delve/pkg/proc/i386_arch.go
Alessandro Arzilli 281f3920dd
proc: fix stacktraces on freebsd/amd64/go1.20 (#3458)
TestStacktraceGoroutine failed intermittently on freebsd/amd64/go1.20.

This happens because of two windows, in the scheduler (right after
parking a goroutine and just before resuming a parked goroutine) where
a thread is associated with a goroutine but running in the system stack
and there is no systemstack_switch frame to connect the two stacks.
2023-08-14 15:32:15 -07:00

248 lines
8.2 KiB
Go

package proc
import (
"encoding/binary"
"fmt"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var i386BreakInstruction = []byte{0xCC}
// I386Arch returns an initialized I386Arch
// struct.
func I386Arch(goos string) *Arch {
return &Arch{
Name: "386",
ptrSize: 4,
maxInstructionLength: 15,
breakpointInstruction: i386BreakInstruction,
altBreakpointInstruction: []byte{0xcd, 0x03},
breakInstrMovesPC: true,
derefTLS: false,
prologues: prologuesI386,
fixFrameUnwindContext: i386FixFrameUnwindContext,
switchStack: i386SwitchStack,
regSize: i386RegSize,
RegistersToDwarfRegisters: i386RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: i386AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: i386DwarfRegisterToString,
inhibitStepInto: i386InhibitStepInto,
asmDecode: i386AsmDecode,
PCRegNum: regnum.I386_Eip,
SPRegNum: regnum.I386_Esp,
asmRegisters: i386AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.I386NameToDwarf),
RegnumToString: regnum.I386ToName,
}
}
func i386FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
i := bi.Arch
if i.sigreturnfn == nil {
i.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
}
if fctxt == nil || (i.sigreturnfn != nil && pc >= i.sigreturnfn.Entry && pc < i.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + i.PtrSize()] (i.e. [cfa-i.PtrSize()])
// - cfa is bp + i.PtrSize()*2
// - bp is [bp] (i.e. [cfa-i.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't i proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute i stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.I386_Eip,
Regs: map[uint64]frame.DWRule{
regnum.I386_Eip: {
Rule: frame.RuleOffset,
Offset: int64(-i.PtrSize()),
},
regnum.I386_Ebp: {
Rule: frame.RuleOffset,
Offset: int64(-2 * i.PtrSize()),
},
regnum.I386_Esp: {
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.I386_Ebp,
Offset: int64(2 * i.PtrSize()),
},
}
}
if i.crosscall2fn == nil {
i.crosscall2fn = bi.lookupOneFunc("crosscall2")
}
// TODO(chainhelen), need to check whether there is a bad frame descriptor like amd64.
// crosscall2 is defined in $GOROOT/src/runtime/cgo/asm_386.s.
if i.crosscall2fn != nil && pc >= i.crosscall2fn.Entry && pc < i.crosscall2fn.End {
rule := fctxt.CFA
fctxt.CFA = rule
}
// We assume that EBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't i rule already we emit one.
if fctxt.Regs[regnum.I386_Ebp].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.I386_Ebp] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.I386_Ebp,
Offset: 0,
}
}
return fctxt
}
// SwitchStack will use the current frame to determine if it's time to
func i386SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
if it.systemstack && it.g != nil && it.top {
it.switchToGoroutineStack()
return true
}
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall", "runtime.cgocallback_gofunc": // TODO(chainhelen), need to support cgo stacktraces.
return false
case "runtime.goexit", "runtime.rt0_go":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mcall":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
case "runtime.newstack", "runtime.systemstack":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
return false
default:
return false
}
}
// RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI Intel386 Architecture Processor Supplement page 25,
// table 2.14
// https://www.uclibc.org/docs/psABI-i386.pdf
func i386RegSize(regnum uint64) int {
// XMM registers
if regnum >= 21 && regnum <= 36 {
return 16
}
// x87 registers
if regnum >= 11 && regnum <= 18 {
return 10
}
return 4
}
func i386RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(regnum.I386MaxRegNum(), regs, regnum.I386NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.I386NameToDwarf))
return dr
}
func i386AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.I386_Eip+1)
dregs[regnum.I386_Eip] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.I386_Esp] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.I386_Ebp] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.I386_Eip, regnum.I386_Esp, regnum.I386_Ebp, 0)
}
func i386DwarfRegisterToString(j int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.I386ToName(uint64(j))
if reg == nil {
return name, false, ""
}
switch n := strings.ToLower(name); n {
case "eflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 32)
case "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(name, reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
// i386InhibitStepInto returns whether StepBreakpoint can be set at pc.
// When cgo or pie on 386 linux, compiler will insert more instructions (ex: call __x86.get_pc_thunk.).
// StepBreakpoint shouldn't be set on __x86.get_pc_thunk and skip it.
// See comments on stacksplit in $GOROOT/src/cmd/internal/obj/x86/obj6.go for generated instructions details.
func i386InhibitStepInto(bi *BinaryInfo, pc uint64) bool {
if bi.SymNames != nil && bi.SymNames[pc] != nil &&
strings.HasPrefix(bi.SymNames[pc].Name, "__x86.get_pc_thunk.") {
return true
}
return false
}