delve/pkg/proc/target.go
Alessandro Arzilli 37e44bf603
proc,proc/native: adds ability to automatically debug child processes (#3165)
Adds the ability to automatically debug child processes executed by the
target to the linux native backend.
This commit does not contain user interface or API to access this
functionality.

Updates #2551
2023-02-22 09:26:28 -08:00

651 lines
20 KiB
Go

package proc
import (
"errors"
"fmt"
"go/constant"
"os"
"sort"
"strings"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
"github.com/go-delve/delve/pkg/proc/internal/ebpf"
)
var (
// ErrNotRecorded is returned when an action is requested that is
// only possible on recorded (traced) programs.
ErrNotRecorded = errors.New("not a recording")
// ErrNoRuntimeAllG is returned when the runtime.allg list could
// not be found.
ErrNoRuntimeAllG = errors.New("could not find goroutine array")
// ErrProcessDetached indicates that we detached from the target process.
ErrProcessDetached = errors.New("detached from the process")
)
type LaunchFlags uint8
const (
LaunchForeground LaunchFlags = 1 << iota
LaunchDisableASLR
)
// Target represents the process being debugged.
type Target struct {
Process
proc ProcessInternal
recman RecordingManipulationInternal
pid int
// StopReason describes the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
StopReason StopReason
// currentThread is the thread that will be used by next/step/stepout and to evaluate variables if no goroutine is selected.
currentThread Thread
// Goroutine that will be used by default to set breakpoint, eval variables, etc...
// Normally selectedGoroutine is currentThread.GetG, it will not be only if SwitchGoroutine is called with a goroutine that isn't attached to a thread
selectedGoroutine *G
// fncallForG stores a mapping of current active function calls.
fncallForG map[int64]*callInjection
asyncPreemptChanged bool // runtime/debug.asyncpreemptoff was changed
asyncPreemptOff int64 // cached value of runtime/debug.asyncpreemptoff
// gcache is a cache for Goroutines that we
// have read and parsed from the targets memory.
// This must be cleared whenever the target is resumed.
gcache goroutineCache
iscgo *bool
// exitStatus is the exit status of the process we are debugging.
// Saved here to relay to any future commands.
exitStatus int
// fakeMemoryRegistry contains the list of all compositeMemory objects
// created since the last restart, it exists so that registerized variables
// can be given a unique address.
fakeMemoryRegistry []*compositeMemory
fakeMemoryRegistryMap map[string]*compositeMemory
partOfGroup bool
}
type KeepSteppingBreakpoints uint8
const (
HaltKeepsSteppingBreakpoints KeepSteppingBreakpoints = 1 << iota
TracepointKeepsSteppingBreakpoints
)
// ErrProcessExited indicates that the process has exited and contains both
// process id and exit status.
type ErrProcessExited struct {
Pid int
Status int
}
func (pe ErrProcessExited) Error() string {
return fmt.Sprintf("Process %d has exited with status %d", pe.Pid, pe.Status)
}
// StopReason describes the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
type StopReason uint8
// String maps StopReason to string representation.
func (sr StopReason) String() string {
switch sr {
case StopUnknown:
return "unknown"
case StopLaunched:
return "launched"
case StopAttached:
return "attached"
case StopExited:
return "exited"
case StopBreakpoint:
return "breakpoint"
case StopHardcodedBreakpoint:
return "hardcoded breakpoint"
case StopManual:
return "manual"
case StopNextFinished:
return "next finished"
case StopCallReturned:
return "call returned"
case StopWatchpoint:
return "watchpoint"
default:
return ""
}
}
const (
StopUnknown StopReason = iota
StopLaunched // The process was just launched
StopAttached // The debugger stopped the process after attaching
StopExited // The target process terminated
StopBreakpoint // The target process hit one or more software breakpoints
StopHardcodedBreakpoint // The target process hit a hardcoded breakpoint (for example runtime.Breakpoint())
StopManual // A manual stop was requested
StopNextFinished // The next/step/stepout/stepInstruction command terminated
StopCallReturned // An injected call completed
StopWatchpoint // The target process hit one or more watchpoints
)
// DisableAsyncPreemptEnv returns a process environment (like os.Environ)
// where asyncpreemptoff is set to 1.
func DisableAsyncPreemptEnv() []string {
env := os.Environ()
for i := range env {
if strings.HasPrefix(env[i], "GODEBUG=") {
// Go 1.14 asynchronous preemption mechanism is incompatible with
// debuggers, see: https://github.com/golang/go/issues/36494
env[i] += ",asyncpreemptoff=1"
}
}
return env
}
// newTarget returns an initialized Target object.
// The p argument can optionally implement the RecordingManipulation interface.
func (grp *TargetGroup) newTarget(p ProcessInternal, pid int, currentThread Thread, path string) (*Target, error) {
entryPoint, err := p.EntryPoint()
if err != nil {
return nil, err
}
err = p.BinInfo().LoadBinaryInfo(path, entryPoint, grp.cfg.DebugInfoDirs)
if err != nil {
return nil, err
}
for _, image := range p.BinInfo().Images {
if image.loadErr != nil {
return nil, image.loadErr
}
}
t := &Target{
Process: p,
proc: p,
fncallForG: make(map[int64]*callInjection),
currentThread: currentThread,
pid: pid,
}
if recman, ok := p.(RecordingManipulationInternal); ok {
t.recman = recman
} else {
t.recman = &dummyRecordingManipulation{}
}
g, _ := GetG(currentThread)
t.selectedGoroutine = g
t.createUnrecoveredPanicBreakpoint()
t.createFatalThrowBreakpoint()
t.createPluginOpenBreakpoint()
t.gcache.init(p.BinInfo())
t.fakeMemoryRegistryMap = make(map[string]*compositeMemory)
if grp.cfg.DisableAsyncPreempt {
setAsyncPreemptOff(t, 1)
}
return t, nil
}
// Pid returns the pid of the target process.
func (t *Target) Pid() int {
return t.pid
}
// IsCgo returns the value of runtime.iscgo
func (t *Target) IsCgo() bool {
if t.iscgo != nil {
return *t.iscgo
}
scope := globalScope(t, t.BinInfo(), t.BinInfo().Images[0], t.Memory())
iscgov, err := scope.findGlobal("runtime", "iscgo")
if err == nil {
iscgov.loadValue(loadFullValue)
if iscgov.Unreadable == nil {
t.iscgo = new(bool)
*t.iscgo = constant.BoolVal(iscgov.Value)
return constant.BoolVal(iscgov.Value)
}
}
return false
}
// Valid returns true if this Process can be used. When it returns false it
// also returns an error describing why the Process is invalid (either
// ErrProcessExited or ErrProcessDetached).
func (t *Target) Valid() (bool, error) {
ok, err := t.proc.Valid()
if !ok && err != nil {
if pe, ok := err.(ErrProcessExited); ok {
pe.Status = t.exitStatus
err = pe
}
}
return ok, err
}
// SupportsFunctionCalls returns whether or not the backend supports
// calling functions during a debug session.
// Currently only non-recorded processes running on AMD64 support
// function calls.
func (t *Target) SupportsFunctionCalls() bool {
return t.Process.BinInfo().Arch.Name == "amd64" || (t.Process.BinInfo().Arch.Name == "arm64" && t.Process.BinInfo().GOOS != "windows")
}
// ClearCaches clears internal caches that should not survive a restart.
// This should be called anytime the target process executes instructions.
func (t *Target) ClearCaches() {
t.clearFakeMemory()
t.gcache.Clear()
for _, thread := range t.ThreadList() {
thread.Common().g = nil
}
}
// Restart will start the process group over from the location specified by the "from" locspec.
// This is only useful for recorded targets.
// Restarting of a normal process happens at a higher level (debugger.Restart).
func (grp *TargetGroup) Restart(from string) error {
if len(grp.targets) != 1 {
panic("multiple targets not implemented")
}
for _, t := range grp.targets {
t.ClearCaches()
}
t := grp.Selected
currentThread, err := t.recman.Restart(grp.cctx, from)
if err != nil {
return err
}
t.currentThread = currentThread
t.selectedGoroutine, _ = GetG(t.CurrentThread())
if from != "" {
t.StopReason = StopManual
} else {
t.StopReason = StopLaunched
}
return nil
}
// SelectedGoroutine returns the currently selected goroutine.
func (t *Target) SelectedGoroutine() *G {
return t.selectedGoroutine
}
// SwitchGoroutine will change the selected and active goroutine.
func (p *Target) SwitchGoroutine(g *G) error {
if ok, err := p.Valid(); !ok {
return err
}
if g == nil {
return nil
}
if g.Thread != nil {
return p.SwitchThread(g.Thread.ThreadID())
}
p.selectedGoroutine = g
return nil
}
// SwitchThread will change the selected and active thread.
func (p *Target) SwitchThread(tid int) error {
if ok, err := p.Valid(); !ok {
return err
}
if th, ok := p.FindThread(tid); ok {
p.currentThread = th
p.selectedGoroutine, _ = GetG(p.CurrentThread())
return nil
}
return fmt.Errorf("thread %d does not exist", tid)
}
// detach will detach the target from the underlying process.
// This means the debugger will no longer receive events from the process
// we were previously debugging.
// If kill is true then the process will be killed when we detach.
func (t *Target) detach(kill bool) error {
if !kill {
if t.asyncPreemptChanged {
setAsyncPreemptOff(t, t.asyncPreemptOff)
}
for _, bp := range t.Breakpoints().M {
if bp != nil {
err := t.ClearBreakpoint(bp.Addr)
if err != nil {
return err
}
}
}
}
t.StopReason = StopUnknown
return t.proc.Detach(kill)
}
// setAsyncPreemptOff enables or disables async goroutine preemption by
// writing the value 'v' to runtime.debug.asyncpreemptoff.
// A value of '1' means off, a value of '0' means on.
func setAsyncPreemptOff(p *Target, v int64) {
if producer := p.BinInfo().Producer(); producer == "" || !goversion.ProducerAfterOrEqual(producer, 1, 14) {
return
}
logger := p.BinInfo().logger
scope := globalScope(p, p.BinInfo(), p.BinInfo().Images[0], p.Memory())
// +rtype -var debug anytype
debugv, err := scope.findGlobal("runtime", "debug")
if err != nil || debugv.Unreadable != nil {
logger.Warnf("could not find runtime/debug variable (or unreadable): %v %v", err, debugv.Unreadable)
return
}
asyncpreemptoffv, err := debugv.structMember("asyncpreemptoff") // +rtype int32
if err != nil {
logger.Warnf("could not find asyncpreemptoff field: %v", err)
return
}
asyncpreemptoffv.loadValue(loadFullValue)
if asyncpreemptoffv.Unreadable != nil {
logger.Warnf("asyncpreemptoff field unreadable: %v", asyncpreemptoffv.Unreadable)
return
}
p.asyncPreemptChanged = true
p.asyncPreemptOff, _ = constant.Int64Val(asyncpreemptoffv.Value)
err = scope.setValue(asyncpreemptoffv, newConstant(constant.MakeInt64(v), scope.Mem), "")
if err != nil {
logger.Warnf("could not set asyncpreemptoff %v", err)
}
}
// createUnrecoveredPanicBreakpoint creates the unrecoverable-panic breakpoint.
func (t *Target) createUnrecoveredPanicBreakpoint() {
panicpcs, err := FindFunctionLocation(t.Process, "runtime.startpanic", 0)
if _, isFnNotFound := err.(*ErrFunctionNotFound); isFnNotFound {
panicpcs, err = FindFunctionLocation(t.Process, "runtime.fatalpanic", 0)
}
if err == nil {
bp, err := t.SetBreakpoint(unrecoveredPanicID, panicpcs[0], UserBreakpoint, nil)
if err == nil {
bp.Logical.Name = UnrecoveredPanic
bp.Logical.Variables = []string{"runtime.curg._panic.arg"}
}
}
}
// createFatalThrowBreakpoint creates the a breakpoint as runtime.fatalthrow.
func (t *Target) createFatalThrowBreakpoint() {
fatalpcs, err := FindFunctionLocation(t.Process, "runtime.throw", 0)
if err == nil {
bp, err := t.SetBreakpoint(fatalThrowID, fatalpcs[0], UserBreakpoint, nil)
if err == nil {
bp.Logical.Name = FatalThrow
}
}
fatalpcs, err = FindFunctionLocation(t.Process, "runtime.fatal", 0)
if err == nil {
bp, err := t.SetBreakpoint(fatalThrowID, fatalpcs[0], UserBreakpoint, nil)
if err == nil {
bp.Logical.Name = FatalThrow
}
}
}
// createPluginOpenBreakpoint creates a breakpoint at the return instruction
// of plugin.Open (if it exists) that will try to enable suspended
// breakpoints.
func (t *Target) createPluginOpenBreakpoint() {
retpcs, _ := findRetPC(t, "plugin.Open")
for _, retpc := range retpcs {
bp, err := t.SetBreakpoint(0, retpc, PluginOpenBreakpoint, nil)
if err != nil {
t.BinInfo().logger.Errorf("could not set plugin.Open breakpoint: %v", err)
} else {
bp.Breaklets[len(bp.Breaklets)-1].callback = t.pluginOpenCallback
}
}
}
// CurrentThread returns the currently selected thread which will be used
// for next/step/stepout and for reading variables, unless a goroutine is
// selected.
func (t *Target) CurrentThread() Thread {
return t.currentThread
}
type UProbeTraceResult struct {
FnAddr int
GoroutineID int
IsRet bool
InputParams []*Variable
ReturnParams []*Variable
}
func (t *Target) GetBufferedTracepoints() []*UProbeTraceResult {
var results []*UProbeTraceResult
tracepoints := t.proc.GetBufferedTracepoints()
convertInputParamToVariable := func(ip *ebpf.RawUProbeParam) *Variable {
v := &Variable{}
v.RealType = ip.RealType
v.Len = ip.Len
v.Base = ip.Base
v.Addr = ip.Addr
v.Kind = ip.Kind
cachedMem := CreateLoadedCachedMemory(ip.Data)
compMem, _ := CreateCompositeMemory(cachedMem, t.BinInfo().Arch, op.DwarfRegisters{}, ip.Pieces)
v.mem = compMem
// Load the value here so that we don't have to export
// loadValue outside of proc.
v.loadValue(loadFullValue)
return v
}
for _, tp := range tracepoints {
r := &UProbeTraceResult{}
r.FnAddr = tp.FnAddr
r.GoroutineID = tp.GoroutineID
r.IsRet = tp.IsRet
for _, ip := range tp.InputParams {
v := convertInputParamToVariable(ip)
r.InputParams = append(r.InputParams, v)
}
for _, ip := range tp.ReturnParams {
v := convertInputParamToVariable(ip)
r.ReturnParams = append(r.ReturnParams, v)
}
results = append(results, r)
}
return results
}
// ResumeNotify specifies a channel that will be closed the next time
// Continue finishes resuming the targets.
func (t *TargetGroup) ResumeNotify(ch chan<- struct{}) {
t.cctx.ResumeChan = ch
}
// RequestManualStop attempts to stop all the processes' threads.
func (t *TargetGroup) RequestManualStop() error {
t.cctx.StopMu.Lock()
defer t.cctx.StopMu.Unlock()
t.cctx.manualStopRequested = true
return t.Selected.proc.RequestManualStop(t.cctx)
}
const (
FakeAddressBase = 0xbeef000000000000
fakeAddressUnresolv = 0xbeed000000000000 // this address never resolves to memory
)
// newCompositeMemory creates a new compositeMemory object and registers it.
// If the same composite memory has been created before it will return a
// cached object.
// This caching is primarily done so that registerized variables don't get a
// different address every time they are evaluated, which would be confusing
// and leak memory.
func (t *Target) newCompositeMemory(mem MemoryReadWriter, regs op.DwarfRegisters, pieces []op.Piece, descr *locationExpr) (int64, *compositeMemory, error) {
var key string
if regs.CFA != 0 && len(pieces) > 0 {
// key is created by concatenating the location expression with the CFA,
// this combination is guaranteed to be unique between resumes.
buf := new(strings.Builder)
fmt.Fprintf(buf, "%#x ", regs.CFA)
op.PrettyPrint(buf, descr.instr, t.BinInfo().Arch.RegnumToString)
key = buf.String()
if cmem := t.fakeMemoryRegistryMap[key]; cmem != nil {
return int64(cmem.base), cmem, nil
}
}
cmem, err := newCompositeMemory(mem, t.BinInfo().Arch, regs, pieces)
if err != nil {
return 0, cmem, err
}
t.registerFakeMemory(cmem)
if key != "" {
t.fakeMemoryRegistryMap[key] = cmem
}
return int64(cmem.base), cmem, nil
}
func (t *Target) registerFakeMemory(mem *compositeMemory) (addr uint64) {
t.fakeMemoryRegistry = append(t.fakeMemoryRegistry, mem)
addr = FakeAddressBase
if len(t.fakeMemoryRegistry) > 1 {
prevMem := t.fakeMemoryRegistry[len(t.fakeMemoryRegistry)-2]
addr = uint64(alignAddr(int64(prevMem.base+uint64(len(prevMem.data))), 0x100)) // the call to alignAddr just makes the address look nicer, it is not necessary
}
mem.base = addr
return addr
}
func (t *Target) findFakeMemory(addr uint64) *compositeMemory {
i := sort.Search(len(t.fakeMemoryRegistry), func(i int) bool {
mem := t.fakeMemoryRegistry[i]
return addr <= mem.base || (mem.base <= addr && addr < (mem.base+uint64(len(mem.data))))
})
if i != len(t.fakeMemoryRegistry) {
mem := t.fakeMemoryRegistry[i]
if mem.base <= addr && addr < (mem.base+uint64(len(mem.data))) {
return mem
}
}
return nil
}
func (t *Target) clearFakeMemory() {
for i := range t.fakeMemoryRegistry {
t.fakeMemoryRegistry[i] = nil
}
t.fakeMemoryRegistry = t.fakeMemoryRegistry[:0]
t.fakeMemoryRegistryMap = make(map[string]*compositeMemory)
}
// dwrapUnwrap checks if fn is a dwrap wrapper function and unwraps it if it is.
func (t *Target) dwrapUnwrap(fn *Function) *Function {
if fn == nil {
return nil
}
if !strings.Contains(fn.Name, "·dwrap·") && !fn.trampoline {
return fn
}
if unwrap := t.BinInfo().dwrapUnwrapCache[fn.Entry]; unwrap != nil {
return unwrap
}
text, err := disassemble(t.Memory(), nil, t.Breakpoints(), t.BinInfo(), fn.Entry, fn.End, false)
if err != nil {
return fn
}
for _, instr := range text {
if instr.IsCall() && instr.DestLoc != nil && instr.DestLoc.Fn != nil && !instr.DestLoc.Fn.privateRuntime() {
t.BinInfo().dwrapUnwrapCache[fn.Entry] = instr.DestLoc.Fn
return instr.DestLoc.Fn
}
}
return fn
}
func (t *Target) pluginOpenCallback(Thread) bool {
logger := logflags.DebuggerLogger()
for _, lbp := range t.Breakpoints().Logical {
if isSuspended(t, lbp) {
err := enableBreakpointOnTarget(t, lbp)
if err != nil {
logger.Debugf("could not enable breakpoint %d: %v", lbp.LogicalID, err)
} else {
logger.Debugf("suspended breakpoint %d enabled", lbp.LogicalID)
}
}
}
return false
}
func isSuspended(t *Target, lbp *LogicalBreakpoint) bool {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == lbp.LogicalID {
return false
}
}
return true
}
type dummyRecordingManipulation struct {
}
// Recorded always returns false for the native proc backend.
func (*dummyRecordingManipulation) Recorded() (bool, string) { return false, "" }
// ChangeDirection will always return an error in the native proc backend, only for
// recorded traces.
func (*dummyRecordingManipulation) ChangeDirection(dir Direction) error {
if dir != Forward {
return ErrNotRecorded
}
return nil
}
// GetDirection will always return Forward.
func (*dummyRecordingManipulation) GetDirection() Direction { return Forward }
// When will always return an empty string and nil, not supported on native proc backend.
func (*dummyRecordingManipulation) When() (string, error) { return "", nil }
// Checkpoint will always return an error on the native proc backend,
// only supported for recorded traces.
func (*dummyRecordingManipulation) Checkpoint(string) (int, error) { return -1, ErrNotRecorded }
// Checkpoints will always return an error on the native proc backend,
// only supported for recorded traces.
func (*dummyRecordingManipulation) Checkpoints() ([]Checkpoint, error) { return nil, ErrNotRecorded }
// ClearCheckpoint will always return an error on the native proc backend,
// only supported in recorded traces.
func (*dummyRecordingManipulation) ClearCheckpoint(int) error { return ErrNotRecorded }
// Restart will always return an error in the native proc backend, only for
// recorded traces.
func (*dummyRecordingManipulation) Restart(*ContinueOnceContext, string) (Thread, error) {
return nil, ErrNotRecorded
}