delve/pkg/proc/core/core.go
Alessandro Arzilli 354055836a proc: next, stepout should work on recursive goroutines (#831)
Before this commit our temp breakpoints only checked that we would stay
on the same goroutine.
However this isn't enough for recursive functions we must check that we
stay on the same goroutine AND on the same stack frame (or, in the case
of the StepOut breakpoint, the previous stack frame).

This commit:
1. adds a new synthetic variable runtime.frameoff that returns the
   offset of the current frame from the base of the call stack.
   This is similar to runtime.curg
2. Changes the condition used for breakpoints on the lines of the
   current function to check that runtime.frameoff hasn't changed.
3. Changes the condition used for breakpoints on the return address to
   check that runtime.frameoff corresponds to the previous frame in the
   stack.
4. All other temporary breakpoints (the step-into breakpoints and defer
   breakpoints) remain unchanged.

Fixes #828
2017-05-16 11:23:33 -07:00

356 lines
9.1 KiB
Go

package core
import (
"errors"
"fmt"
"go/ast"
"io"
"sync"
"github.com/derekparker/delve/pkg/proc"
)
// A SplicedMemory represents a memory space formed from multiple regions,
// each of which may override previously regions. For example, in the following
// core, the program text was loaded at 0x400000:
// Start End Page Offset
// 0x0000000000400000 0x000000000044f000 0x0000000000000000
// but then it's partially overwritten with an RW mapping whose data is stored
// in the core file:
// Type Offset VirtAddr PhysAddr
// FileSiz MemSiz Flags Align
// LOAD 0x0000000000004000 0x000000000049a000 0x0000000000000000
// 0x0000000000002000 0x0000000000002000 RW 1000
// This can be represented in a SplicedMemory by adding the original region,
// then putting the RW mapping on top of it.
type SplicedMemory struct {
readers []readerEntry
}
type readerEntry struct {
offset uintptr
length uintptr
reader proc.MemoryReader
}
// Add adds a new region to the SplicedMemory, which may override existing regions.
func (r *SplicedMemory) Add(reader proc.MemoryReader, off, length uintptr) {
if length == 0 {
return
}
end := off + length - 1
newReaders := make([]readerEntry, 0, len(r.readers))
add := func(e readerEntry) {
if e.length == 0 {
return
}
newReaders = append(newReaders, e)
}
inserted := false
// Walk through the list of regions, fixing up any that overlap and inserting the new one.
for _, entry := range r.readers {
entryEnd := entry.offset + entry.length - 1
switch {
case entryEnd < off:
// Entry is completely before the new region.
add(entry)
case end < entry.offset:
// Entry is completely after the new region.
if !inserted {
add(readerEntry{off, length, reader})
inserted = true
}
add(entry)
case off <= entry.offset && entryEnd <= end:
// Entry is completely overwritten by the new region. Drop.
case entry.offset < off && entryEnd <= end:
// New region overwrites the end of the entry.
entry.length = off - entry.offset
add(entry)
case off <= entry.offset && end < entryEnd:
// New reader overwrites the beginning of the entry.
if !inserted {
add(readerEntry{off, length, reader})
inserted = true
}
overlap := entry.offset - off
entry.offset += overlap
entry.length -= overlap
add(entry)
case entry.offset < off && end < entryEnd:
// New region punches a hole in the entry. Split it in two and put the new region in the middle.
add(readerEntry{entry.offset, off - entry.offset, entry.reader})
add(readerEntry{off, length, reader})
add(readerEntry{end + 1, entryEnd - end, entry.reader})
inserted = true
default:
panic(fmt.Sprintf("Unhandled case: existing entry is %v len %v, new is %v len %v", entry.offset, entry.length, off, length))
}
}
if !inserted {
newReaders = append(newReaders, readerEntry{off, length, reader})
}
r.readers = newReaders
}
// ReadMemory implements MemoryReader.ReadMemory.
func (r *SplicedMemory) ReadMemory(buf []byte, addr uintptr) (n int, err error) {
started := false
for _, entry := range r.readers {
if entry.offset+entry.length < addr {
if !started {
continue
}
return n, fmt.Errorf("hit unmapped area at %v after %v bytes", addr, n)
}
// Don't go past the region.
pb := buf
if addr+uintptr(len(buf)) > entry.offset+entry.length {
pb = pb[:entry.offset+entry.length-addr]
}
pn, err := entry.reader.ReadMemory(pb, addr)
n += pn
if err != nil || pn != len(pb) {
return n, err
}
buf = buf[pn:]
addr += uintptr(pn)
if len(buf) == 0 {
// Done, don't bother scanning the rest.
return n, nil
}
}
if n == 0 {
return 0, fmt.Errorf("offset %v did not match any regions", addr)
}
return n, nil
}
// OffsetReaderAt wraps a ReaderAt into a MemoryReader, subtracting a fixed
// offset from the address. This is useful to represent a mapping in an address
// space. For example, if program text is mapped in at 0x400000, an
// OffsetReaderAt with offset 0x400000 can be wrapped around file.Open(program)
// to return the results of a read in that part of the address space.
type OffsetReaderAt struct {
reader io.ReaderAt
offset uintptr
}
func (r *OffsetReaderAt) ReadMemory(buf []byte, addr uintptr) (n int, err error) {
return r.reader.ReadAt(buf, int64(addr-r.offset))
}
type Process struct {
bi proc.BinaryInfo
core *Core
breakpoints map[uint64]*proc.Breakpoint
currentThread *LinuxPrStatus
selectedGoroutine *proc.G
allGCache []*proc.G
}
type Thread struct {
th *LinuxPrStatus
p *Process
}
var ErrWriteCore = errors.New("can not to core process")
var ErrShortRead = errors.New("short read")
var ErrContinueCore = errors.New("can not continue execution of core process")
func OpenCore(corePath, exePath string) (*Process, error) {
core, err := readCore(corePath, exePath)
if err != nil {
return nil, err
}
p := &Process{
core: core,
breakpoints: make(map[uint64]*proc.Breakpoint),
bi: proc.NewBinaryInfo("linux", "amd64"),
}
var wg sync.WaitGroup
p.bi.LoadBinaryInfo(exePath, &wg)
wg.Wait()
for _, th := range p.core.Threads {
p.currentThread = th
break
}
ver, isextld, err := proc.GetGoInformation(p)
if err != nil {
return nil, err
}
p.bi.Arch.SetGStructOffset(ver, isextld)
p.selectedGoroutine, _ = proc.GetG(p.CurrentThread())
return p, nil
}
func (p *Process) BinInfo() *proc.BinaryInfo {
return &p.bi
}
func (p *Process) Recorded() (bool, string) { return true, "" }
func (p *Process) Restart(string) error { return ErrContinueCore }
func (p *Process) Direction(proc.Direction) error { return ErrContinueCore }
func (p *Process) When() (string, error) { return "", nil }
func (p *Process) Checkpoint(string) (int, error) { return -1, ErrContinueCore }
func (p *Process) Checkpoints() ([]proc.Checkpoint, error) { return nil, nil }
func (p *Process) ClearCheckpoint(int) error { return errors.New("checkpoint not found") }
func (thread *Thread) ReadMemory(data []byte, addr uintptr) (n int, err error) {
n, err = thread.p.core.ReadMemory(data, addr)
if err == nil && n != len(data) {
err = ErrShortRead
}
return n, err
}
func (thread *Thread) WriteMemory(addr uintptr, data []byte) (int, error) {
return 0, ErrWriteCore
}
func (t *Thread) Location() (*proc.Location, error) {
f, l, fn := t.p.bi.PCToLine(t.th.Reg.Rip)
return &proc.Location{PC: t.th.Reg.Rip, File: f, Line: l, Fn: fn}, nil
}
func (t *Thread) Breakpoint() (*proc.Breakpoint, bool, error) {
return nil, false, nil
}
func (t *Thread) ThreadID() int {
return int(t.th.Pid)
}
func (t *Thread) Registers(floatingPoint bool) (proc.Registers, error) {
//TODO(aarzilli): handle floating point registers
return &t.th.Reg, nil
}
func (t *Thread) Arch() proc.Arch {
return t.p.bi.Arch
}
func (t *Thread) BinInfo() *proc.BinaryInfo {
return &t.p.bi
}
func (t *Thread) StepInstruction() error {
return ErrContinueCore
}
func (t *Thread) Blocked() bool {
return false
}
func (t *Thread) SetCurrentBreakpoint() error {
return nil
}
func (p *Process) Breakpoints() map[uint64]*proc.Breakpoint {
return p.breakpoints
}
func (p *Process) ClearBreakpoint(addr uint64) (*proc.Breakpoint, error) {
return nil, proc.NoBreakpointError{Addr: addr}
}
func (p *Process) ClearInternalBreakpoints() error {
return nil
}
func (p *Process) ContinueOnce() (proc.Thread, error) {
return nil, ErrContinueCore
}
func (p *Process) StepInstruction() error {
return ErrContinueCore
}
func (p *Process) RequestManualStop() error {
return nil
}
func (p *Process) CurrentThread() proc.Thread {
return &Thread{p.currentThread, p}
}
func (p *Process) Detach(bool) error {
return nil
}
func (p *Process) Exited() bool {
return false
}
func (p *Process) AllGCache() *[]*proc.G {
return &p.allGCache
}
func (p *Process) Halt() error {
return nil
}
func (p *Process) Kill() error {
return nil
}
func (p *Process) Pid() int {
return p.core.Pid
}
func (p *Process) Running() bool {
return false
}
func (p *Process) SelectedGoroutine() *proc.G {
return p.selectedGoroutine
}
func (p *Process) SetBreakpoint(addr uint64, kind proc.BreakpointKind, cond ast.Expr) (*proc.Breakpoint, error) {
return nil, ErrWriteCore
}
func (p *Process) SwitchGoroutine(gid int) error {
g, err := proc.FindGoroutine(p, gid)
if err != nil {
return err
}
if g == nil {
// user specified -1 and selectedGoroutine is nil
return nil
}
if g.Thread != nil {
return p.SwitchThread(g.Thread.ThreadID())
}
p.selectedGoroutine = g
return nil
}
func (p *Process) SwitchThread(tid int) error {
if th, ok := p.core.Threads[tid]; ok {
p.currentThread = th
p.selectedGoroutine, _ = proc.GetG(p.CurrentThread())
return nil
}
return fmt.Errorf("thread %d does not exist", tid)
}
func (p *Process) ThreadList() []proc.Thread {
r := make([]proc.Thread, 0, len(p.core.Threads))
for _, v := range p.core.Threads {
r = append(r, &Thread{v, p})
}
return r
}
func (p *Process) FindThread(threadID int) (proc.Thread, bool) {
t, ok := p.core.Threads[threadID]
return &Thread{t, p}, ok
}