
* proc: separate amd64-arch code separate amd64 code about stacktrace, so we can add arm64 stacktrace code. * proc: implemente stacktrace of arm64 * delve now can use stack, frame commands on arm64-arch debug. Co-authored-by: tykcd996 <tang.yuke@zte.com.cn> Co-authored-by: hengwu0 <wu.heng@zte.com.cn> * test: remove skip-code of stacktrace on arm64 * add LR DWARF register and remove skip-code for fixed tests * proc: fix the Continue command after the hardcoded breakpoint on arm64 Arm64 use hardware breakpoint, and it will not set PC to the next instruction like amd64. We should move PC in both runtime.breakpoints and hardcoded breakpoints(probably cgo). * proc: implement cgo stacktrace on arm64 * proc: combine amd64_stack.go and arm64_stack.go file * proc: reorganize the stacktrace code * move SwitchStack function arch-related * fix Continue command after manual stop on arm64 * add timeout flag to make.go to enable infinite timeouts Co-authored-by: aarzilli <alessandro.arzilli@gmail.com> Co-authored-by: hengwu0 <wu.heng@zte.com.cn> Co-authored-by: tykcd996 <56993522+tykcd996@users.noreply.github.com> Co-authored-by: Alessandro Arzilli <alessandro.arzilli@gmail.com>
425 lines
13 KiB
Go
425 lines
13 KiB
Go
package proc
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"strings"
|
|
|
|
"github.com/go-delve/delve/pkg/dwarf/frame"
|
|
"github.com/go-delve/delve/pkg/dwarf/op"
|
|
"golang.org/x/arch/x86/x86asm"
|
|
)
|
|
|
|
// AMD64 represents the AMD64 CPU architecture.
|
|
type AMD64 struct {
|
|
gStructOffset uint64
|
|
goos string
|
|
|
|
// crosscall2fn is the DIE of crosscall2, a function used by the go runtime
|
|
// to call C functions. This function in go 1.9 (and previous versions) had
|
|
// a bad frame descriptor which needs to be fixed to generate good stack
|
|
// traces.
|
|
crosscall2fn *Function
|
|
|
|
// sigreturnfn is the DIE of runtime.sigreturn, the return trampoline for
|
|
// the signal handler. See comment in FixFrameUnwindContext for a
|
|
// description of why this is needed.
|
|
sigreturnfn *Function
|
|
}
|
|
|
|
const (
|
|
amd64DwarfIPRegNum uint64 = 16
|
|
amd64DwarfSPRegNum uint64 = 7
|
|
amd64DwarfBPRegNum uint64 = 6
|
|
)
|
|
|
|
var amd64BreakInstruction = []byte{0xCC}
|
|
|
|
// AMD64Arch returns an initialized AMD64
|
|
// struct.
|
|
func AMD64Arch(goos string) *AMD64 {
|
|
return &AMD64{
|
|
goos: goos,
|
|
}
|
|
}
|
|
|
|
// PtrSize returns the size of a pointer
|
|
// on this architecture.
|
|
func (a *AMD64) PtrSize() int {
|
|
return 8
|
|
}
|
|
|
|
// MaxInstructionLength returns the maximum lenght of an instruction.
|
|
func (a *AMD64) MaxInstructionLength() int {
|
|
return 15
|
|
}
|
|
|
|
// BreakpointInstruction returns the Breakpoint
|
|
// instruction for this architecture.
|
|
func (a *AMD64) BreakpointInstruction() []byte {
|
|
return amd64BreakInstruction
|
|
}
|
|
|
|
// BreakInstrMovesPC returns whether the
|
|
// breakpoint instruction will change the value
|
|
// of PC after being executed
|
|
func (a *AMD64) BreakInstrMovesPC() bool {
|
|
return true
|
|
}
|
|
|
|
// BreakpointSize returns the size of the
|
|
// breakpoint instruction on this architecture.
|
|
func (a *AMD64) BreakpointSize() int {
|
|
return len(amd64BreakInstruction)
|
|
}
|
|
|
|
// DerefTLS returns true if the value of regs.TLS()+GStructOffset() is a
|
|
// pointer to the G struct
|
|
func (a *AMD64) DerefTLS() bool {
|
|
return a.goos == "windows"
|
|
}
|
|
|
|
// FixFrameUnwindContext adds default architecture rules to fctxt or returns
|
|
// the default frame unwind context if fctxt is nil.
|
|
func (a *AMD64) FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
|
|
if a.sigreturnfn == nil {
|
|
a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
|
|
}
|
|
|
|
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
|
|
// When there's no frame descriptor entry use BP (the frame pointer) instead
|
|
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
|
|
// - cfa is bp + a.PtrSize()*2
|
|
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
|
|
// - sp is cfa
|
|
|
|
// When the signal handler runs it will move the execution to the signal
|
|
// handling stack (installed using the sigaltstack system call).
|
|
// This isn't a proper stack switch: the pointer to g in TLS will still
|
|
// refer to whatever g was executing on that thread before the signal was
|
|
// received.
|
|
// Since go did not execute a stack switch the previous value of sp, pc
|
|
// and bp is not saved inside g.sched, as it normally would.
|
|
// The only way to recover is to either read sp/pc from the signal context
|
|
// parameter (the ucontext_t* parameter) or to unconditionally follow the
|
|
// frame pointer when we get to runtime.sigreturn (which is what we do
|
|
// here).
|
|
|
|
return &frame.FrameContext{
|
|
RetAddrReg: amd64DwarfIPRegNum,
|
|
Regs: map[uint64]frame.DWRule{
|
|
amd64DwarfIPRegNum: frame.DWRule{
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-a.PtrSize()),
|
|
},
|
|
amd64DwarfBPRegNum: frame.DWRule{
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-2 * a.PtrSize()),
|
|
},
|
|
amd64DwarfSPRegNum: frame.DWRule{
|
|
Rule: frame.RuleValOffset,
|
|
Offset: 0,
|
|
},
|
|
},
|
|
CFA: frame.DWRule{
|
|
Rule: frame.RuleCFA,
|
|
Reg: amd64DwarfBPRegNum,
|
|
Offset: int64(2 * a.PtrSize()),
|
|
},
|
|
}
|
|
}
|
|
|
|
if a.crosscall2fn == nil {
|
|
a.crosscall2fn = bi.LookupFunc["crosscall2"]
|
|
}
|
|
|
|
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
|
|
rule := fctxt.CFA
|
|
if rule.Offset == crosscall2SPOffsetBad {
|
|
switch a.goos {
|
|
case "windows":
|
|
rule.Offset += crosscall2SPOffsetWindows
|
|
default:
|
|
rule.Offset += crosscall2SPOffsetNonWindows
|
|
}
|
|
}
|
|
fctxt.CFA = rule
|
|
}
|
|
|
|
// We assume that RBP is the frame pointer and we want to keep it updated,
|
|
// so that we can use it to unwind the stack even when we encounter frames
|
|
// without descriptor entries.
|
|
// If there isn't a rule already we emit one.
|
|
if fctxt.Regs[amd64DwarfBPRegNum].Rule == frame.RuleUndefined {
|
|
fctxt.Regs[amd64DwarfBPRegNum] = frame.DWRule{
|
|
Rule: frame.RuleFramePointer,
|
|
Reg: amd64DwarfBPRegNum,
|
|
Offset: 0,
|
|
}
|
|
}
|
|
|
|
return fctxt
|
|
}
|
|
|
|
// cgocallSPOffsetSaveSlot is the offset from systemstack.SP where
|
|
// (goroutine.SP - StackHi) is saved in runtime.asmcgocall after the stack
|
|
// switch happens.
|
|
const amd64cgocallSPOffsetSaveSlot = 0x28
|
|
|
|
// SwitchStack will use the current frame to determine if it's time to
|
|
// switch between the system stack and the goroutine stack or vice versa.
|
|
// Sets it.atend when the top of the stack is reached.
|
|
func (a *AMD64) SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
|
|
if it.frame.Current.Fn == nil {
|
|
return false
|
|
}
|
|
switch it.frame.Current.Fn.Name {
|
|
case "runtime.asmcgocall":
|
|
if it.top || !it.systemstack {
|
|
return false
|
|
}
|
|
|
|
// This function is called by a goroutine to execute a C function and
|
|
// switches from the goroutine stack to the system stack.
|
|
// Since we are unwinding the stack from callee to caller we have to switch
|
|
// from the system stack to the goroutine stack.
|
|
off, _ := readIntRaw(it.mem, uintptr(it.regs.SP()+amd64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize())) // reads "offset of SP from StackHi" from where runtime.asmcgocall saved it
|
|
oldsp := it.regs.SP()
|
|
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(it.stackhi) - off)
|
|
|
|
// runtime.asmcgocall can also be called from inside the system stack,
|
|
// in that case no stack switch actually happens
|
|
if it.regs.SP() == oldsp {
|
|
return false
|
|
}
|
|
it.systemstack = false
|
|
|
|
// advances to the next frame in the call stack
|
|
it.frame.addrret = uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()))
|
|
it.frame.Ret, _ = readUintRaw(it.mem, uintptr(it.frame.addrret), int64(it.bi.Arch.PtrSize()))
|
|
it.pc = it.frame.Ret
|
|
|
|
it.top = false
|
|
return true
|
|
|
|
case "runtime.cgocallback_gofunc":
|
|
// For a detailed description of how this works read the long comment at
|
|
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
|
|
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_amd64.s
|
|
//
|
|
// When a C functions calls back into go it will eventually call into
|
|
// runtime.cgocallback_gofunc which is the function that does the stack
|
|
// switch from the system stack back into the goroutine stack
|
|
// Since we are going backwards on the stack here we see the transition
|
|
// as goroutine stack -> system stack.
|
|
|
|
if it.top || it.systemstack {
|
|
return false
|
|
}
|
|
|
|
if it.g0_sched_sp <= 0 {
|
|
return false
|
|
}
|
|
// entering the system stack
|
|
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g0_sched_sp
|
|
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
|
|
it.g0_sched_sp, _ = readUintRaw(it.mem, uintptr(it.regs.SP()), int64(it.bi.Arch.PtrSize()))
|
|
it.top = false
|
|
callFrameRegs, ret, retaddr := it.advanceRegs()
|
|
frameOnSystemStack := it.newStackframe(ret, retaddr)
|
|
it.pc = frameOnSystemStack.Ret
|
|
it.regs = callFrameRegs
|
|
it.systemstack = true
|
|
return true
|
|
|
|
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
|
|
// Look for "top of stack" functions.
|
|
it.atend = true
|
|
return true
|
|
|
|
case "runtime.mstart":
|
|
// Calls to runtime.systemstack will switch to the systemstack then:
|
|
// 1. alter the goroutine stack so that it looks like systemstack_switch
|
|
// was called
|
|
// 2. alter the system stack so that it looks like the bottom-most frame
|
|
// belongs to runtime.mstart
|
|
// If we find a runtime.mstart frame on the system stack of a goroutine
|
|
// parked on runtime.systemstack_switch we assume runtime.systemstack was
|
|
// called and continue tracing from the parked position.
|
|
|
|
if it.top || !it.systemstack || it.g == nil {
|
|
return false
|
|
}
|
|
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
|
|
return false
|
|
}
|
|
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
|
|
default:
|
|
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
|
|
// The runtime switches to the system stack in multiple places.
|
|
// This usually happens through a call to runtime.systemstack but there
|
|
// are functions that switch to the system stack manually (for example
|
|
// runtime.morestack).
|
|
// Since we are only interested in printing the system stack for cgo
|
|
// calls we switch directly to the goroutine stack if we detect that the
|
|
// function at the top of the stack is a runtime function.
|
|
//
|
|
// The function "runtime.fatalthrow" is deliberately excluded from this
|
|
// because it can end up in the stack during a cgo call and switching to
|
|
// the goroutine stack will exclude all the C functions from the stack
|
|
// trace.
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
}
|
|
|
|
// RegSize returns the size (in bytes) of register regnum.
|
|
// The mapping between hardware registers and DWARF registers is specified
|
|
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
|
|
// figure 3.36
|
|
// https://www.uclibc.org/docs/psABI-x86_64.pdf
|
|
func (a *AMD64) RegSize(regnum uint64) int {
|
|
// XMM registers
|
|
if regnum > amd64DwarfIPRegNum && regnum <= 32 {
|
|
return 16
|
|
}
|
|
// x87 registers
|
|
if regnum >= 33 && regnum <= 40 {
|
|
return 10
|
|
}
|
|
return 8
|
|
}
|
|
|
|
// The mapping between hardware registers and DWARF registers is specified
|
|
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
|
|
// figure 3.36
|
|
// https://www.uclibc.org/docs/psABI-x86_64.pdf
|
|
|
|
var amd64DwarfToHardware = map[int]x86asm.Reg{
|
|
0: x86asm.RAX,
|
|
1: x86asm.RDX,
|
|
2: x86asm.RCX,
|
|
3: x86asm.RBX,
|
|
4: x86asm.RSI,
|
|
5: x86asm.RDI,
|
|
8: x86asm.R8,
|
|
9: x86asm.R9,
|
|
10: x86asm.R10,
|
|
11: x86asm.R11,
|
|
12: x86asm.R12,
|
|
13: x86asm.R13,
|
|
14: x86asm.R14,
|
|
15: x86asm.R15,
|
|
}
|
|
|
|
var amd64DwarfToName = map[int]string{
|
|
17: "XMM0",
|
|
18: "XMM1",
|
|
19: "XMM2",
|
|
20: "XMM3",
|
|
21: "XMM4",
|
|
22: "XMM5",
|
|
23: "XMM6",
|
|
24: "XMM7",
|
|
25: "XMM8",
|
|
26: "XMM9",
|
|
27: "XMM10",
|
|
28: "XMM11",
|
|
29: "XMM12",
|
|
30: "XMM13",
|
|
31: "XMM14",
|
|
32: "XMM15",
|
|
33: "ST(0)",
|
|
34: "ST(1)",
|
|
35: "ST(2)",
|
|
36: "ST(3)",
|
|
37: "ST(4)",
|
|
38: "ST(5)",
|
|
39: "ST(6)",
|
|
40: "ST(7)",
|
|
49: "Eflags",
|
|
50: "Es",
|
|
51: "Cs",
|
|
52: "Ss",
|
|
53: "Ds",
|
|
54: "Fs",
|
|
55: "Gs",
|
|
58: "Fs_base",
|
|
59: "Gs_base",
|
|
64: "MXCSR",
|
|
65: "CW",
|
|
66: "SW",
|
|
}
|
|
|
|
func maxAmd64DwarfRegister() int {
|
|
max := int(amd64DwarfIPRegNum)
|
|
for i := range amd64DwarfToHardware {
|
|
if i > max {
|
|
max = i
|
|
}
|
|
}
|
|
for i := range amd64DwarfToName {
|
|
if i > max {
|
|
max = i
|
|
}
|
|
}
|
|
return max
|
|
}
|
|
|
|
// RegistersToDwarfRegisters converts hardware registers to the format used
|
|
// by the DWARF expression interpreter.
|
|
func (a *AMD64) RegistersToDwarfRegisters(staticBase uint64, regs Registers) op.DwarfRegisters {
|
|
dregs := make([]*op.DwarfRegister, maxAmd64DwarfRegister()+1)
|
|
|
|
dregs[amd64DwarfIPRegNum] = op.DwarfRegisterFromUint64(regs.PC())
|
|
dregs[amd64DwarfSPRegNum] = op.DwarfRegisterFromUint64(regs.SP())
|
|
dregs[amd64DwarfBPRegNum] = op.DwarfRegisterFromUint64(regs.BP())
|
|
|
|
for dwarfReg, asmReg := range amd64DwarfToHardware {
|
|
v, err := regs.Get(int(asmReg))
|
|
if err == nil {
|
|
dregs[dwarfReg] = op.DwarfRegisterFromUint64(v)
|
|
}
|
|
}
|
|
|
|
for _, reg := range regs.Slice(true) {
|
|
for dwarfReg, regName := range amd64DwarfToName {
|
|
if regName == reg.Name {
|
|
dregs[dwarfReg] = op.DwarfRegisterFromBytes(reg.Bytes)
|
|
}
|
|
}
|
|
}
|
|
|
|
return op.DwarfRegisters{
|
|
StaticBase: staticBase,
|
|
Regs: dregs,
|
|
ByteOrder: binary.LittleEndian,
|
|
PCRegNum: amd64DwarfIPRegNum,
|
|
SPRegNum: amd64DwarfSPRegNum,
|
|
BPRegNum: amd64DwarfBPRegNum,
|
|
}
|
|
}
|
|
|
|
// AddrAndStackRegsToDwarfRegisters returns DWARF registers from the passed in
|
|
// PC, SP, and BP registers in the format used by the DWARF expression interpreter.
|
|
func (a *AMD64) AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
|
|
dregs := make([]*op.DwarfRegister, amd64DwarfIPRegNum+1)
|
|
dregs[amd64DwarfIPRegNum] = op.DwarfRegisterFromUint64(pc)
|
|
dregs[amd64DwarfSPRegNum] = op.DwarfRegisterFromUint64(sp)
|
|
dregs[amd64DwarfBPRegNum] = op.DwarfRegisterFromUint64(bp)
|
|
|
|
return op.DwarfRegisters{
|
|
StaticBase: staticBase,
|
|
Regs: dregs,
|
|
ByteOrder: binary.LittleEndian,
|
|
PCRegNum: amd64DwarfIPRegNum,
|
|
SPRegNum: amd64DwarfSPRegNum,
|
|
BPRegNum: amd64DwarfBPRegNum,
|
|
}
|
|
}
|