delve/pkg/proc/threads_darwin.go
Alessandro Arzilli 436a3c2149 proc refactor: split out BinaryInfo implementation (#745)
* proc: refactor BinaryInfo part of proc.Process to own type

The data structures and associated code used by proc.Process
to implement target.BinaryInfo will also be useful to support a
backend for examining core dumps, split this part of proc.Process
to a different type.

* proc: compile support for all executable formats unconditionally

So far we only compiled in support for loading the executable format
supported by the host operating system.
Once support for core files is introduced it is however useful to
support loading in all executable formats, there is no reason why it
shouldn't be possible to examine a linux coredump on windows, or
viceversa.

* proc: bugfix: do not resume threads on detach if killing

* Replace BinaryInfo interface with BinInfo() method returning proc.BinaryInfo
2017-04-06 11:14:01 -07:00

138 lines
3.1 KiB
Go

package proc
// #include "threads_darwin.h"
// #include "proc_darwin.h"
import "C"
import (
"fmt"
"unsafe"
sys "golang.org/x/sys/unix"
)
// WaitStatus is a synonym for the platform-specific WaitStatus
type WaitStatus sys.WaitStatus
// OSSpecificDetails holds information specific to the OSX/Darwin
// operating system / kernel.
type OSSpecificDetails struct {
threadAct C.thread_act_t
registers C.x86_thread_state64_t
exists bool
}
// ErrContinueThread is the error returned when a thread could not
// be continued.
var ErrContinueThread = fmt.Errorf("could not continue thread")
func (t *Thread) halt() (err error) {
kret := C.thread_suspend(t.os.threadAct)
if kret != C.KERN_SUCCESS {
errStr := C.GoString(C.mach_error_string(C.mach_error_t(kret)))
// check that the thread still exists before complaining
err2 := t.dbp.updateThreadList()
if err2 != nil {
err = fmt.Errorf("could not suspend thread %d %s (additionally could not update thread list: %v)", t.ID, errStr, err2)
return
}
if _, ok := t.dbp.threads[t.ID]; ok {
err = fmt.Errorf("could not suspend thread %d %s", t.ID, errStr)
return
}
}
return
}
func (t *Thread) singleStep() error {
kret := C.single_step(t.os.threadAct)
if kret != C.KERN_SUCCESS {
return fmt.Errorf("could not single step")
}
for {
twthread, err := t.dbp.trapWait(t.dbp.pid)
if err != nil {
return err
}
if twthread.ID == t.ID {
break
}
}
kret = C.clear_trap_flag(t.os.threadAct)
if kret != C.KERN_SUCCESS {
return fmt.Errorf("could not clear CPU trap flag")
}
return nil
}
func (t *Thread) resume() error {
t.running = true
// TODO(dp) set flag for ptrace stops
var err error
t.dbp.execPtraceFunc(func() { err = PtraceCont(t.dbp.pid, 0) })
if err == nil {
return nil
}
kret := C.resume_thread(t.os.threadAct)
if kret != C.KERN_SUCCESS {
return ErrContinueThread
}
return nil
}
func (t *Thread) blocked() bool {
// TODO(dp) cache the func pc to remove this lookup
pc, err := t.PC()
if err != nil {
return false
}
fn := t.dbp.bi.goSymTable.PCToFunc(pc)
if fn == nil {
return false
}
switch fn.Name {
case "runtime.kevent", "runtime.mach_semaphore_wait", "runtime.usleep":
return true
default:
return false
}
}
func (t *Thread) stopped() bool {
return C.thread_blocked(t.os.threadAct) > C.int(0)
}
func (t *Thread) writeMemory(addr uintptr, data []byte) (int, error) {
if len(data) == 0 {
return 0, nil
}
var (
vmData = unsafe.Pointer(&data[0])
vmAddr = C.mach_vm_address_t(addr)
length = C.mach_msg_type_number_t(len(data))
)
if ret := C.write_memory(t.dbp.os.task, vmAddr, vmData, length); ret < 0 {
return 0, fmt.Errorf("could not write memory")
}
return len(data), nil
}
func (t *Thread) readMemory(addr uintptr, size int) ([]byte, error) {
if size == 0 {
return nil, nil
}
var (
buf = make([]byte, size)
vmData = unsafe.Pointer(&buf[0])
vmAddr = C.mach_vm_address_t(addr)
length = C.mach_msg_type_number_t(size)
)
ret := C.read_memory(t.dbp.os.task, vmAddr, vmData, length)
if ret < 0 {
return nil, fmt.Errorf("could not read memory")
}
return buf, nil
}