delve/pkg/proc/target.go
Alessandro Arzilli 1b0c4310c4
proc: give unique addresses to registerized variables (#2527)
We told clients that further loading of variables can be done by
specifying a type cast using the address of a variable that we
returned.
This does not work for registerized variables (or, in general,
variables that have a complex location expression) because we don't
give them unique addresses and we throw away the compositeMemory object
we made to read them.

This commit changes proc so that:

1. variables with location expression divided in pieces do get a unique
   memory address
2. the compositeMemory object is saved somewhere
3. when an integer is cast back into a pointer type we look through our
   saved compositeMemory objects to see if there is one that covers the
   specified address and use it.

The unique memory addresses we generate have the MSB set to 1, as
specified by the Intel 86x64 manual addresses in this form are reserved
for kernel memory (which we can not read anyway) so we are guaranteed
to never generate a fake memory address that overlaps a real memory
address of the application.

The unfortunate side effect of this is that it will break clients that
do not deserialize the address to a 64bit integer. This practice is
contrary to how we defined our types and contrary to the specification
of the JSON format, as of json.org, however it is also fairly common,
due to javascript itself having only 53bit integers.

We could come up with a new mechanism but then even more old clients
would have to be changed.
2021-07-02 18:37:55 +02:00

468 lines
14 KiB
Go

package proc
import (
"errors"
"fmt"
"go/constant"
"os"
"sort"
"strings"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/goversion"
)
var (
// ErrNotRecorded is returned when an action is requested that is
// only possible on recorded (traced) programs.
ErrNotRecorded = errors.New("not a recording")
// ErrNoRuntimeAllG is returned when the runtime.allg list could
// not be found.
ErrNoRuntimeAllG = errors.New("could not find goroutine array")
// ErrProcessDetached indicates that we detached from the target process.
ErrProcessDetached = errors.New("detached from the process")
)
type LaunchFlags uint8
const (
LaunchForeground LaunchFlags = 1 << iota
LaunchDisableASLR
)
// Target represents the process being debugged.
type Target struct {
Process
proc ProcessInternal
// StopReason describes the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
StopReason StopReason
// CanDump is true if core dumping is supported.
CanDump bool
// currentThread is the thread that will be used by next/step/stepout and to evaluate variables if no goroutine is selected.
currentThread Thread
// Goroutine that will be used by default to set breakpoint, eval variables, etc...
// Normally selectedGoroutine is currentThread.GetG, it will not be only if SwitchGoroutine is called with a goroutine that isn't attached to a thread
selectedGoroutine *G
// fncallForG stores a mapping of current active function calls.
fncallForG map[int]*callInjection
asyncPreemptChanged bool // runtime/debug.asyncpreemptoff was changed
asyncPreemptOff int64 // cached value of runtime/debug.asyncpreemptoff
// gcache is a cache for Goroutines that we
// have read and parsed from the targets memory.
// This must be cleared whenever the target is resumed.
gcache goroutineCache
iscgo *bool
// exitStatus is the exit status of the process we are debugging.
// Saved here to relay to any future commands.
exitStatus int
// fakeMemoryRegistry contains the list of all compositeMemory objects
// created since the last restart, it exists so that registerized variables
// can be given a unique address.
fakeMemoryRegistry []*compositeMemory
fakeMemoryRegistryMap map[string]*compositeMemory
}
// ErrProcessExited indicates that the process has exited and contains both
// process id and exit status.
type ErrProcessExited struct {
Pid int
Status int
}
func (pe ErrProcessExited) Error() string {
return fmt.Sprintf("Process %d has exited with status %d", pe.Pid, pe.Status)
}
// StopReason describes the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
type StopReason uint8
// String maps StopReason to string representation.
func (sr StopReason) String() string {
switch sr {
case StopUnknown:
return "unknown"
case StopLaunched:
return "launched"
case StopAttached:
return "attached"
case StopExited:
return "exited"
case StopBreakpoint:
return "breakpoint"
case StopHardcodedBreakpoint:
return "hardcoded breakpoint"
case StopManual:
return "manual"
case StopNextFinished:
return "next finished"
case StopCallReturned:
return "call returned"
case StopWatchpoint:
return "watchpoint"
default:
return ""
}
}
const (
StopUnknown StopReason = iota
StopLaunched // The process was just launched
StopAttached // The debugger stopped the process after attaching
StopExited // The target process terminated
StopBreakpoint // The target process hit one or more software breakpoints
StopHardcodedBreakpoint // The target process hit a hardcoded breakpoint (for example runtime.Breakpoint())
StopManual // A manual stop was requested
StopNextFinished // The next/step/stepout command terminated
StopCallReturned // An injected call completed
StopWatchpoint // The target process hit one or more watchpoints
)
// NewTargetConfig contains the configuration for a new Target object,
type NewTargetConfig struct {
Path string // path of the main executable
DebugInfoDirs []string // Directories to search for split debug info
DisableAsyncPreempt bool // Go 1.14 asynchronous preemption should be disabled
StopReason StopReason // Initial stop reason
CanDump bool // Can create core dumps (must implement ProcessInternal.MemoryMap)
}
// DisableAsyncPreemptEnv returns a process environment (like os.Environ)
// where asyncpreemptoff is set to 1.
func DisableAsyncPreemptEnv() []string {
env := os.Environ()
for i := range env {
if strings.HasPrefix(env[i], "GODEBUG=") {
// Go 1.14 asynchronous preemption mechanism is incompatible with
// debuggers, see: https://github.com/golang/go/issues/36494
env[i] += ",asyncpreemptoff=1"
}
}
return env
}
// NewTarget returns an initialized Target object.
func NewTarget(p Process, currentThread Thread, cfg NewTargetConfig) (*Target, error) {
entryPoint, err := p.EntryPoint()
if err != nil {
return nil, err
}
err = p.BinInfo().LoadBinaryInfo(cfg.Path, entryPoint, cfg.DebugInfoDirs)
if err != nil {
return nil, err
}
for _, image := range p.BinInfo().Images {
if image.loadErr != nil {
return nil, image.loadErr
}
}
t := &Target{
Process: p,
proc: p.(ProcessInternal),
fncallForG: make(map[int]*callInjection),
StopReason: cfg.StopReason,
currentThread: currentThread,
CanDump: cfg.CanDump,
}
g, _ := GetG(currentThread)
t.selectedGoroutine = g
t.createUnrecoveredPanicBreakpoint()
t.createFatalThrowBreakpoint()
t.gcache.init(p.BinInfo())
t.fakeMemoryRegistryMap = make(map[string]*compositeMemory)
if cfg.DisableAsyncPreempt {
setAsyncPreemptOff(t, 1)
}
return t, nil
}
// IsCgo returns the value of runtime.iscgo
func (t *Target) IsCgo() bool {
if t.iscgo != nil {
return *t.iscgo
}
scope := globalScope(t.BinInfo(), t.BinInfo().Images[0], t.Memory())
iscgov, err := scope.findGlobal("runtime", "iscgo")
if err == nil {
iscgov.loadValue(loadFullValue)
if iscgov.Unreadable == nil {
t.iscgo = new(bool)
*t.iscgo = constant.BoolVal(iscgov.Value)
return constant.BoolVal(iscgov.Value)
}
}
return false
}
// Valid returns true if this Process can be used. When it returns false it
// also returns an error describing why the Process is invalid (either
// ErrProcessExited or ErrProcessDetached).
func (t *Target) Valid() (bool, error) {
ok, err := t.proc.Valid()
if !ok && err != nil {
if pe, ok := err.(ErrProcessExited); ok {
pe.Status = t.exitStatus
err = pe
}
}
return ok, err
}
// SupportsFunctionCalls returns whether or not the backend supports
// calling functions during a debug session.
// Currently only non-recorded processes running on AMD64 support
// function calls.
func (t *Target) SupportsFunctionCalls() bool {
if ok, _ := t.Process.Recorded(); ok {
return false
}
return t.Process.BinInfo().Arch.Name == "amd64"
}
// ClearCaches clears internal caches that should not survive a restart.
// This should be called anytime the target process executes instructions.
func (t *Target) ClearCaches() {
t.clearFakeMemory()
t.gcache.Clear()
for _, thread := range t.ThreadList() {
thread.Common().g = nil
}
}
// Restart will start the process over from the location specified by the "from" locspec.
// This is only useful for recorded targets.
// Restarting of a normal process happens at a higher level (debugger.Restart).
func (t *Target) Restart(from string) error {
t.ClearCaches()
currentThread, err := t.proc.Restart(from)
if err != nil {
return err
}
t.currentThread = currentThread
t.selectedGoroutine, _ = GetG(t.CurrentThread())
if from != "" {
t.StopReason = StopManual
} else {
t.StopReason = StopLaunched
}
return nil
}
// SelectedGoroutine returns the currently selected goroutine.
func (t *Target) SelectedGoroutine() *G {
return t.selectedGoroutine
}
// SwitchGoroutine will change the selected and active goroutine.
func (p *Target) SwitchGoroutine(g *G) error {
if ok, err := p.Valid(); !ok {
return err
}
if g == nil {
return nil
}
if g.Thread != nil {
return p.SwitchThread(g.Thread.ThreadID())
}
p.selectedGoroutine = g
return nil
}
// SwitchThread will change the selected and active thread.
func (p *Target) SwitchThread(tid int) error {
if ok, err := p.Valid(); !ok {
return err
}
if th, ok := p.FindThread(tid); ok {
p.currentThread = th
p.selectedGoroutine, _ = GetG(p.CurrentThread())
return nil
}
return fmt.Errorf("thread %d does not exist", tid)
}
// Detach will detach the target from the underylying process.
// This means the debugger will no longer receive events from the process
// we were previously debugging.
// If kill is true then the process will be killed when we detach.
func (t *Target) Detach(kill bool) error {
if !kill {
if t.asyncPreemptChanged {
setAsyncPreemptOff(t, t.asyncPreemptOff)
}
for _, bp := range t.Breakpoints().M {
if bp != nil {
_, err := t.ClearBreakpoint(bp.Addr)
if err != nil {
return err
}
}
}
}
t.StopReason = StopUnknown
return t.proc.Detach(kill)
}
// setAsyncPreemptOff enables or disables async goroutine preemption by
// writing the value 'v' to runtime.debug.asyncpreemptoff.
// A value of '1' means off, a value of '0' means on.
func setAsyncPreemptOff(p *Target, v int64) {
if producer := p.BinInfo().Producer(); producer == "" || !goversion.ProducerAfterOrEqual(producer, 1, 14) {
return
}
logger := p.BinInfo().logger
scope := globalScope(p.BinInfo(), p.BinInfo().Images[0], p.Memory())
debugv, err := scope.findGlobal("runtime", "debug")
if err != nil || debugv.Unreadable != nil {
logger.Warnf("could not find runtime/debug variable (or unreadable): %v %v", err, debugv.Unreadable)
return
}
asyncpreemptoffv, err := debugv.structMember("asyncpreemptoff")
if err != nil {
logger.Warnf("could not find asyncpreemptoff field: %v", err)
return
}
asyncpreemptoffv.loadValue(loadFullValue)
if asyncpreemptoffv.Unreadable != nil {
logger.Warnf("asyncpreemptoff field unreadable: %v", asyncpreemptoffv.Unreadable)
return
}
p.asyncPreemptChanged = true
p.asyncPreemptOff, _ = constant.Int64Val(asyncpreemptoffv.Value)
err = scope.setValue(asyncpreemptoffv, newConstant(constant.MakeInt64(v), scope.Mem), "")
if err != nil {
logger.Warnf("could not set asyncpreemptoff %v", err)
}
}
// createUnrecoveredPanicBreakpoint creates the unrecoverable-panic breakpoint.
func (t *Target) createUnrecoveredPanicBreakpoint() {
panicpcs, err := FindFunctionLocation(t.Process, "runtime.startpanic", 0)
if _, isFnNotFound := err.(*ErrFunctionNotFound); isFnNotFound {
panicpcs, err = FindFunctionLocation(t.Process, "runtime.fatalpanic", 0)
}
if err == nil {
bp, err := t.SetBreakpointWithID(unrecoveredPanicID, panicpcs[0])
if err == nil {
bp.Name = UnrecoveredPanic
bp.Variables = []string{"runtime.curg._panic.arg"}
}
}
}
// createFatalThrowBreakpoint creates the a breakpoint as runtime.fatalthrow.
func (t *Target) createFatalThrowBreakpoint() {
fatalpcs, err := FindFunctionLocation(t.Process, "runtime.fatalthrow", 0)
if err == nil {
bp, err := t.SetBreakpointWithID(fatalThrowID, fatalpcs[0])
if err == nil {
bp.Name = FatalThrow
}
}
}
// CurrentThread returns the currently selected thread which will be used
// for next/step/stepout and for reading variables, unless a goroutine is
// selected.
func (t *Target) CurrentThread() Thread {
return t.currentThread
}
// SetNextBreakpointID sets the breakpoint ID of the next breakpoint
func (t *Target) SetNextBreakpointID(id int) {
t.Breakpoints().breakpointIDCounter = id
}
const (
fakeAddressBase = 0xbeef000000000000
fakeAddressUnresolv = 0xbeed000000000000 // this address never resloves to memory
)
// newCompositeMemory creates a new compositeMemory object and registers it.
// If the same composite memory has been created before it will return a
// cached object.
// This caching is primarily done so that registerized variables don't get a
// different address every time they are evaluated, which would be confusing
// and leak memory.
func (t *Target) newCompositeMemory(mem MemoryReadWriter, regs op.DwarfRegisters, pieces []op.Piece, descr *locationExpr) (int64, *compositeMemory, error) {
var key string
if regs.CFA != 0 && len(pieces) > 0 {
// key is created by concatenating the location expression with the CFA,
// this combination is guaranteed to be unique between resumes.
buf := new(strings.Builder)
fmt.Fprintf(buf, "%#x ", regs.CFA)
op.PrettyPrint(buf, descr.instr)
key = buf.String()
if cmem := t.fakeMemoryRegistryMap[key]; cmem != nil {
return int64(cmem.base), cmem, nil
}
}
cmem, err := newCompositeMemory(mem, t.BinInfo().Arch, regs, pieces)
if err != nil {
return 0, cmem, err
}
t.registerFakeMemory(cmem)
if key != "" {
t.fakeMemoryRegistryMap[key] = cmem
}
return int64(cmem.base), cmem, nil
}
func (t *Target) registerFakeMemory(mem *compositeMemory) (addr uint64) {
t.fakeMemoryRegistry = append(t.fakeMemoryRegistry, mem)
addr = fakeAddressBase
if len(t.fakeMemoryRegistry) > 1 {
prevMem := t.fakeMemoryRegistry[len(t.fakeMemoryRegistry)-2]
addr = uint64(alignAddr(int64(prevMem.base+uint64(len(prevMem.data))), 0x100)) // the call to alignAddr just makes the address look nicer, it is not necessary
}
mem.base = addr
return addr
}
func (t *Target) findFakeMemory(addr uint64) *compositeMemory {
i := sort.Search(len(t.fakeMemoryRegistry), func(i int) bool {
mem := t.fakeMemoryRegistry[i]
return addr <= mem.base || (mem.base <= addr && addr < (mem.base+uint64(len(mem.data))))
})
if i != len(t.fakeMemoryRegistry) {
mem := t.fakeMemoryRegistry[i]
if mem.base <= addr && addr < (mem.base+uint64(len(mem.data))) {
return mem
}
}
return nil
}
func (t *Target) clearFakeMemory() {
for i := range t.fakeMemoryRegistry {
t.fakeMemoryRegistry[i] = nil
}
t.fakeMemoryRegistry = t.fakeMemoryRegistry[:0]
t.fakeMemoryRegistryMap = make(map[string]*compositeMemory)
}