delve/pkg/proc/mem.go
Michael Knyszek 041eedd126
pkg/proc: merge register data before writing to register (#2699)
Right now, if (*compositeMemory).WriteMemory needs to write a value to
a register that's smaller than the full size of the register (say, a
uint32 being passed as an argument), then (*AMD64Registers).SetReg can
later fail a sanity check that ensures the passed DwarfRegister is a
full size register.

Fix this by reading the old value of the register and overwriting just
the relevant parts with the new register. For the purposes of an
argument, it would probably be fine to just pad with zeroes, but merging
with the existing value is what gdb does.

Fixes #2698
2021-09-24 15:27:44 -07:00

220 lines
6.5 KiB
Go

package proc
import (
"encoding/binary"
"errors"
"fmt"
"github.com/go-delve/delve/pkg/dwarf/op"
)
const cacheEnabled = true
// MemoryReader is like io.ReaderAt, but the offset is a uint64 so that it
// can address all of 64-bit memory.
// Redundant with memoryReadWriter but more easily suited to working with
// the standard io package.
type MemoryReader interface {
// ReadMemory is just like io.ReaderAt.ReadAt.
ReadMemory(buf []byte, addr uint64) (n int, err error)
}
// MemoryReadWriter is an interface for reading or writing to
// the targets memory. This allows us to read from the actual
// target memory or possibly a cache.
type MemoryReadWriter interface {
MemoryReader
WriteMemory(addr uint64, data []byte) (written int, err error)
}
type memCache struct {
loaded bool
cacheAddr uint64
cache []byte
mem MemoryReadWriter
}
func (m *memCache) contains(addr uint64, size int) bool {
return addr >= m.cacheAddr && addr <= (m.cacheAddr+uint64(len(m.cache)-size))
}
func (m *memCache) ReadMemory(data []byte, addr uint64) (n int, err error) {
if m.contains(addr, len(data)) {
if !m.loaded {
_, err := m.mem.ReadMemory(m.cache, m.cacheAddr)
if err != nil {
return 0, err
}
m.loaded = true
}
copy(data, m.cache[addr-m.cacheAddr:])
return len(data), nil
}
return m.mem.ReadMemory(data, addr)
}
func (m *memCache) WriteMemory(addr uint64, data []byte) (written int, err error) {
return m.mem.WriteMemory(addr, data)
}
func CreateLoadedCachedMemory(data []byte) MemoryReadWriter {
return &memCache{loaded: true, cacheAddr: fakeAddressUnresolv, cache: data, mem: nil}
}
func cacheMemory(mem MemoryReadWriter, addr uint64, size int) MemoryReadWriter {
if !cacheEnabled {
return mem
}
if size <= 0 {
return mem
}
switch cacheMem := mem.(type) {
case *memCache:
if cacheMem.contains(addr, size) {
return mem
}
case *compositeMemory:
return mem
}
return &memCache{false, addr, make([]byte, size), mem}
}
// compositeMemory represents a chunk of memory that is stored in CPU
// registers or non-contiguously.
//
// When optimizations are enabled the compiler will store some variables
// into registers and sometimes it will also store structs non-contiguously
// with some fields stored into CPU registers and other fields stored in
// memory.
type compositeMemory struct {
base uint64 // base address for this composite memory
realmem MemoryReadWriter
arch *Arch
regs op.DwarfRegisters
pieces []op.Piece
data []byte
}
// CreateCompositeMemory created a new composite memory type using the provided MemoryReadWriter as the
// underlying memory buffer.
func CreateCompositeMemory(mem MemoryReadWriter, arch *Arch, regs op.DwarfRegisters, pieces []op.Piece) (*compositeMemory, error) {
// This is basically a small wrapper to avoid having to change all callers
// of newCompositeMemory since it existed first.
cm, err := newCompositeMemory(mem, arch, regs, pieces)
if cm != nil {
cm.base = fakeAddressUnresolv
}
return cm, err
}
func newCompositeMemory(mem MemoryReadWriter, arch *Arch, regs op.DwarfRegisters, pieces []op.Piece) (*compositeMemory, error) {
cmem := &compositeMemory{realmem: mem, arch: arch, regs: regs, pieces: pieces, data: []byte{}}
for i := range pieces {
piece := &pieces[i]
switch piece.Kind {
case op.RegPiece:
reg := regs.Bytes(piece.Val)
if piece.Size == 0 && i == len(pieces)-1 {
piece.Size = len(reg)
}
if piece.Size > len(reg) {
if regs.FloatLoadError != nil {
return nil, fmt.Errorf("could not read %d bytes from register %d (size: %d), also error loading floating point registers: %v", piece.Size, piece.Val, len(reg), regs.FloatLoadError)
}
return nil, fmt.Errorf("could not read %d bytes from register %d (size: %d)", piece.Size, piece.Val, len(reg))
}
cmem.data = append(cmem.data, reg[:piece.Size]...)
case op.AddrPiece:
buf := make([]byte, piece.Size)
mem.ReadMemory(buf, uint64(piece.Val))
cmem.data = append(cmem.data, buf...)
case op.ImmPiece:
buf := piece.Bytes
if buf == nil {
sz := 8
if piece.Size > sz {
sz = piece.Size
}
if piece.Size == 0 && i == len(pieces)-1 {
piece.Size = arch.PtrSize() // DWARF doesn't say what this should be
}
buf = make([]byte, sz)
binary.LittleEndian.PutUint64(buf, piece.Val)
}
cmem.data = append(cmem.data, buf[:piece.Size]...)
default:
panic("unsupported piece kind")
}
}
return cmem, nil
}
func (mem *compositeMemory) ReadMemory(data []byte, addr uint64) (int, error) {
addr -= mem.base
if addr >= uint64(len(mem.data)) || addr+uint64(len(data)) > uint64(len(mem.data)) {
return 0, errors.New("read out of bounds")
}
copy(data, mem.data[addr:addr+uint64(len(data))])
return len(data), nil
}
func (mem *compositeMemory) WriteMemory(addr uint64, data []byte) (int, error) {
addr -= mem.base
if addr >= uint64(len(mem.data)) || addr+uint64(len(data)) > uint64(len(mem.data)) {
return 0, errors.New("write out of bounds")
}
if mem.regs.ChangeFunc == nil {
return 0, errors.New("can not write registers")
}
copy(mem.data[addr:], data)
curAddr := uint64(0)
donesz := 0
for _, piece := range mem.pieces {
if curAddr < (addr+uint64(len(data))) && addr < (curAddr+uint64(piece.Size)) {
// changed memory interval overlaps current piece
pieceMem := mem.data[curAddr : curAddr+uint64(piece.Size)]
switch piece.Kind {
case op.RegPiece:
oldReg := mem.regs.Reg(piece.Val)
newReg := op.DwarfRegisterFromBytes(pieceMem)
err := mem.regs.ChangeFunc(piece.Val, oldReg.Overwrite(newReg))
if err != nil {
return donesz, err
}
case op.AddrPiece:
n, err := mem.realmem.WriteMemory(uint64(piece.Val), pieceMem)
if err != nil {
return donesz + n, err
}
case op.ImmPiece:
//TODO(aarzilli): maybe return an error if the user tried to change the value?
// nothing to do
default:
panic("unsupported piece kind")
}
donesz += piece.Size
}
curAddr += uint64(piece.Size)
}
return len(data), nil
}
// DereferenceMemory returns a MemoryReadWriter that can read and write the
// memory pointed to by pointers in this memory.
// Normally mem and mem.Dereference are the same object, they are different
// only if this MemoryReadWriter is used to access memory outside of the
// normal address space of the inferior process (such as data contained in
// registers, or composite memory).
func DereferenceMemory(mem MemoryReadWriter) MemoryReadWriter {
switch mem := mem.(type) {
case *compositeMemory:
return mem.realmem
}
return mem
}