delve/pkg/proc/amd64_arch.go
Alessandro Arzilli c5d58f494a
proc: add way to use CPU registers in expressions (#2446)
Changes the expression evaluation code so that register names, when not
shadowed by local or global variables, will evaluate to the current
value of the corresponding CPU register.

This allows a greater flexibility with displaying CPU registers than is
possible with using the ListRegisters API call. Also it allows
debuggers users to view register values even if the frontend they are
using does not implement a register view.
2021-05-04 12:56:17 -07:00

465 lines
15 KiB
Go

package proc
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var amd64BreakInstruction = []byte{0xCC}
// AMD64Arch returns an initialized AMD64
// struct.
func AMD64Arch(goos string) *Arch {
return &Arch{
Name: "amd64",
ptrSize: 8,
maxInstructionLength: 15,
breakpointInstruction: amd64BreakInstruction,
breakInstrMovesPC: true,
derefTLS: goos == "windows",
prologues: prologuesAMD64,
fixFrameUnwindContext: amd64FixFrameUnwindContext,
switchStack: amd64SwitchStack,
regSize: amd64RegSize,
RegistersToDwarfRegisters: amd64RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: amd64AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: amd64DwarfRegisterToString,
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
asmDecode: amd64AsmDecode,
PCRegNum: regnum.AMD64_Rip,
SPRegNum: regnum.AMD64_Rsp,
BPRegNum: regnum.AMD64_Rbp,
ContextRegNum: regnum.AMD64_Rdx,
asmRegisters: amd64AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.AMD64NameToDwarf),
}
}
func amd64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
a := bi.Arch
if a.sigreturnfn == nil {
a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
}
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
// - cfa is bp + a.PtrSize()*2
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't a proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute a stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.AMD64_Rip,
Regs: map[uint64]frame.DWRule{
regnum.AMD64_Rip: {
Rule: frame.RuleOffset,
Offset: int64(-a.PtrSize()),
},
regnum.AMD64_Rbp: {
Rule: frame.RuleOffset,
Offset: int64(-2 * a.PtrSize()),
},
regnum.AMD64_Rsp: {
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.AMD64_Rbp,
Offset: int64(2 * a.PtrSize()),
},
}
}
if a.crosscall2fn == nil {
a.crosscall2fn = bi.LookupFunc["crosscall2"]
}
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
rule := fctxt.CFA
if rule.Offset == crosscall2SPOffsetBad {
switch bi.GOOS {
case "windows":
rule.Offset += crosscall2SPOffsetWindows
default:
rule.Offset += crosscall2SPOffsetNonWindows
}
}
fctxt.CFA = rule
}
// We assume that RBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't a rule already we emit one.
if fctxt.Regs[regnum.AMD64_Rbp].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.AMD64_Rbp] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.AMD64_Rbp,
Offset: 0,
}
}
return fctxt
}
// cgocallSPOffsetSaveSlot is the offset from systemstack.SP where
// (goroutine.SP - StackHi) is saved in runtime.asmcgocall after the stack
// switch happens.
const amd64cgocallSPOffsetSaveSlot = 0x28
func amd64SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall":
if it.top || !it.systemstack {
return false
}
// This function is called by a goroutine to execute a C function and
// switches from the goroutine stack to the system stack.
// Since we are unwinding the stack from callee to caller we have to switch
// from the system stack to the goroutine stack.
off, _ := readIntRaw(it.mem, uint64(it.regs.SP()+amd64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize())) // reads "offset of SP from StackHi" from where runtime.asmcgocall saved it
oldsp := it.regs.SP()
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(it.stackhi) - off)
// runtime.asmcgocall can also be called from inside the system stack,
// in that case no stack switch actually happens
if it.regs.SP() == oldsp {
return false
}
it.systemstack = false
// advances to the next frame in the call stack
it.frame.addrret = uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()))
it.frame.Ret, _ = readUintRaw(it.mem, it.frame.addrret, int64(it.bi.Arch.PtrSize()))
it.pc = it.frame.Ret
it.top = false
return true
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
// For a detailed description of how this works read the long comment at
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_amd64.s
//
// When a C functions calls back into go it will eventually call into
// runtime.cgocallback_gofunc which is the function that does the stack
// switch from the system stack back into the goroutine stack
// Since we are going backwards on the stack here we see the transition
// as goroutine stack -> system stack.
if it.top || it.systemstack {
return false
}
it.loadG0SchedSP()
if it.g0_sched_sp <= 0 {
return false
}
// entering the system stack
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g0_sched_sp
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
it.g0_sched_sp, _ = readUintRaw(it.mem, uint64(it.regs.SP()), int64(it.bi.Arch.PtrSize()))
it.top = false
callFrameRegs, ret, retaddr := it.advanceRegs()
frameOnSystemStack := it.newStackframe(ret, retaddr)
it.pc = frameOnSystemStack.Ret
it.regs = callFrameRegs
it.systemstack = true
return true
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
default:
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
// The runtime switches to the system stack in multiple places.
// This usually happens through a call to runtime.systemstack but there
// are functions that switch to the system stack manually (for example
// runtime.morestack).
// Since we are only interested in printing the system stack for cgo
// calls we switch directly to the goroutine stack if we detect that the
// function at the top of the stack is a runtime function.
//
// The function "runtime.fatalthrow" is deliberately excluded from this
// because it can end up in the stack during a cgo call and switching to
// the goroutine stack will exclude all the C functions from the stack
// trace.
it.switchToGoroutineStack()
return true
}
return false
}
}
// amd64RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
// figure 3.36
// https://www.uclibc.org/docs/psABI-x86_64.pdf
func amd64RegSize(rn uint64) int {
// XMM registers
if rn > regnum.AMD64_Rip && rn <= 32 {
return 16
}
// x87 registers
if rn >= 33 && rn <= 40 {
return 10
}
return 8
}
func amd64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(int(regnum.AMD64MaxRegNum()), regs, regnum.AMD64NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.AMD64NameToDwarf))
return dr
}
func initDwarfRegistersFromSlice(maxRegs int, regs Registers, nameToDwarf map[string]int) []*op.DwarfRegister {
dregs := make([]*op.DwarfRegister, maxRegs+1)
regslice, _ := regs.Slice(false)
for _, reg := range regslice {
if dwarfReg, ok := nameToDwarf[strings.ToLower(reg.Name)]; ok {
dregs[dwarfReg] = reg.Reg
}
}
return dregs
}
func loadMoreDwarfRegistersFromSliceFunc(dr *op.DwarfRegisters, regs Registers, nameToDwarf map[string]int) func() {
return func() {
regslice, err := regs.Slice(true)
dr.FloatLoadError = err
for _, reg := range regslice {
name := strings.ToLower(reg.Name)
if dwarfReg, ok := nameToDwarf[name]; ok {
dr.AddReg(uint64(dwarfReg), reg.Reg)
} else if reg.Reg.Bytes != nil && (strings.HasPrefix(name, "ymm") || strings.HasPrefix(name, "zmm")) {
xmmIdx, ok := nameToDwarf["x"+name[1:]]
if !ok {
continue
}
xmmReg := dr.Reg(uint64(xmmIdx))
if xmmReg == nil || xmmReg.Bytes == nil {
continue
}
nb := make([]byte, 0, len(xmmReg.Bytes)+len(reg.Reg.Bytes))
nb = append(nb, xmmReg.Bytes...)
nb = append(nb, reg.Reg.Bytes...)
xmmReg.Bytes = nb
}
}
}
}
func amd64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.AMD64_Rip+1)
dregs[regnum.AMD64_Rip] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.AMD64_Rsp] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.AMD64_Rbp] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
}
func amd64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.AMD64ToName(uint64(i))
if reg == nil {
return name, false, ""
}
switch n := strings.ToLower(name); n {
case "rflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 64)
case "cw", "sw", "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
case "mxcsr_mask":
return name, true, fmt.Sprintf("%#08x", reg.Uint64Val)
case "mxcsr":
return name, true, mxcsrDescription.Describe(reg.Uint64Val, 32)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(name, reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
func formatSSEReg(name string, reg []byte) string {
out := new(bytes.Buffer)
formatSSERegInternal(reg, out)
if len(reg) < 32 {
return out.String()
}
fmt.Fprintf(out, "\n\t[%sh] ", "Y"+name[1:])
formatSSERegInternal(reg[16:], out)
if len(reg) < 64 {
return out.String()
}
fmt.Fprintf(out, "\n\t[%shl] ", "Z"+name[1:])
formatSSERegInternal(reg[32:], out)
fmt.Fprintf(out, "\n\t[%shh] ", "Z"+name[1:])
formatSSERegInternal(reg[48:], out)
return out.String()
}
func formatSSERegInternal(xmm []byte, out *bytes.Buffer) {
buf := bytes.NewReader(xmm)
var vi [16]uint8
for i := range vi {
binary.Read(buf, binary.LittleEndian, &vi[i])
}
fmt.Fprintf(out, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8], vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(out, "\tv2_int={ %02x%02x%02x%02x%02x%02x%02x%02x %02x%02x%02x%02x%02x%02x%02x%02x }", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0], vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(out, "\tv4_int={ %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x }", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4], vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
fmt.Fprintf(out, "\tv8_int={ %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x }", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6], vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
fmt.Fprintf(out, "\tv16_int={ %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x }", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7], vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
buf.Seek(0, io.SeekStart)
var v2 [2]float64
for i := range v2 {
binary.Read(buf, binary.LittleEndian, &v2[i])
}
fmt.Fprintf(out, "\tv2_float={ %g %g }", v2[0], v2[1])
buf.Seek(0, io.SeekStart)
var v4 [4]float32
for i := range v4 {
binary.Read(buf, binary.LittleEndian, &v4[i])
}
fmt.Fprintf(out, "\tv4_float={ %g %g %g %g }", v4[0], v4[1], v4[2], v4[3])
}
func formatX87Reg(b []byte) string {
if len(b) < 10 {
return fmt.Sprintf("%#x", b)
}
mantissa := binary.LittleEndian.Uint64(b[:8])
exponent := uint16(binary.LittleEndian.Uint16(b[8:]))
var f float64
fset := false
const (
_SIGNBIT = 1 << 15
_EXP_BIAS = (1 << 14) - 1 // 2^(n-1) - 1 = 16383
_SPECIALEXP = (1 << 15) - 1 // all bits set
_HIGHBIT = 1 << 63
_QUIETBIT = 1 << 62
)
sign := 1.0
if exponent&_SIGNBIT != 0 {
sign = -1.0
}
exponent &= ^uint16(_SIGNBIT)
NaN := math.NaN()
Inf := math.Inf(+1)
switch exponent {
case 0:
switch {
case mantissa == 0:
f = sign * 0.0
fset = true
case mantissa&_HIGHBIT != 0:
f = NaN
fset = true
}
case _SPECIALEXP:
switch {
case mantissa&_HIGHBIT == 0:
f = sign * Inf
fset = true
default:
f = NaN // signaling NaN
fset = true
}
default:
if mantissa&_HIGHBIT == 0 {
f = NaN
fset = true
}
}
if !fset {
significand := float64(mantissa) / (1 << 63)
f = sign * math.Ldexp(significand, int(exponent-_EXP_BIAS))
}
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, exponent)
binary.Write(&buf, binary.LittleEndian, mantissa)
return fmt.Sprintf("%#04x%016x\t%g", exponent, mantissa, f)
}