frame.
TopmostDefer *Defer
// Defers is the list of functions deferred by this stack frame (so far).
Defers []*Defer
}
// FrameOffset returns the address of the stack frame, absolute for system
// stack frames or as an offset from stackhi for goroutine stacks (a
// negative value).
func (frame *Stackframe) FrameOffset() int64 {
if frame.SystemStack {
return frame.Regs.CFA
}
return frame.Regs.CFA - int64(frame.stackHi)
}
// FramePointerOffset returns the value of the frame pointer, absolute for
// system stack frames or as an offset from stackhi for goroutine stacks (a
// negative value).
func (frame *Stackframe) FramePointerOffset() int64 {
if frame.SystemStack {
return int64(frame.Regs.BP())
}
return int64(frame.Regs.BP()) - int64(frame.stackHi)
}
// ThreadStacktrace returns the stack trace for thread.
// Note the locations in the array are return addresses not call addresses.
func ThreadStacktrace(thread Thread, depth int) ([]Stackframe, error) {
g, _ := GetG(thread)
if g == nil {
regs, err := thread.Registers()
if err != nil {
return nil, err
}
so := thread.BinInfo().PCToImage(regs.PC())
dwarfRegs := *(thread.BinInfo().Arch.RegistersToDwarfRegisters(so.StaticBase, regs))
dwarfRegs.ChangeFunc = thread.SetReg
it := newStackIterator(thread.BinInfo(), thread.ProcessMemory(), dwarfRegs, 0, nil, 0)
return it.stacktrace(depth)
}
return g.Stacktrace(depth, 0)
}
func (g *G) stackIterator(opts StacktraceOptions) (*stackIterator, error) {
bi := g.variable.bi
if g.Thread != nil {
regs, err := g.Thread.Registers()
if err != nil {
return nil, err
}
so := bi.PCToImage(regs.PC())
dwarfRegs := *(bi.Arch.RegistersToDwarfRegisters(so.StaticBase, regs))
dwarfRegs.ChangeFunc = g.Thread.SetReg
return newStackIterator(
bi, g.variable.mem,
dwarfRegs,
g.stack.hi, g, opts), nil
}
so := g.variable.bi.PCToImage(g.PC)
return newStackIterator(
bi, g.variable.mem,
bi.Arch.addrAndStackRegsToDwarfRegisters(so.StaticBase, g.PC, g.SP, g.BP, g.LR),
g.stack.hi, g, opts), nil
}
type StacktraceOptions uint16
const (
// StacktraceReadDefers requests a stacktrace decorated with deferred calls
// for each frame.
StacktraceReadDefers StacktraceOptions = 1 << iota
// StacktraceSimple requests a stacktrace where no stack switches will be
// attempted.
StacktraceSimple
// StacktraceG requests a stacktrace starting with the register
// values saved in the runtime.g structure.
StacktraceG
)
// Stacktrace returns the stack trace for a goroutine.
// Note the locations in the array are return addresses not call addresses.
func (g *G) Stacktrace(depth int, opts StacktraceOptions) ([]Stackframe, error) {
it, err := g.stackIterator(opts)
if err != nil {
return nil, err
}
frames, err := it.stacktrace(depth)
if err != nil {
return nil, err
}
if opts&StacktraceReadDefers != 0 {
g.readDefers(frames)
}
return frames, nil
}
// NullAddrError is an error for a null address.
type NullAddrError struct{}
func (n NullAddrError) Error() string {
return "NULL address"
}
// stackIterator holds information
// required to iterate and walk the program
// stack.
type stackIterator struct {
pc uint64
top bool
atend bool
frame Stackframe
bi *BinaryInfo
mem MemoryReadWriter
err error
stackhi uint64
systemstack bool
// regs is the register set for the current frame
regs op.DwarfRegisters
g *G // the goroutine being stacktraced, nil if we are stacktracing a goroutine-less thread
g0_sched_sp uint64 // value of g0.sched.sp (see comments around its use)
g0_sched_sp_loaded bool // g0_sched_sp was loaded from g0
opts StacktraceOptions
}
func newStackIterator(bi *BinaryInfo, mem MemoryReadWriter, regs op.DwarfRegisters, stackhi uint64, g *G, opts StacktraceOptions) *stackIterator {
systemstack := true
if g != nil {
systemstack = g.SystemStack
}
return &stackIterator{pc: regs.PC(), regs: regs, top: true, bi: bi, mem: mem, err: nil, atend: false, stackhi: stackhi, systemstack: systemstack, g: g, opts: opts}
}
// Next points the iterator to the next stack frame.
func (it *stackIterator) Next() bool {
if it.err != nil || it.atend {
return false
}
callFrameRegs, ret, retaddr := it.advanceRegs()
it.frame = it.newStackframe(ret, retaddr)
if it.opts&StacktraceSimple == 0 {
if it.bi.Arch.switchStack(it, &callFrameRegs) {
return true
}
}
if it.frame.Ret <= 0 {
it.atend = true
return true
}
it.top = false
it.pc = it.frame.Ret
it.regs = callFrameRegs
return true
}
func (it *stackIterator) switchToGoroutineStack() {
it.systemstack = false
it.top = false
it.pc = it.g.PC
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g.SP
it.regs.AddReg(it.regs.BPRegNum, op.DwarfRegisterFromUint64(it.g.BP))
if it.bi.Arch.Name == "arm64" {
it.regs.Reg(it.regs.LRRegNum).Uint64Val = it.g.LR
}
}
// Frame returns the frame the iterator is pointing at.
func (it *stackIterator) Frame() Stackframe {
it.frame.Bottom = it.atend
return it.frame
}
// Err returns the error encountered during stack iteration.
func (it *stackIterator) Err() error {
return it.err
}
// frameBase calculates the frame base pseudo-register for DWARF for fn and
// the current frame.
func (it *stackIterator) frameBase(fn *Function) int64 {
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return 0
}
fb, _, _, _ := it.bi.Location(dwarfTree.Entry, dwarf.AttrFrameBase, it.pc, it.regs)
return fb
}
func (it *stackIterator) newStackframe(ret, retaddr uint64) Stackframe {
if retaddr == 0 {
it.err = NullAddrError{}
return Stackframe{}
}
f, l, fn := it.bi.PCToLine(it.pc)
if fn == nil {
f = "?"
l = -1
} else {
it.regs.FrameBase = it.frameBase(fn)
}
r := Stackframe{Current: Location{PC: it.pc, File: f, Line: l, Fn: fn}, Regs: it.regs, Ret: ret, addrret: retaddr, stackHi: it.stackhi, SystemStack: it.systemstack, lastpc: it.pc}
r.Call = r.Current
if !it.top && r.Current.Fn != nil && it.pc != r.Current.Fn.Entry {
// if the return address is the entry point of the function that
// contains it then this is some kind of fake return frame (for example
// runtime.sigreturn) that didn't actually call the current frame,
// attempting to get the location of the CALL instruction would just
// obfuscate what's going on, since there is no CALL instruction.
switch r.Current.Fn.Name {
case "runtime.mstart", "runtime.systemstack_switch":
// these frames are inserted by runtime.systemstack and there is no CALL
// instruction to look for at pc - 1
default:
r.lastpc = it.pc - 1
r.Call.File, r.Call.Line = r.Current.Fn.cu.lineInfo.PCToLine(r.Current.Fn.Entry, it.pc-1)
}
}
return r
}
func (it *stackIterator) stacktrace(depth int) ([]Stackframe, error) {
if depth < 0 {
return nil, errors.New("negative maximum stack depth")
}
if it.opts&StacktraceG != 0 && it.g != nil {
it.switchToGoroutineStack()
it.top = true
}
frames := make([]Stackframe, 0, depth+1)
for it.Next() {
frames = it.appendInlineCalls(frames, it.Frame())
if len(frames) >= depth+1 {
break
}
}
if err := it.Err(); err != nil {
if len(frames) == 0 {
return nil, err
}
frames = append(frames, Stackframe{Err: err})
}
return frames, nil
}
func (it *stackIterator) appendInlineCalls(frames []Stackframe, frame Stackframe) []Stackframe {
if frame.Call.Fn == nil {
return append(frames, frame)
}
if frame.Call.Fn.cu.lineInfo == nil {
return append(frames, frame)
}
callpc := frame.Call.PC
if len(frames) > 0 {
callpc--
}
dwarfTree, err := frame.Call.Fn.cu.image.getDwarfTree(frame.Call.Fn.offset)
if err != nil {
return append(frames, frame)
}
for _, entry := range reader.InlineStack(dwarfTree, callpc) {
fnname, okname := entry.Val(dwarf.AttrName).(string)
fileidx, okfileidx := entry.Val(dwarf.AttrCallFile).(int64)
line, okline := entry.Val(dwarf.AttrCallLine).(int64)
if !okname || !okfileidx || !okline {
break
}
var e *dwarf.Entry
filepath, fileErr := frame.Current.Fn.cu.filePath(int(fileidx), e)
if fileErr != nil {
break
}
inlfn := &Function{Name: fnname, Entry: frame.Call.Fn.Entry, End: frame.Call.Fn.End, offset: entry.Offset, cu: frame.Call.Fn.cu}
frames = append(frames, Stackframe{
Current: frame.Current,
Call: Location{
frame.Call.PC,
frame.Call.File,
frame.Call.Line,
inlfn,
},
Regs: frame.Regs,
stackHi: frame.stackHi,
Ret: frame.Ret,
addrret: frame.addrret,
Err: frame.Err,
SystemStack: frame.SystemStack,
Inlined: true,
lastpc: frame.lastpc,
})
frame.Call.File = filepath
frame.Call.Line = int(line)
}
return append(frames, frame)
}
// advanceRegs calculates the DwarfRegisters for a next stack frame
// (corresponding to it.pc).
//
// The computation uses the registers for the current stack frame (it.regs) and
// the corresponding Frame Descriptor Entry (FDE) retrieved from the DWARF info.
//
// The new set of registers is returned. it.regs is not updated, except for
// it.regs.CFA; the caller has to eventually switch it.regs when the iterator
// advances to the next frame.
func (it *stackIterator) advanceRegs() (callFrameRegs op.DwarfRegisters, ret uint64, retaddr uint64) {
fde, err := it.bi.frameEntries.FDEForPC(it.pc)
var framectx *frame.FrameContext
if _, nofde := err.(*frame.ErrNoFDEForPC); nofde {
framectx = it.bi.Arch.fixFrameUnwindContext(nil, it.pc, it.bi)
} else {
framectx = it.bi.Arch.fixFrameUnwindContext(fde.EstablishFrame(it.pc), it.pc, it.bi)
}
cfareg, err := it.executeFrameRegRule(0, framectx.CFA, 0)
if cfareg == nil {
it.err = fmt.Errorf("CFA becomes undefined at PC %#x", it.pc)
return op.DwarfRegisters{}, 0, 0
}
it.regs.CFA = int64(cfareg.Uint64Val)
callimage := it.bi.PCToImage(it.pc)
callFrameRegs = op.DwarfRegisters{StaticBase: callimage.StaticBase, ByteOrder: it.regs.ByteOrder, PCRegNum: it.regs.PCRegNum, SPRegNum: it.regs.SPRegNum, BPRegNum: it.regs.BPRegNum, LRRegNum: it.regs.LRRegNum}
// According to the standard the compiler should be responsible for emitting
// rules for the RSP register so that it can then be used to calculate CFA,
// however neither Go nor GCC do this.
// In the following line we copy GDB's behaviour by assuming this is
// implicit.
// See also the comment in dwarf2_frame_default_init in
// $GDB_SOURCE/dwarf2-frame.c
callFrameRegs.AddReg(callFrameRegs.SPRegNum, cfareg)
for i, regRule := range framectx.Regs {
reg, err := it.executeFrameRegRule(i, regRule, it.regs.CFA)
callFrameRegs.AddReg(i, reg)
if i == framectx.RetAddrReg {
if reg == nil {
if err == nil {
err = fmt.Errorf("Undefined return address at %#x", it.pc)
}
it.err = err
} else {
ret = reg.Uint64Val
}
retaddr = uint64(it.regs.CFA + regRule.Offset)
}
}
if it.bi.Arch.Name == "arm64" {
if ret == 0 && it.regs.Reg(it.regs.LRRegNum) != nil {
ret = it.regs.Reg(it.regs.LRRegNum).Uint64Val
}
}
return callFrameRegs, ret, retaddr
}
func (it *stackIterator) executeFrameRegRule(regnum uint64, rule frame.DWRule, cfa int64) (*op.DwarfRegister, error) {
switch rule.Rule {
default:
fallthrough
case frame.RuleUndefined:
return nil, nil
case frame.RuleSameVal:
if it.regs.Reg(regnum) == nil {
return nil, nil
}
reg := *it.regs.Reg(regnum)
return &reg, nil
case frame.RuleOffset:
return it.readRegisterAt(regnum, uint64(cfa+rule.Offset))
case frame.RuleValOffset:
return op.DwarfRegisterFromUint64(uint64(cfa + rule.Offset)), nil
case frame.RuleRegister:
return it.regs.Reg(rule.Reg), nil
case frame.RuleExpression:
v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize())
if err != nil {
return nil, err
}
return it.readRegisterAt(regnum, uint64(v))
case frame.RuleValExpression:
v, _, err := op.ExecuteStackProgram(it.regs, rule.Expression, it.bi.Arch.PtrSize())
if err != nil {
return nil, err
}
return op.DwarfRegisterFromUint64(uint64(v)), nil
case frame.RuleArchitectural:
return nil, errors.New("architectural frame rules are unsupported")
case frame.RuleCFA:
if it.regs.Reg(rule.Reg) == nil {
return nil, nil
}
return op.DwarfRegisterFromUint64(uint64(int64(it.regs.Uint64Val(rule.Reg)) + rule.Offset)), nil
case frame.RuleFramePointer:
curReg := it.regs.Reg(rule.Reg)
if curReg == nil {
return nil, nil
}
if curReg.Uint64Val <= uint64(cfa) {
return it.readRegisterAt(regnum, curReg.Uint64Val)
}
newReg := *curReg
return &newReg, nil
}
}
func (it *stackIterator) readRegisterAt(regnum uint64, addr uint64) (*op.DwarfRegister, error) {
buf := make([]byte, it.bi.Arch.regSize(regnum))
_, err := it.mem.ReadMemory(buf, addr)
if err != nil {
return nil, err
}
return op.DwarfRegisterFromBytes(buf), nil
}
func (it *stackIterator) loadG0SchedSP() {
if it.g0_sched_sp_loaded {
return
}
it.g0_sched_sp_loaded = true
if it.g != nil {
mvar, _ := it.g.variable.structMember("m")
if mvar != nil {
g0var, _ := mvar.structMember("g0")
if g0var != nil {
g0, _ := g0var.parseG()
if g0 != nil {
it.g0_sched_sp = g0.SP
}
}
}
}
}
// Defer represents one deferred call
type Defer struct {
DeferredPC uint64 // Value of field _defer.fn.fn, the deferred function
DeferPC uint64 // PC address of instruction that added this defer
SP uint64 // Value of SP register when this function was deferred (this field gets adjusted when the stack is moved to match the new stack space)
link *Defer // Next deferred function
argSz int64
variable *Variable
Unreadable error
}
// readDefers decorates the frames with the function deferred at each stack frame.
func (g *G) readDefers(frames []Stackframe) {
curdefer := g.Defer()
i := 0
// scan simultaneously frames and the curdefer linked list, assigning
// defers to their associated frames.
for {
if curdefer == nil || i >= len(frames) {
return
}
if curdefer.Unreadable != nil {
// Current defer is unreadable, stick it into the first available frame
// (so that it can be reported to the user) and exit
frames[i].Defers = append(frames[i].Defers, curdefer)
return
}
if frames[i].Err != nil {
return
}
if frames[i].TopmostDefer == nil {
frames[i].TopmostDefer = curdefer
}
if frames[i].SystemStack || curdefer.SP >= uint64(frames[i].Regs.CFA) {
// frames[i].Regs.CFA is the value that SP had before the function of
// frames[i] was called.
// This means that when curdefer.SP == frames[i].Regs.CFA then curdefer
// was added by the previous frame.
//
// curdefer.SP < frames[i].Regs.CFA means curdefer was added by a
// function further down the stack.
//
// SystemStack frames live on a different physical stack and can't be
// compared with deferred frames.
i++
} else {
frames[i].Defers = append(frames[i].Defers, curdefer)
curdefer = curdefer.Next()
}
}
}
func (d *Defer) load() {
d.variable.loadValue(LoadConfig{false, 1, 0, 0, -1, 0})
if d.variable.Unreadable != nil {
d.Unreadable = d.variable.Unreadable
return
}
fnvar := d.variable.fieldVariable("fn").maybeDereference()
if fnvar.Addr != 0 {
fnvar = fnvar.loadFieldNamed("fn")
if fnvar.Unreadable == nil {
d.DeferredPC, _ = constant.Uint64Val(fnvar.Value)
}
}
d.DeferPC, _ = constant.Uint64Val(d.variable.fieldVariable("pc").Value)
d.SP, _ = constant.Uint64Val(d.variable.fieldVariable("sp").Value)
d.argSz, _ = constant.Int64Val(d.variable.fieldVariable("siz").Value)
linkvar := d.variable.fieldVariable("link").maybeDereference()
if linkvar.Addr != 0 {
d.link = &Defer{variable: linkvar}
}
}
// errSPDecreased is used when (*Defer).Next detects a corrupted linked
// list, specifically when after followin a link pointer the value of SP
// decreases rather than increasing or staying the same (the defer list is a
// FIFO list, nodes further down the list have been added by function calls
// further down the call stack and therefore the SP should always increase).
var errSPDecreased = errors.New("corrupted defer list: SP decreased")
// Next returns the next defer in the linked list
func (d *Defer) Next() *Defer {
if d.link == nil {
return nil
}
d.link.load()
if d.link.SP < d.SP {
d.link.Unreadable = errSPDecreased
}
return d.link
}
// EvalScope returns an EvalScope relative to the argument frame of this deferred call.
// The argument frame of a deferred call is stored in memory immediately
// after the deferred header.
func (d *Defer) EvalScope(t *Target, thread Thread) (*EvalScope, error) {
scope, err := GoroutineScope(t, thread)
if err != nil {
return nil, fmt.Errorf("could not get scope: %v", err)
}
bi := thread.BinInfo()
scope.PC = d.DeferredPC
scope.File, scope.Line, scope.Fn = bi.PCToLine(d.DeferredPC)
if scope.Fn == nil {
return nil, fmt.Errorf("could not find function at %#x", d.DeferredPC)
}
// The arguments are stored immediately after the defer header struct, i.e.
// addr+sizeof(_defer).
if !bi.Arch.usesLR {
// On architectures that don't have a link register CFA is always the address of the first
// argument, that's what we use for the value of CFA.
// For SP we use CFA minus the size of one pointer because that would be
// the space occupied by pushing the return address on the stack during the
// CALL.
scope.Regs.CFA = (int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize)
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA - int64(bi.Arch.PtrSize()))
} else {
// On architectures that have a link register CFA and SP have the same
// value but the address of the first argument is at CFA+ptrSize so we set
// CFA to the start of the argument frame minus one pointer size.
scope.Regs.CFA = int64(d.variable.Addr) + d.variable.RealType.Common().ByteSize - int64(bi.Arch.PtrSize())
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(scope.Regs.CFA)
}
rdr := scope.Fn.cu.image.dwarfReader
rdr.Seek(scope.Fn.offset)
e, err := rdr.Next()
if err != nil {
return nil, fmt.Errorf("could not read DWARF function entry: %v", err)
}
scope.Regs.FrameBase, _, _, _ = bi.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
scope.Mem = cacheMemory(scope.Mem, uint64(scope.Regs.CFA), int(d.argSz))
return scope, nil
}