delve/pkg/proc/native/proc_linux.go
Derek Parker 1b2f7f0051
pkg/proc: Parse Goroutine ID in eBPF tracer (#2654)
This patch enables the eBPF tracer backend to parse the ID of the
Goroutine which hit the uprobe. This implementation is specific to AMD64
and will have to be generalized further in order to be used on other
architectures.
2021-08-24 14:53:27 +02:00

742 lines
20 KiB
Go

package native
import (
"bufio"
"bytes"
"errors"
"fmt"
"io/ioutil"
"os"
"os/exec"
"os/signal"
"path/filepath"
"regexp"
"strconv"
"strings"
"syscall"
"time"
sys "golang.org/x/sys/unix"
"github.com/go-delve/delve/pkg/proc"
"github.com/go-delve/delve/pkg/proc/internal/ebpf"
"github.com/go-delve/delve/pkg/proc/linutil"
isatty "github.com/mattn/go-isatty"
)
// Process statuses
const (
statusSleeping = 'S'
statusRunning = 'R'
statusTraceStop = 't'
statusZombie = 'Z'
// Kernel 2.6 has TraceStop as T
// TODO(derekparker) Since this means something different based on the
// version of the kernel ('T' is job control stop on modern 3.x+ kernels) we
// may want to differentiate at some point.
statusTraceStopT = 'T'
personalityGetPersonality = 0xffffffff // argument to pass to personality syscall to get the current personality
_ADDR_NO_RANDOMIZE = 0x0040000 // ADDR_NO_RANDOMIZE linux constant
)
// osProcessDetails contains Linux specific
// process details.
type osProcessDetails struct {
comm string
ebpf *ebpf.EBPFContext
}
func (os *osProcessDetails) Close() {
if os.ebpf != nil {
os.ebpf.Close()
}
}
// Launch creates and begins debugging a new process. First entry in
// `cmd` is the program to run, and then rest are the arguments
// to be supplied to that process. `wd` is working directory of the program.
// If the DWARF information cannot be found in the binary, Delve will look
// for external debug files in the directories passed in.
func Launch(cmd []string, wd string, flags proc.LaunchFlags, debugInfoDirs []string, tty string, redirects [3]string) (*proc.Target, error) {
var (
process *exec.Cmd
err error
)
foreground := flags&proc.LaunchForeground != 0
stdin, stdout, stderr, closefn, err := openRedirects(redirects, foreground)
if err != nil {
return nil, err
}
if stdin == nil || !isatty.IsTerminal(stdin.Fd()) {
// exec.(*Process).Start will fail if we try to send a process to
// foreground but we are not attached to a terminal.
foreground = false
}
dbp := newProcess(0)
defer func() {
if err != nil && dbp.pid != 0 {
_ = dbp.Detach(true)
}
}()
dbp.execPtraceFunc(func() {
if flags&proc.LaunchDisableASLR != 0 {
oldPersonality, _, err := syscall.Syscall(sys.SYS_PERSONALITY, personalityGetPersonality, 0, 0)
if err == syscall.Errno(0) {
newPersonality := oldPersonality | _ADDR_NO_RANDOMIZE
syscall.Syscall(sys.SYS_PERSONALITY, newPersonality, 0, 0)
defer syscall.Syscall(sys.SYS_PERSONALITY, oldPersonality, 0, 0)
}
}
process = exec.Command(cmd[0])
process.Args = cmd
process.Stdin = stdin
process.Stdout = stdout
process.Stderr = stderr
process.SysProcAttr = &syscall.SysProcAttr{
Ptrace: true,
Setpgid: true,
Foreground: foreground,
}
if foreground {
signal.Ignore(syscall.SIGTTOU, syscall.SIGTTIN)
}
if tty != "" {
dbp.ctty, err = attachProcessToTTY(process, tty)
if err != nil {
return
}
}
if wd != "" {
process.Dir = wd
}
err = process.Start()
})
closefn()
if err != nil {
return nil, err
}
dbp.pid = process.Process.Pid
dbp.childProcess = true
_, _, err = dbp.wait(process.Process.Pid, 0)
if err != nil {
return nil, fmt.Errorf("waiting for target execve failed: %s", err)
}
tgt, err := dbp.initialize(cmd[0], debugInfoDirs)
if err != nil {
return nil, err
}
return tgt, nil
}
// Attach to an existing process with the given PID. Once attached, if
// the DWARF information cannot be found in the binary, Delve will look
// for external debug files in the directories passed in.
func Attach(pid int, debugInfoDirs []string) (*proc.Target, error) {
dbp := newProcess(pid)
var err error
dbp.execPtraceFunc(func() { err = ptraceAttach(dbp.pid) })
if err != nil {
return nil, err
}
_, _, err = dbp.wait(dbp.pid, 0)
if err != nil {
return nil, err
}
tgt, err := dbp.initialize(findExecutable("", dbp.pid), debugInfoDirs)
if err != nil {
_ = dbp.Detach(false)
return nil, err
}
// ElfUpdateSharedObjects can only be done after we initialize because it
// needs an initialized BinaryInfo object to work.
err = linutil.ElfUpdateSharedObjects(dbp)
if err != nil {
return nil, err
}
return tgt, nil
}
func initialize(dbp *nativeProcess) error {
comm, err := ioutil.ReadFile(fmt.Sprintf("/proc/%d/comm", dbp.pid))
if err == nil {
// removes newline character
comm = bytes.TrimSuffix(comm, []byte("\n"))
}
if comm == nil || len(comm) <= 0 {
stat, err := ioutil.ReadFile(fmt.Sprintf("/proc/%d/stat", dbp.pid))
if err != nil {
return fmt.Errorf("could not read proc stat: %v", err)
}
expr := fmt.Sprintf("%d\\s*\\((.*)\\)", dbp.pid)
rexp, err := regexp.Compile(expr)
if err != nil {
return fmt.Errorf("regexp compile error: %v", err)
}
match := rexp.FindSubmatch(stat)
if match == nil {
return fmt.Errorf("no match found using regexp '%s' in /proc/%d/stat", expr, dbp.pid)
}
comm = match[1]
}
dbp.os.comm = strings.ReplaceAll(string(comm), "%", "%%")
return nil
}
func (dbp *nativeProcess) GetBufferedTracepoints() []ebpf.RawUProbeParams {
if dbp.os.ebpf == nil {
return nil
}
return dbp.os.ebpf.GetBufferedTracepoints()
}
// kill kills the target process.
func (dbp *nativeProcess) kill() error {
if dbp.exited {
return nil
}
if !dbp.threads[dbp.pid].Stopped() {
return errors.New("process must be stopped in order to kill it")
}
if err := sys.Kill(-dbp.pid, sys.SIGKILL); err != nil {
return errors.New("could not deliver signal " + err.Error())
}
// wait for other threads first or the thread group leader (dbp.pid) will never exit.
for threadID := range dbp.threads {
if threadID != dbp.pid {
dbp.wait(threadID, 0)
}
}
for {
wpid, status, err := dbp.wait(dbp.pid, 0)
if err != nil {
return err
}
if wpid == dbp.pid && status != nil && status.Signaled() && status.Signal() == sys.SIGKILL {
dbp.postExit()
return err
}
}
}
func (dbp *nativeProcess) requestManualStop() (err error) {
return sys.Kill(dbp.pid, sys.SIGTRAP)
}
// Attach to a newly created thread, and store that thread in our list of
// known threads.
func (dbp *nativeProcess) addThread(tid int, attach bool) (*nativeThread, error) {
if thread, ok := dbp.threads[tid]; ok {
return thread, nil
}
var err error
if attach {
dbp.execPtraceFunc(func() { err = sys.PtraceAttach(tid) })
if err != nil && err != sys.EPERM {
// Do not return err if err == EPERM,
// we may already be tracing this thread due to
// PTRACE_O_TRACECLONE. We will surely blow up later
// if we truly don't have permissions.
return nil, fmt.Errorf("could not attach to new thread %d %s", tid, err)
}
pid, status, err := dbp.waitFast(tid)
if err != nil {
return nil, err
}
if status.Exited() {
return nil, fmt.Errorf("thread already exited %d", pid)
}
}
dbp.execPtraceFunc(func() { err = syscall.PtraceSetOptions(tid, syscall.PTRACE_O_TRACECLONE) })
if err == syscall.ESRCH {
if _, _, err = dbp.waitFast(tid); err != nil {
return nil, fmt.Errorf("error while waiting after adding thread: %d %s", tid, err)
}
dbp.execPtraceFunc(func() { err = syscall.PtraceSetOptions(tid, syscall.PTRACE_O_TRACECLONE) })
if err == syscall.ESRCH {
return nil, err
}
if err != nil {
return nil, fmt.Errorf("could not set options for new traced thread %d %s", tid, err)
}
}
dbp.threads[tid] = &nativeThread{
ID: tid,
dbp: dbp,
os: new(osSpecificDetails),
}
if dbp.memthread == nil {
dbp.memthread = dbp.threads[tid]
}
for _, bp := range dbp.Breakpoints().M {
if bp.WatchType != 0 {
err := dbp.threads[tid].writeHardwareBreakpoint(bp.Addr, bp.WatchType, bp.HWBreakIndex)
if err != nil {
return nil, err
}
}
}
return dbp.threads[tid], nil
}
func (dbp *nativeProcess) updateThreadList() error {
tids, _ := filepath.Glob(fmt.Sprintf("/proc/%d/task/*", dbp.pid))
for _, tidpath := range tids {
tidstr := filepath.Base(tidpath)
tid, err := strconv.Atoi(tidstr)
if err != nil {
return err
}
if _, err := dbp.addThread(tid, tid != dbp.pid); err != nil {
return err
}
}
return linutil.ElfUpdateSharedObjects(dbp)
}
func findExecutable(path string, pid int) string {
if path == "" {
path = fmt.Sprintf("/proc/%d/exe", pid)
}
return path
}
func (dbp *nativeProcess) trapWait(pid int) (*nativeThread, error) {
return dbp.trapWaitInternal(pid, 0)
}
type trapWaitOptions uint8
const (
trapWaitHalt trapWaitOptions = 1 << iota
trapWaitNohang
trapWaitDontCallExitGuard
)
func (dbp *nativeProcess) trapWaitInternal(pid int, options trapWaitOptions) (*nativeThread, error) {
halt := options&trapWaitHalt != 0
for {
wopt := 0
if options&trapWaitNohang != 0 {
wopt = sys.WNOHANG
}
wpid, status, err := dbp.wait(pid, wopt)
if err != nil {
return nil, fmt.Errorf("wait err %s %d", err, pid)
}
if wpid == 0 {
if options&trapWaitNohang != 0 {
return nil, nil
}
continue
}
th, ok := dbp.threads[wpid]
if ok {
th.Status = (*waitStatus)(status)
}
if status.Exited() {
if wpid == dbp.pid {
dbp.postExit()
return nil, proc.ErrProcessExited{Pid: wpid, Status: status.ExitStatus()}
}
delete(dbp.threads, wpid)
continue
}
if status.Signaled() {
// Signaled means the thread was terminated due to a signal.
if wpid == dbp.pid {
dbp.postExit()
return nil, proc.ErrProcessExited{Pid: wpid, Status: -int(status.Signal())}
}
// does this ever happen?
delete(dbp.threads, wpid)
continue
}
if status.StopSignal() == sys.SIGTRAP && status.TrapCause() == sys.PTRACE_EVENT_CLONE {
// A traced thread has cloned a new thread, grab the pid and
// add it to our list of traced threads.
var cloned uint
dbp.execPtraceFunc(func() { cloned, err = sys.PtraceGetEventMsg(wpid) })
if err != nil {
if err == sys.ESRCH {
// thread died while we were adding it
continue
}
return nil, fmt.Errorf("could not get event message: %s", err)
}
th, err = dbp.addThread(int(cloned), false)
if err != nil {
if err == sys.ESRCH {
// thread died while we were adding it
delete(dbp.threads, int(cloned))
continue
}
return nil, err
}
if halt {
th.os.running = false
dbp.threads[int(wpid)].os.running = false
return nil, nil
}
if err = th.Continue(); err != nil {
if err == sys.ESRCH {
// thread died while we were adding it
delete(dbp.threads, th.ID)
continue
}
return nil, fmt.Errorf("could not continue new thread %d %s", cloned, err)
}
if err = dbp.threads[int(wpid)].Continue(); err != nil {
if err != sys.ESRCH {
return nil, fmt.Errorf("could not continue existing thread %d %s", wpid, err)
}
}
continue
}
if th == nil {
// Sometimes we get an unknown thread, ignore it?
continue
}
if (halt && status.StopSignal() == sys.SIGSTOP) || (status.StopSignal() == sys.SIGTRAP) {
th.os.running = false
if status.StopSignal() == sys.SIGTRAP {
th.os.setbp = true
}
return th, nil
}
// TODO(dp) alert user about unexpected signals here.
if halt && !th.os.running {
// We are trying to stop the process, queue this signal to be delivered
// to the thread when we resume.
// Do not do this for threads that were running because we sent them a
// STOP signal and we need to observe it so we don't mistakenly deliver
// it later.
th.os.delayedSignal = int(status.StopSignal())
th.os.running = false
return th, nil
} else if err := th.resumeWithSig(int(status.StopSignal())); err != nil {
if err != sys.ESRCH {
return nil, err
}
// do the same thing we do if a thread quit
if wpid == dbp.pid {
dbp.postExit()
return nil, proc.ErrProcessExited{Pid: wpid, Status: status.ExitStatus()}
}
delete(dbp.threads, wpid)
}
}
}
func status(pid int, comm string) rune {
f, err := os.Open(fmt.Sprintf("/proc/%d/stat", pid))
if err != nil {
return '\000'
}
defer f.Close()
rd := bufio.NewReader(f)
var (
p int
state rune
)
// The second field of /proc/pid/stat is the name of the task in parenthesis.
// The name of the task is the base name of the executable for this process limited to TASK_COMM_LEN characters
// Since both parenthesis and spaces can appear inside the name of the task and no escaping happens we need to read the name of the executable first
// See: include/linux/sched.c:315 and include/linux/sched.c:1510
_, _ = fmt.Fscanf(rd, "%d ("+comm+") %c", &p, &state)
return state
}
// waitFast is like wait but does not handle process-exit correctly
func (dbp *nativeProcess) waitFast(pid int) (int, *sys.WaitStatus, error) {
var s sys.WaitStatus
wpid, err := sys.Wait4(pid, &s, sys.WALL, nil)
return wpid, &s, err
}
func (dbp *nativeProcess) wait(pid, options int) (int, *sys.WaitStatus, error) {
var s sys.WaitStatus
if (pid != dbp.pid) || (options != 0) {
wpid, err := sys.Wait4(pid, &s, sys.WALL|options, nil)
return wpid, &s, err
}
// If we call wait4/waitpid on a thread that is the leader of its group,
// with options == 0, while ptracing and the thread leader has exited leaving
// zombies of its own then waitpid hangs forever this is apparently intended
// behaviour in the linux kernel because it's just so convenient.
// Therefore we call wait4 in a loop with WNOHANG, sleeping a while between
// calls and exiting when either wait4 succeeds or we find out that the thread
// has become a zombie.
// References:
// https://sourceware.org/bugzilla/show_bug.cgi?id=12702
// https://sourceware.org/bugzilla/show_bug.cgi?id=10095
// https://sourceware.org/bugzilla/attachment.cgi?id=5685
for {
wpid, err := sys.Wait4(pid, &s, sys.WNOHANG|sys.WALL|options, nil)
if err != nil {
return 0, nil, err
}
if wpid != 0 {
return wpid, &s, err
}
if status(pid, dbp.os.comm) == statusZombie {
return pid, nil, nil
}
time.Sleep(200 * time.Millisecond)
}
}
func (dbp *nativeProcess) exitGuard(err error) error {
if err != sys.ESRCH {
return err
}
if status(dbp.pid, dbp.os.comm) == statusZombie {
_, err := dbp.trapWaitInternal(-1, trapWaitDontCallExitGuard)
return err
}
return err
}
func (dbp *nativeProcess) resume() error {
// all threads stopped over a breakpoint are made to step over it
for _, thread := range dbp.threads {
if thread.CurrentBreakpoint.Breakpoint != nil {
if err := thread.StepInstruction(); err != nil {
return err
}
thread.CurrentBreakpoint.Clear()
}
}
// everything is resumed
for _, thread := range dbp.threads {
if err := thread.resume(); err != nil && err != sys.ESRCH {
return err
}
}
return nil
}
// stop stops all running threads and sets breakpoints
func (dbp *nativeProcess) stop(trapthread *nativeThread) (*nativeThread, error) {
if dbp.exited {
return nil, proc.ErrProcessExited{Pid: dbp.Pid()}
}
for _, th := range dbp.threads {
th.os.setbp = false
}
trapthread.os.setbp = true
// check if any other thread simultaneously received a SIGTRAP
for {
th, err := dbp.trapWaitInternal(-1, trapWaitNohang)
if err != nil {
return nil, dbp.exitGuard(err)
}
if th == nil {
break
}
}
// stop all threads that are still running
for _, th := range dbp.threads {
if th.os.running {
if err := th.stop(); err != nil {
return nil, dbp.exitGuard(err)
}
}
}
// wait for all threads to stop
for {
allstopped := true
for _, th := range dbp.threads {
if th.os.running {
allstopped = false
break
}
}
if allstopped {
break
}
_, err := dbp.trapWaitInternal(-1, trapWaitHalt)
if err != nil {
return nil, err
}
}
if err := linutil.ElfUpdateSharedObjects(dbp); err != nil {
return nil, err
}
switchTrapthread := false
// set breakpoints on SIGTRAP threads
var err1 error
for _, th := range dbp.threads {
pc, _ := th.PC()
if !th.os.setbp && pc != th.os.phantomBreakpointPC {
// check if this could be a breakpoint hit anyway that the OS hasn't notified us about, yet.
if _, ok := dbp.FindBreakpoint(pc, dbp.BinInfo().Arch.BreakInstrMovesPC()); ok {
th.os.phantomBreakpointPC = pc
}
}
if pc != th.os.phantomBreakpointPC {
th.os.phantomBreakpointPC = 0
}
if th.CurrentBreakpoint.Breakpoint == nil && th.os.setbp {
if err := th.SetCurrentBreakpoint(true); err != nil {
err1 = err
continue
}
}
if th.CurrentBreakpoint.Breakpoint == nil && th.os.setbp && (th.Status != nil) && ((*sys.WaitStatus)(th.Status).StopSignal() == sys.SIGTRAP) && dbp.BinInfo().Arch.BreakInstrMovesPC() {
manualStop := false
if th.ThreadID() == trapthread.ThreadID() {
dbp.stopMu.Lock()
manualStop = dbp.manualStopRequested
dbp.stopMu.Unlock()
}
if !manualStop && th.os.phantomBreakpointPC == pc {
// Thread received a SIGTRAP but we don't have a breakpoint for it and
// it wasn't sent by a manual stop request. It's either a hardcoded
// breakpoint or a phantom breakpoint hit (a breakpoint that was hit but
// we have removed before we could receive its signal). Check if it is a
// hardcoded breakpoint, otherwise rewind the thread.
isHardcodedBreakpoint := false
pc, _ := th.PC()
for _, bpinstr := range [][]byte{
dbp.BinInfo().Arch.BreakpointInstruction(),
dbp.BinInfo().Arch.AltBreakpointInstruction()} {
if bpinstr == nil {
continue
}
buf := make([]byte, len(bpinstr))
_, _ = th.ReadMemory(buf, pc-uint64(len(buf)))
if bytes.Equal(buf, bpinstr) {
isHardcodedBreakpoint = true
break
}
}
if !isHardcodedBreakpoint {
// phantom breakpoint hit
_ = th.setPC(pc - uint64(len(dbp.BinInfo().Arch.BreakpointInstruction())))
th.os.setbp = false
if trapthread.ThreadID() == th.ThreadID() {
// Will switch to a different thread for trapthread because we don't
// want pkg/proc to believe that this thread was stopped by a
// hardcoded breakpoint.
switchTrapthread = true
}
}
}
}
}
if err1 != nil {
return nil, err1
}
if switchTrapthread {
trapthreadID := trapthread.ID
trapthread = nil
for _, th := range dbp.threads {
if th.os.setbp && th.ThreadID() != trapthreadID {
return th, nil
}
}
}
return trapthread, nil
}
func (dbp *nativeProcess) detach(kill bool) error {
for threadID := range dbp.threads {
err := ptraceDetach(threadID, 0)
if err != nil {
return err
}
}
if kill {
return nil
}
// For some reason the process will sometimes enter stopped state after a
// detach, this doesn't happen immediately either.
// We have to wait a bit here, then check if the main thread is stopped and
// SIGCONT it if it is.
time.Sleep(50 * time.Millisecond)
if s := status(dbp.pid, dbp.os.comm); s == 'T' {
_ = sys.Kill(dbp.pid, sys.SIGCONT)
}
return nil
}
// EntryPoint will return the process entry point address, useful for
// debugging PIEs.
func (dbp *nativeProcess) EntryPoint() (uint64, error) {
auxvbuf, err := ioutil.ReadFile(fmt.Sprintf("/proc/%d/auxv", dbp.pid))
if err != nil {
return 0, fmt.Errorf("could not read auxiliary vector: %v", err)
}
return linutil.EntryPointFromAuxv(auxvbuf, dbp.bi.Arch.PtrSize()), nil
}
func (dbp *nativeProcess) SetUProbe(fnName string, goidOffset int64, args []ebpf.UProbeArgMap) error {
// Lazily load and initialize the BPF program upon request to set a uprobe.
if dbp.os.ebpf == nil {
dbp.os.ebpf, _ = ebpf.LoadEBPFTracingProgram()
}
// We only allow up to 6 args for a BPF probe.
// Return early if we have more.
if len(args) > 6 {
return errors.New("too many arguments in traced function, max is 6")
}
fn, ok := dbp.bi.LookupFunc[fnName]
if !ok {
return fmt.Errorf("could not find function: %s", fnName)
}
key := fn.Entry
err := dbp.os.ebpf.UpdateArgMap(key, goidOffset, args, dbp.BinInfo().GStructOffset())
if err != nil {
return err
}
debugname := dbp.bi.Images[0].Path
offset, err := ebpf.SymbolToOffset(debugname, fnName)
if err != nil {
return err
}
return dbp.os.ebpf.AttachUprobe(dbp.Pid(), debugname, offset)
}
func killProcess(pid int) error {
return sys.Kill(pid, sys.SIGINT)
}