delve/pkg/proc/i386_arch.go
Alessandro Arzilli 200994bc8f
proc/*: only load floating point registers when needed (#1981)
Changes implementations of proc.Registers interface and the
op.DwarfRegisters struct so that floating point registers can be loaded
only when they are needed.
Removes the floatingPoint parameter from proc.Thread.Registers.
This accomplishes three things:

1. it simplifies the proc.Thread.Registers interface
2. it makes it impossible to accidentally create a broken set of saved
   registers or of op.DwarfRegisters by accidentally calling
   Registers(false)
3. it improves general performance of Delve by avoiding to load
   floating point registers as much as possible

Floating point registers are loaded under two circumstances:

1. When the Slice method is called with floatingPoint == true
2. When the Copy method is called

Benchmark before:

BenchmarkConditionalBreakpoints-4   	       1	4327350142 ns/op

Benchmark after:

BenchmarkConditionalBreakpoints-4   	       1	3852642917 ns/op

Updates #1549
2020-05-13 11:56:50 -07:00

309 lines
9.5 KiB
Go

package proc
import (
"encoding/binary"
"fmt"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"strings"
)
const (
i386DwarfIPRegNum uint64 = 8
i386DwarfSPRegNum uint64 = 4
i386DwarfBPRegNum uint64 = 5
)
var i386BreakInstruction = []byte{0xCC}
// I386Arch returns an initialized I386Arch
// struct.
func I386Arch(goos string) *Arch {
return &Arch{
Name: "386",
ptrSize: 4,
maxInstructionLength: 15,
breakpointInstruction: i386BreakInstruction,
breakInstrMovesPC: true,
derefTLS: false,
prologues: prologuesI386,
fixFrameUnwindContext: i386FixFrameUnwindContext,
switchStack: i386SwitchStack,
regSize: i386RegSize,
RegistersToDwarfRegisters: i386RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: i386AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: i386DwarfRegisterToString,
inhibitStepInto: i386InhibitStepInto,
asmDecode: i386AsmDecode,
}
}
func i386FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
i := bi.Arch
if i.sigreturnfn == nil {
i.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
}
if fctxt == nil || (i.sigreturnfn != nil && pc >= i.sigreturnfn.Entry && pc < i.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + i.PtrSize()] (i.e. [cfa-i.PtrSize()])
// - cfa is bp + i.PtrSize()*2
// - bp is [bp] (i.e. [cfa-i.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't i proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute i stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: i386DwarfIPRegNum,
Regs: map[uint64]frame.DWRule{
i386DwarfIPRegNum: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-i.PtrSize()),
},
i386DwarfBPRegNum: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-2 * i.PtrSize()),
},
i386DwarfSPRegNum: frame.DWRule{
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: i386DwarfBPRegNum,
Offset: int64(2 * i.PtrSize()),
},
}
}
if i.crosscall2fn == nil {
i.crosscall2fn = bi.LookupFunc["crosscall2"]
}
// TODO(chainhelen), need to check whether there is a bad frame descriptor like amd64.
// crosscall2 is defined in $GOROOT/src/runtime/cgo/asm_386.s.
if i.crosscall2fn != nil && pc >= i.crosscall2fn.Entry && pc < i.crosscall2fn.End {
rule := fctxt.CFA
fctxt.CFA = rule
}
// We assume that EBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't i rule already we emit one.
if fctxt.Regs[i386DwarfBPRegNum].Rule == frame.RuleUndefined {
fctxt.Regs[i386DwarfBPRegNum] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: i386DwarfBPRegNum,
Offset: 0,
}
}
return fctxt
}
// SwitchStack will use the current frame to determine if it's time to
func i386SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall", "runtime.cgocallback_gofunc": // TODO(chainhelen), need to support cgo stacktraces.
return false
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
default:
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
// The runtime switches to the system stack in multiple places.
// This usually happens through a call to runtime.systemstack but there
// are functions that switch to the system stack manually (for example
// runtime.morestack).
// Since we are only interested in printing the system stack for cgo
// calls we switch directly to the goroutine stack if we detect that the
// function at the top of the stack is a runtime function.
//
// The function "runtime.fatalthrow" is deliberately excluded from this
// because it can end up in the stack during a cgo call and switching to
// the goroutine stack will exclude all the C functions from the stack
// trace.
it.switchToGoroutineStack()
return true
}
return false
}
}
// RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI Intel386 Architecture Processor Supplement page 25,
// table 2.14
// https://www.uclibc.org/docs/psABI-i386.pdf
func i386RegSize(regnum uint64) int {
// XMM registers
if regnum >= 21 && regnum <= 36 {
return 16
}
// x87 registers
if regnum >= 11 && regnum <= 18 {
return 10
}
return 4
}
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI Intel386 Architecture Processor Supplement page 25,
// table 2.14
// https://www.uclibc.org/docs/psABI-i386.pdf
var i386DwarfToName = map[int]string{
0: "Eax",
1: "Ecx",
2: "Edx",
3: "Ebx",
4: "Esp",
5: "Ebp",
6: "Esi",
7: "Edi",
8: "Eip",
9: "Eflags",
11: "ST(0)",
12: "ST(1)",
13: "ST(2)",
14: "ST(3)",
15: "ST(4)",
16: "ST(5)",
17: "ST(6)",
18: "ST(7)",
21: "XMM0",
22: "XMM1",
23: "XMM2",
24: "XMM3",
25: "XMM4",
26: "XMM5",
27: "XMM6",
28: "XMM7",
40: "Es",
41: "Cs",
42: "Ss",
43: "Ds",
44: "Fs",
45: "Gs",
}
var i386NameToDwarf = func() map[string]int {
r := make(map[string]int)
for regNum, regName := range i386DwarfToName {
r[strings.ToLower(regName)] = regNum
}
r["eflags"] = 9
r["st0"] = 11
r["st1"] = 12
r["st2"] = 13
r["st3"] = 14
r["st4"] = 15
r["st5"] = 16
r["st6"] = 17
r["st7"] = 18
return r
}()
func maxI386DwarfRegister() int {
max := int(i386DwarfIPRegNum)
for i := range i386DwarfToName {
if i > max {
max = i
}
}
return max
}
func i386RegistersToDwarfRegisters(staticBase uint64, regs Registers) op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(maxI386DwarfRegister(), regs, i386NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, i386DwarfIPRegNum, i386DwarfSPRegNum, i386DwarfBPRegNum, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, i386NameToDwarf))
return *dr
}
func i386AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, i386DwarfIPRegNum+1)
dregs[i386DwarfIPRegNum] = op.DwarfRegisterFromUint64(pc)
dregs[i386DwarfSPRegNum] = op.DwarfRegisterFromUint64(sp)
dregs[i386DwarfBPRegNum] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, i386DwarfIPRegNum, i386DwarfSPRegNum, i386DwarfBPRegNum, 0)
}
func i386DwarfRegisterToString(j int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name, ok := i386DwarfToName[j]
if !ok {
name = fmt.Sprintf("unknown%d", j)
}
switch n := strings.ToLower(name); n {
case "eflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 32)
case "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
// i386InhibitStepInto returns whether StepBreakpoint can be set at pc.
// When cgo or pie on 386 linux, compiler will insert more instructions (ex: call __x86.get_pc_thunk.).
// StepBreakpoint shouldn't be set on __x86.get_pc_thunk and skip it.
// See comments on stacksplit in $GOROOT/src/cmd/internal/obj/x86/obj6.go for generated instructions details.
func i386InhibitStepInto(bi *BinaryInfo, pc uint64) bool {
if bi.SymNames != nil && bi.SymNames[pc] != nil &&
strings.HasPrefix(bi.SymNames[pc].Name, "__x86.get_pc_thunk.") {
return true
}
return false
}