delve/service/debugger/debugger.go
2024-02-21 12:10:41 +01:00

2419 lines
67 KiB
Go

package debugger
import (
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"errors"
"fmt"
"go/parser"
"go/token"
"io"
"os"
"os/exec"
"path/filepath"
"regexp"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/gobuild"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/locspec"
"github.com/go-delve/delve/pkg/logflags"
"github.com/go-delve/delve/pkg/proc"
"github.com/go-delve/delve/pkg/proc/core"
"github.com/go-delve/delve/pkg/proc/gdbserial"
"github.com/go-delve/delve/pkg/proc/native"
"github.com/go-delve/delve/service/api"
)
var (
// ErrCanNotRestart is returned when the target cannot be restarted.
// This is returned for targets that have been attached to, or when
// debugging core files.
ErrCanNotRestart = errors.New("can not restart this target")
// ErrNotRecording is returned when StopRecording is called while the
// debugger is not recording the target.
ErrNotRecording = errors.New("debugger is not recording")
// ErrCoreDumpInProgress is returned when a core dump is already in progress.
ErrCoreDumpInProgress = errors.New("core dump in progress")
// ErrCoreDumpNotSupported is returned when core dumping is not supported
ErrCoreDumpNotSupported = errors.New("core dumping not supported")
// ErrNotImplementedWithMultitarget is returned for operations that are not implemented with multiple targets
ErrNotImplementedWithMultitarget = errors.New("not implemented for multiple targets")
)
// Debugger service.
//
// Debugger provides a higher level of
// abstraction over proc.Process.
// It handles converting from internal types to
// the types expected by clients. It also handles
// functionality needed by clients, but not needed in
// lower lever packages such as proc.
type Debugger struct {
config *Config
// arguments to launch a new process.
processArgs []string
targetMutex sync.Mutex
target *proc.TargetGroup
log logflags.Logger
running bool
runningMutex sync.Mutex
stopRecording func() error
recordMutex sync.Mutex
dumpState proc.DumpState
breakpointIDCounter int
}
type ExecuteKind int
const (
ExecutingExistingFile = ExecuteKind(iota)
ExecutingGeneratedFile
ExecutingGeneratedTest
ExecutingOther
)
// Config provides the configuration to start a Debugger.
//
// Only one of ProcessArgs or AttachPid should be specified. If ProcessArgs is
// provided, a new process will be launched. Otherwise, the debugger will try
// to attach to an existing process with AttachPid.
type Config struct {
// WorkingDir is working directory of the new process. This field is used
// only when launching a new process.
WorkingDir string
// AttachPid is the PID of an existing process to which the debugger should
// attach.
AttachPid int
// If AttachWaitFor is set the debugger will wait for a process with a name
// starting with WaitFor and attach to it.
AttachWaitFor string
// AttachWaitForInterval is the time (in milliseconds) that the debugger
// waits between checks for WaitFor.
AttachWaitForInterval float64
// AttachWaitForDuration is the time (in milliseconds) that the debugger
// waits for WaitFor.
AttachWaitForDuration float64
// CoreFile specifies the path to the core dump to open.
CoreFile string
// Backend specifies the debugger backend.
Backend string
// Foreground lets target process access stdin.
Foreground bool
// DebugInfoDirectories is the list of directories to look for
// when resolving external debug info files.
DebugInfoDirectories []string
// CheckGoVersion is true if the debugger should check the version of Go
// used to compile the executable and refuse to work on incompatible
// versions.
CheckGoVersion bool
// TTY is passed along to the target process on creation. Used to specify a
// TTY for that process.
TTY string
// Packages contains the packages that we are debugging.
Packages []string
// BuildFlags contains the flags passed to the compiler.
BuildFlags string
// ExecuteKind contains the kind of the executed program.
ExecuteKind ExecuteKind
// Stdin Redirect file path for stdin
Stdin string
// Redirects specifies redirect rules for stdout
Stdout proc.OutputRedirect
// Redirects specifies redirect rules for stderr
Stderr proc.OutputRedirect
// DisableASLR disables ASLR
DisableASLR bool
RrOnProcessPid int
}
// New creates a new Debugger. ProcessArgs specify the commandline arguments for the
// new process.
func New(config *Config, processArgs []string) (*Debugger, error) {
logger := logflags.DebuggerLogger()
d := &Debugger{
config: config,
processArgs: processArgs,
log: logger,
}
// Create the process by either attaching or launching.
switch {
case d.config.AttachPid > 0 || d.config.AttachWaitFor != "":
d.log.Infof("attaching to pid %d", d.config.AttachPid)
path := ""
if len(d.processArgs) > 0 {
path = d.processArgs[0]
}
var waitFor *proc.WaitFor
if d.config.AttachWaitFor != "" {
waitFor = &proc.WaitFor{
Name: d.config.AttachWaitFor,
Interval: time.Duration(d.config.AttachWaitForInterval * float64(time.Millisecond)),
Duration: time.Duration(d.config.AttachWaitForDuration * float64(time.Millisecond)),
}
}
var err error
d.target, err = d.Attach(d.config.AttachPid, path, waitFor)
if err != nil {
err = go11DecodeErrorCheck(err)
err = noDebugErrorWarning(err)
return nil, attachErrorMessage(d.config.AttachPid, err)
}
case d.config.CoreFile != "":
var err error
switch d.config.Backend {
case "rr":
d.log.Infof("opening trace %s", d.config.CoreFile)
d.target, err = gdbserial.Replay(d.config.CoreFile, false, false, d.config.DebugInfoDirectories, d.config.RrOnProcessPid, "")
default:
d.log.Infof("opening core file %s (executable %s)", d.config.CoreFile, d.processArgs[0])
d.target, err = core.OpenCore(d.config.CoreFile, d.processArgs[0], d.config.DebugInfoDirectories)
}
if err != nil {
err = go11DecodeErrorCheck(err)
return nil, err
}
if err := d.checkGoVersion(); err != nil {
d.target.Detach(true)
return nil, err
}
default:
d.log.Infof("launching process with args: %v", d.processArgs)
var err error
d.target, err = d.Launch(d.processArgs, d.config.WorkingDir)
if err != nil {
if !errors.Is(err, &proc.ErrUnsupportedArch{}) {
err = go11DecodeErrorCheck(err)
err = noDebugErrorWarning(err)
err = fmt.Errorf("could not launch process: %s", err)
}
return nil, err
}
if err := d.checkGoVersion(); err != nil {
d.target.Detach(true)
return nil, err
}
}
return d, nil
}
// canRestart returns true if the target was started with Launch and can be restarted
func (d *Debugger) canRestart() bool {
switch {
case d.config.AttachPid > 0:
return false
case d.config.CoreFile != "":
return false
default:
return true
}
}
func (d *Debugger) checkGoVersion() error {
if d.isRecording() {
// do not do anything if we are still recording
return nil
}
producer := d.target.Selected.BinInfo().Producer()
if producer == "" {
return nil
}
return goversion.Compatible(producer, !d.config.CheckGoVersion)
}
func (d *Debugger) TargetGoVersion() string {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().Producer()
}
// Launch will start a process with the given args and working directory.
func (d *Debugger) Launch(processArgs []string, wd string) (*proc.TargetGroup, error) {
fullpath, err := verifyBinaryFormat(processArgs[0])
if err != nil {
return nil, err
}
processArgs[0] = fullpath
launchFlags := proc.LaunchFlags(0)
if d.config.Foreground {
launchFlags |= proc.LaunchForeground
}
if d.config.DisableASLR {
launchFlags |= proc.LaunchDisableASLR
}
switch d.config.Backend {
case "native":
return native.Launch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Stdin, d.config.Stdout, d.config.Stderr)
case "lldb":
return betterGdbserialLaunchError(gdbserial.LLDBLaunch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, [3]string{d.config.Stdin, d.config.Stdout.Path, d.config.Stderr.Path}))
case "rr":
if d.target != nil {
// restart should not call us if the backend is 'rr'
panic("internal error: call to Launch with rr backend and target already exists")
}
run, stop, err := gdbserial.RecordAsync(processArgs, wd, false, d.config.Stdin, d.config.Stdout, d.config.Stderr)
if err != nil {
return nil, err
}
// let the initialization proceed but hold the targetMutex lock so that
// any other request to debugger will block except State(nowait=true) and
// Command(halt).
d.targetMutex.Lock()
d.recordingStart(stop)
go func() {
defer d.targetMutex.Unlock()
grp, err := d.recordingRun(run)
if err != nil {
d.log.Errorf("could not record target: %v", err)
// this is ugly, but we can't respond to any client requests at this
// point, so it's better if we die.
os.Exit(1)
}
d.recordingDone()
d.target = grp
if err := d.checkGoVersion(); err != nil {
d.log.Error(err)
err := d.target.Detach(true)
if err != nil {
d.log.Errorf("Error detaching from target: %v", err)
}
}
}()
return nil, nil
case "default":
if runtime.GOOS == "darwin" {
return betterGdbserialLaunchError(gdbserial.LLDBLaunch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, [3]string{d.config.Stdin, d.config.Stdout.Path, d.config.Stderr.Path}))
}
return native.Launch(processArgs, wd, launchFlags, d.config.DebugInfoDirectories, d.config.TTY, d.config.Stdin, d.config.Stdout, d.config.Stderr)
default:
return nil, fmt.Errorf("unknown backend %q", d.config.Backend)
}
}
func (d *Debugger) recordingStart(stop func() error) {
d.recordMutex.Lock()
d.stopRecording = stop
d.recordMutex.Unlock()
}
func (d *Debugger) recordingDone() {
d.recordMutex.Lock()
d.stopRecording = nil
d.recordMutex.Unlock()
}
func (d *Debugger) isRecording() bool {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
return d.stopRecording != nil
}
func (d *Debugger) recordingRun(run func() (string, error)) (*proc.TargetGroup, error) {
tracedir, err := run()
if err != nil && tracedir == "" {
return nil, err
}
return gdbserial.Replay(tracedir, false, true, d.config.DebugInfoDirectories, 0, strings.Join(d.processArgs, " "))
}
// Attach will attach to the process specified by 'pid'.
func (d *Debugger) Attach(pid int, path string, waitFor *proc.WaitFor) (*proc.TargetGroup, error) {
switch d.config.Backend {
case "native":
return native.Attach(pid, waitFor, d.config.DebugInfoDirectories)
case "lldb":
return betterGdbserialLaunchError(gdbserial.LLDBAttach(pid, path, waitFor, d.config.DebugInfoDirectories))
case "default":
if runtime.GOOS == "darwin" {
return betterGdbserialLaunchError(gdbserial.LLDBAttach(pid, path, waitFor, d.config.DebugInfoDirectories))
}
return native.Attach(pid, waitFor, d.config.DebugInfoDirectories)
default:
return nil, fmt.Errorf("unknown backend %q", d.config.Backend)
}
}
var errMacOSBackendUnavailable = errors.New("debugserver or lldb-server not found: install Xcode's command line tools or lldb-server")
func betterGdbserialLaunchError(p *proc.TargetGroup, err error) (*proc.TargetGroup, error) {
if runtime.GOOS != "darwin" {
return p, err
}
if !errors.Is(err, &gdbserial.ErrBackendUnavailable{}) {
return p, err
}
return p, errMacOSBackendUnavailable
}
// ProcessPid returns the PID of the process
// the debugger is debugging.
func (d *Debugger) ProcessPid() int {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.Pid()
}
// LastModified returns the time that the process' executable was last
// modified.
func (d *Debugger) LastModified() time.Time {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().LastModified()
}
// FunctionReturnLocations returns all return locations
// for the given function, a list of addresses corresponding
// to 'ret' or 'call runtime.deferreturn'.
func (d *Debugger) FunctionReturnLocations(fnName string) ([]uint64, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if len(d.target.Targets()) > 1 {
return nil, ErrNotImplementedWithMultitarget
}
var (
p = d.target.Selected
g = p.SelectedGoroutine()
)
fns, err := p.BinInfo().FindFunction(fnName)
if err != nil {
return nil, err
}
var addrs []uint64
for _, fn := range fns {
var regs proc.Registers
mem := p.Memory()
if g != nil && g.Thread != nil {
regs, _ = g.Thread.Registers()
}
instructions, err := proc.Disassemble(mem, regs, p.Breakpoints(), p.BinInfo(), fn.Entry, fn.End)
if err != nil {
return nil, err
}
for _, instruction := range instructions {
if instruction.IsRet() {
addrs = append(addrs, instruction.Loc.PC)
}
}
addrs = append(addrs, proc.FindDeferReturnCalls(instructions)...)
}
return addrs, nil
}
// Detach detaches from the target process.
// If `kill` is true we will kill the process after
// detaching.
func (d *Debugger) Detach(kill bool) error {
d.log.Debug("detaching")
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.detach(kill)
}
func (d *Debugger) detach(kill bool) error {
if d.config.AttachPid == 0 {
kill = true
}
return d.target.Detach(kill)
}
// Restart will restart the target process, first killing
// and then exec'ing it again.
// If the target process is a recording it will restart it from the given
// position. If pos starts with 'c' it's a checkpoint ID, otherwise it's an
// event number. If resetArgs is true, newArgs will replace the process args.
func (d *Debugger) Restart(rerecord bool, pos string, resetArgs bool, newArgs []string, newRedirects [3]string, rebuild bool) ([]api.DiscardedBreakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
recorded, _ := d.target.Recorded()
if recorded && !rerecord {
d.target.ResumeNotify(nil)
return nil, d.target.Restart(pos)
}
if pos != "" {
return nil, proc.ErrNotRecorded
}
if !d.canRestart() {
return nil, ErrCanNotRestart
}
if !resetArgs && (d.config.Stdout.File != nil || d.config.Stderr.File != nil) {
return nil, ErrCanNotRestart
}
if err := d.detach(true); err != nil {
return nil, err
}
if resetArgs {
d.processArgs = append([]string{d.processArgs[0]}, newArgs...)
d.config.Stdin = newRedirects[0]
d.config.Stdout = proc.OutputRedirect{Path: newRedirects[1]}
d.config.Stderr = proc.OutputRedirect{Path: newRedirects[2]}
}
var grp *proc.TargetGroup
var err error
if rebuild {
switch d.config.ExecuteKind {
case ExecutingGeneratedFile:
err = gobuild.GoBuild(d.processArgs[0], d.config.Packages, d.config.BuildFlags)
if err != nil {
return nil, fmt.Errorf("could not rebuild process: %s", err)
}
case ExecutingGeneratedTest:
err = gobuild.GoTestBuild(d.processArgs[0], d.config.Packages, d.config.BuildFlags)
if err != nil {
return nil, fmt.Errorf("could not rebuild process: %s", err)
}
default:
// We cannot build a process that we didn't start, because we don't know how it was built.
return nil, fmt.Errorf("cannot rebuild a binary")
}
}
if recorded {
run, stop, err2 := gdbserial.RecordAsync(d.processArgs, d.config.WorkingDir, false, d.config.Stdin, d.config.Stdout, d.config.Stderr)
if err2 != nil {
return nil, err2
}
d.recordingStart(stop)
grp, err = d.recordingRun(run)
d.recordingDone()
} else {
grp, err = d.Launch(d.processArgs, d.config.WorkingDir)
}
if err != nil {
return nil, fmt.Errorf("could not launch process: %s", err)
}
discarded := []api.DiscardedBreakpoint{}
proc.Restart(grp, d.target, func(oldBp *proc.LogicalBreakpoint, err error) {
discarded = append(discarded, api.DiscardedBreakpoint{Breakpoint: api.ConvertLogicalBreakpoint(oldBp), Reason: err.Error()})
})
d.target = grp
return discarded, nil
}
// State returns the current state of the debugger.
func (d *Debugger) State(nowait bool) (*api.DebuggerState, error) {
if d.IsRunning() && nowait {
return &api.DebuggerState{Running: true}, nil
}
if d.isRecording() && nowait {
return &api.DebuggerState{Recording: true}, nil
}
d.dumpState.Mutex.Lock()
if d.dumpState.Dumping && nowait {
return &api.DebuggerState{CoreDumping: true}, nil
}
d.dumpState.Mutex.Unlock()
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.state(nil, false)
}
func (d *Debugger) state(retLoadCfg *proc.LoadConfig, withBreakpointInfo bool) (*api.DebuggerState, error) {
if _, err := d.target.Valid(); err != nil {
return nil, err
}
var (
state *api.DebuggerState
goroutine *api.Goroutine
)
tgt := d.target.Selected
if tgt.SelectedGoroutine() != nil {
goroutine = api.ConvertGoroutine(tgt, tgt.SelectedGoroutine())
}
exited := false
if _, err := tgt.Valid(); err != nil {
var errProcessExited proc.ErrProcessExited
exited = errors.As(err, &errProcessExited)
}
state = &api.DebuggerState{
Pid: tgt.Pid(),
TargetCommandLine: tgt.CmdLine,
SelectedGoroutine: goroutine,
Exited: exited,
}
for _, thread := range d.target.ThreadList() {
th := api.ConvertThread(thread, d.ConvertThreadBreakpoint(thread))
th.CallReturn = thread.Common().CallReturn
if retLoadCfg != nil {
th.ReturnValues = api.ConvertVars(thread.Common().ReturnValues(*retLoadCfg))
}
if withBreakpointInfo {
err := d.collectBreakpointInformation(th, thread)
if err != nil {
return nil, err
}
}
state.Threads = append(state.Threads, th)
if thread.ThreadID() == tgt.CurrentThread().ThreadID() {
state.CurrentThread = th
}
}
state.NextInProgress = d.target.HasSteppingBreakpoints()
if recorded, _ := d.target.Recorded(); recorded {
state.When, _ = d.target.When()
}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().WatchOutOfScope {
abp := api.ConvertLogicalBreakpoint(bp.Logical)
api.ConvertPhysicalBreakpoints(abp, bp.Logical, []int{t.Pid()}, []*proc.Breakpoint{bp})
state.WatchOutOfScope = append(state.WatchOutOfScope, abp)
}
}
return state, nil
}
// CreateBreakpoint creates a breakpoint using information from the provided `requestedBp`.
// This function accepts several different ways of specifying where and how to create the
// breakpoint that has been requested. Any error encountered during the attempt to set the
// breakpoint will be returned to the caller.
//
// The ways of specifying a breakpoint are listed below in the order they are considered by
// this function:
//
// - If requestedBp.TraceReturn is true then it is expected that
// requestedBp.Addrs will contain the list of return addresses
// supplied by the caller.
//
// - If requestedBp.File is not an empty string the breakpoint
// will be created on the specified file:line location
//
// - If requestedBp.FunctionName is not an empty string
// the breakpoint will be created on the specified function:line
// location.
//
// - If requestedBp.Addrs is filled it will create a logical breakpoint
// corresponding to all specified addresses.
//
// - Otherwise the value specified by arg.Breakpoint.Addr will be used.
//
// Note that this method will use the first successful method in order to
// create a breakpoint, so mixing different fields will not result is multiple
// breakpoints being set.
//
// If LocExpr is specified it will be used, along with substitutePathRules,
// to re-enable the breakpoint after it is disabled.
//
// If suspended is true a logical breakpoint will be created even if the
// location can not be found, the backend will attempt to enable the
// breakpoint every time a new plugin is loaded.
func (d *Debugger) CreateBreakpoint(requestedBp *api.Breakpoint, locExpr string, substitutePathRules [][2]string, suspended bool) (*api.Breakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
var (
setbp proc.SetBreakpoint
err error
)
if requestedBp.Name != "" {
if d.findBreakpointByName(requestedBp.Name) != nil {
return nil, errors.New("breakpoint name already exists")
}
}
if lbp := d.target.LogicalBreakpoints[requestedBp.ID]; lbp != nil {
abp := d.convertBreakpoint(lbp)
return abp, proc.BreakpointExistsError{File: lbp.File, Line: lbp.Line}
}
switch {
case requestedBp.TraceReturn:
if len(d.target.Targets()) != 1 {
return nil, ErrNotImplementedWithMultitarget
}
setbp.PidAddrs = []proc.PidAddr{{Pid: d.target.Selected.Pid(), Addr: requestedBp.Addr}}
case len(requestedBp.File) > 0:
fileName := requestedBp.File
if runtime.GOOS == "windows" {
// Accept fileName which is case-insensitive and slash-insensitive match
fileNameNormalized := strings.ToLower(filepath.ToSlash(fileName))
t := proc.ValidTargets{Group: d.target}
caseInsensitiveSearch:
for t.Next() {
for _, symFile := range t.BinInfo().Sources {
if fileNameNormalized == strings.ToLower(filepath.ToSlash(symFile)) {
fileName = symFile
break caseInsensitiveSearch
}
}
}
}
setbp.File = fileName
setbp.Line = requestedBp.Line
case len(requestedBp.FunctionName) > 0:
setbp.FunctionName = requestedBp.FunctionName
setbp.Line = requestedBp.Line
case len(requestedBp.Addrs) > 0:
setbp.PidAddrs = make([]proc.PidAddr, len(requestedBp.Addrs))
if len(d.target.Targets()) == 1 {
pid := d.target.Selected.Pid()
for i, addr := range requestedBp.Addrs {
setbp.PidAddrs[i] = proc.PidAddr{Pid: pid, Addr: addr}
}
} else {
if len(requestedBp.Addrs) != len(requestedBp.AddrPid) {
return nil, errors.New("mismatched length in addrs and addrpid")
}
for i, addr := range requestedBp.Addrs {
setbp.PidAddrs[i] = proc.PidAddr{Pid: requestedBp.AddrPid[i], Addr: addr}
}
}
default:
if requestedBp.Addr != 0 {
setbp.PidAddrs = []proc.PidAddr{{Pid: d.target.Selected.Pid(), Addr: requestedBp.Addr}}
}
}
if locExpr != "" {
loc, err := locspec.Parse(locExpr)
if err != nil {
return nil, err
}
setbp.Expr = func(t *proc.Target) []uint64 {
locs, _, err := loc.Find(t, d.processArgs, nil, locExpr, false, substitutePathRules)
if err != nil || len(locs) != 1 {
logflags.DebuggerLogger().Debugf("could not evaluate breakpoint expression %q: %v (number of results %d)", locExpr, err, len(locs))
return nil
}
return locs[0].PCs
}
setbp.ExprString = locExpr
}
id := requestedBp.ID
if id <= 0 {
d.breakpointIDCounter++
id = d.breakpointIDCounter
} else {
d.breakpointIDCounter = id
}
lbp := &proc.LogicalBreakpoint{LogicalID: id, HitCount: make(map[int64]uint64), Enabled: true}
d.target.LogicalBreakpoints[id] = lbp
err = copyLogicalBreakpointInfo(lbp, requestedBp)
if err != nil {
return nil, err
}
lbp.Set = setbp
if lbp.Set.Expr != nil {
addrs := lbp.Set.Expr(d.Target())
if len(addrs) > 0 {
f, l, fn := d.Target().BinInfo().PCToLine(addrs[0])
lbp.File = f
lbp.Line = l
if fn != nil {
lbp.FunctionName = fn.Name
}
}
}
err = d.target.EnableBreakpoint(lbp)
if err != nil {
if suspended {
logflags.DebuggerLogger().Debugf("could not enable new breakpoint: %v (breakpoint will be suspended)", err)
} else {
delete(d.target.LogicalBreakpoints, lbp.LogicalID)
return nil, err
}
}
createdBp := d.convertBreakpoint(lbp)
d.log.Infof("created breakpoint: %#v", createdBp)
return createdBp, nil
}
func (d *Debugger) convertBreakpoint(lbp *proc.LogicalBreakpoint) *api.Breakpoint {
abp := api.ConvertLogicalBreakpoint(lbp)
bps := []*proc.Breakpoint{}
pids := []int{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == lbp.LogicalID {
bps = append(bps, bp)
pids = append(pids, t.Pid())
}
}
}
api.ConvertPhysicalBreakpoints(abp, lbp, pids, bps)
return abp
}
func (d *Debugger) ConvertThreadBreakpoint(thread proc.Thread) *api.Breakpoint {
if b := thread.Breakpoint(); b.Active && b.Breakpoint.Logical != nil {
return d.convertBreakpoint(b.Breakpoint.Logical)
}
return nil
}
func (d *Debugger) CreateEBPFTracepoint(fnName string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if len(d.target.Targets()) != 1 {
return ErrNotImplementedWithMultitarget
}
p := d.target.Selected
return p.SetEBPFTracepoint(fnName)
}
// amendBreakpoint will update the breakpoint with the matching ID.
// It also enables or disables the breakpoint.
// We can consume this function to avoid locking a goroutine.
func (d *Debugger) amendBreakpoint(amend *api.Breakpoint) error {
original := d.target.LogicalBreakpoints[amend.ID]
if original == nil {
return fmt.Errorf("no breakpoint with ID %d", amend.ID)
}
enabledBefore := original.Enabled
err := copyLogicalBreakpointInfo(original, amend)
if err != nil {
return err
}
original.Enabled = !amend.Disabled
switch {
case enabledBefore && !original.Enabled:
if d.isWatchpoint(original) {
return errors.New("can not disable watchpoints")
}
err = d.target.DisableBreakpoint(original)
case !enabledBefore && original.Enabled:
err = d.target.EnableBreakpoint(original)
}
if err != nil {
return err
}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == amend.ID {
bp.UserBreaklet().Cond = original.Cond
}
}
}
return nil
}
func (d *Debugger) isWatchpoint(lbp *proc.LogicalBreakpoint) bool {
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
if bp.LogicalID() == lbp.LogicalID {
return bp.WatchType != 0
}
}
}
return false
}
// AmendBreakpoint will update the breakpoint with the matching ID.
// It also enables or disables the breakpoint.
func (d *Debugger) AmendBreakpoint(amend *api.Breakpoint) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.amendBreakpoint(amend)
}
// CancelNext will clear internal breakpoints, thus cancelling the 'next',
// 'step' or 'stepout' operation.
func (d *Debugger) CancelNext() error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.ClearSteppingBreakpoints()
}
func copyLogicalBreakpointInfo(lbp *proc.LogicalBreakpoint, requested *api.Breakpoint) error {
lbp.Name = requested.Name
lbp.Tracepoint = requested.Tracepoint
lbp.TraceReturn = requested.TraceReturn
lbp.Goroutine = requested.Goroutine
lbp.Stacktrace = requested.Stacktrace
lbp.Variables = requested.Variables
lbp.LoadArgs = api.LoadConfigToProc(requested.LoadArgs)
lbp.LoadLocals = api.LoadConfigToProc(requested.LoadLocals)
lbp.UserData = requested.UserData
lbp.Cond = nil
if requested.Cond != "" {
var err error
lbp.Cond, err = parser.ParseExpr(requested.Cond)
if err != nil {
return err
}
}
lbp.HitCond = nil
if requested.HitCond != "" {
opTok, val, err := parseHitCondition(requested.HitCond)
if err != nil {
return err
}
lbp.HitCond = &struct {
Op token.Token
Val int
}{opTok, val}
lbp.HitCondPerG = requested.HitCondPerG
}
return nil
}
func parseHitCondition(hitCond string) (token.Token, int, error) {
// A hit condition can be in the following formats:
// - "number"
// - "OP number"
hitConditionRegex := regexp.MustCompile(`(([=><%!])+|)( |)((\d|_)+)`)
match := hitConditionRegex.FindStringSubmatch(strings.TrimSpace(hitCond))
if match == nil || len(match) != 6 {
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\nhit conditions should be of the form \"number\" or \"OP number\"", hitCond)
}
opStr := match[1]
var opTok token.Token
switch opStr {
case "==", "":
opTok = token.EQL
case ">=":
opTok = token.GEQ
case "<=":
opTok = token.LEQ
case ">":
opTok = token.GTR
case "<":
opTok = token.LSS
case "%":
opTok = token.REM
case "!=":
opTok = token.NEQ
default:
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\ninvalid operator: %q", hitCond, opStr)
}
numStr := match[4]
val, parseErr := strconv.Atoi(numStr)
if parseErr != nil {
return 0, 0, fmt.Errorf("unable to parse breakpoint hit condition: %q\ninvalid number: %q", hitCond, numStr)
}
return opTok, val, nil
}
// ClearBreakpoint clears a breakpoint.
func (d *Debugger) ClearBreakpoint(requestedBp *api.Breakpoint) (*api.Breakpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if requestedBp.ID <= 0 {
if len(d.target.Targets()) != 1 {
return nil, ErrNotImplementedWithMultitarget
}
bp := d.target.Selected.Breakpoints().M[requestedBp.Addr]
requestedBp.ID = bp.LogicalID()
}
lbp := d.target.LogicalBreakpoints[requestedBp.ID]
clearedBp := d.convertBreakpoint(lbp)
err := d.target.DisableBreakpoint(lbp)
if err != nil {
return nil, err
}
delete(d.target.LogicalBreakpoints, requestedBp.ID)
d.log.Infof("cleared breakpoint: %#v", clearedBp)
return clearedBp, nil
}
// isBpHitCondNotSatisfiable returns true if the breakpoint bp has a hit
// condition that is no more satisfiable.
// The hit condition is considered no more satisfiable if it can no longer be
// hit again, for example with {Op: "==", Val: 1} and TotalHitCount == 1.
func isBpHitCondNotSatisfiable(bp *api.Breakpoint) bool {
if bp.HitCond == "" {
return false
}
tok, val, err := parseHitCondition(bp.HitCond)
if err != nil {
return false
}
switch tok {
case token.EQL, token.LEQ:
if int(bp.TotalHitCount) >= val {
return true
}
case token.LSS:
if int(bp.TotalHitCount) >= val-1 {
return true
}
}
return false
}
// Breakpoints returns the list of current breakpoints.
func (d *Debugger) Breakpoints(all bool) []*api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
abps := []*api.Breakpoint{}
if all {
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, bp := range t.Breakpoints().M {
var abp *api.Breakpoint
if bp.Logical != nil {
abp = api.ConvertLogicalBreakpoint(bp.Logical)
} else {
abp = &api.Breakpoint{}
}
api.ConvertPhysicalBreakpoints(abp, bp.Logical, []int{t.Pid()}, []*proc.Breakpoint{bp})
abp.VerboseDescr = bp.VerboseDescr()
abps = append(abps, abp)
}
}
} else {
for _, lbp := range d.target.LogicalBreakpoints {
abps = append(abps, d.convertBreakpoint(lbp))
}
}
return abps
}
// FindBreakpoint returns the breakpoint specified by 'id'.
func (d *Debugger) FindBreakpoint(id int) *api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
lbp := d.target.LogicalBreakpoints[id]
if lbp == nil {
return nil
}
return d.convertBreakpoint(lbp)
}
// FindBreakpointByName returns the breakpoint specified by 'name'
func (d *Debugger) FindBreakpointByName(name string) *api.Breakpoint {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.findBreakpointByName(name)
}
func (d *Debugger) findBreakpointByName(name string) *api.Breakpoint {
for _, lbp := range d.target.LogicalBreakpoints {
if lbp.Name == name {
return d.convertBreakpoint(lbp)
}
}
return nil
}
// CreateWatchpoint creates a watchpoint on the specified expression.
func (d *Debugger) CreateWatchpoint(goid int64, frame, deferredCall int, expr string, wtype api.WatchType) (*api.Breakpoint, error) {
p := d.target.Selected
s, err := proc.ConvertEvalScope(p, goid, frame, deferredCall)
if err != nil {
return nil, err
}
d.breakpointIDCounter++
bp, err := p.SetWatchpoint(d.breakpointIDCounter, s, expr, proc.WatchType(wtype), nil)
if err != nil {
return nil, err
}
if d.findBreakpointByName(expr) == nil {
bp.Logical.Name = expr
}
return d.convertBreakpoint(bp.Logical), nil
}
// Threads returns the threads of the target process.
func (d *Debugger) Threads() ([]proc.Thread, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
return d.target.ThreadList(), nil
}
// FindThread returns the thread for the given 'id'.
func (d *Debugger) FindThread(id int) (proc.Thread, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
for _, th := range d.target.ThreadList() {
if th.ThreadID() == id {
return th, nil
}
}
return nil, nil
}
// FindGoroutine returns the goroutine for the given 'id'.
func (d *Debugger) FindGoroutine(id int64) (*proc.G, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return proc.FindGoroutine(d.target.Selected, id)
}
func (d *Debugger) setRunning(running bool) {
d.runningMutex.Lock()
d.running = running
d.runningMutex.Unlock()
}
func (d *Debugger) IsRunning() bool {
d.runningMutex.Lock()
defer d.runningMutex.Unlock()
return d.running
}
// Command handles commands which control the debugger lifecycle
func (d *Debugger) Command(command *api.DebuggerCommand, resumeNotify chan struct{}) (*api.DebuggerState, error) {
var err error
if command.Name == api.Halt {
// RequestManualStop does not invoke any ptrace syscalls, so it's safe to
// access the process directly.
d.log.Debug("halting")
d.recordMutex.Lock()
if d.stopRecording == nil {
err = d.target.RequestManualStop()
// The error returned from d.target.Valid will have more context
// about the exited process.
if _, valErr := d.target.Valid(); valErr != nil {
err = valErr
}
}
d.recordMutex.Unlock()
}
withBreakpointInfo := true
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
d.setRunning(true)
defer d.setRunning(false)
if command.Name != api.SwitchGoroutine && command.Name != api.SwitchThread && command.Name != api.Halt {
d.target.ResumeNotify(resumeNotify)
} else if resumeNotify != nil {
close(resumeNotify)
}
switch command.Name {
case api.Continue:
d.log.Debug("continuing")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Continue()
case api.DirectionCongruentContinue:
d.log.Debug("continuing (direction congruent)")
err = d.target.Continue()
case api.Call:
d.log.Debugf("function call %s", command.Expr)
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
if command.ReturnInfoLoadConfig == nil {
return nil, errors.New("can not call function with nil ReturnInfoLoadConfig")
}
g := d.target.Selected.SelectedGoroutine()
if command.GoroutineID > 0 {
g, err = proc.FindGoroutine(d.target.Selected, command.GoroutineID)
if err != nil {
return nil, err
}
}
err = proc.EvalExpressionWithCalls(d.target, g, command.Expr, *api.LoadConfigToProc(command.ReturnInfoLoadConfig), !command.UnsafeCall)
case api.Rewind:
d.log.Debug("rewinding")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Continue()
case api.Next:
d.log.Debug("nexting")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Next()
case api.ReverseNext:
d.log.Debug("reverse nexting")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Next()
case api.Step:
d.log.Debug("stepping")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.Step()
case api.ReverseStep:
d.log.Debug("reverse stepping")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.Step()
case api.StepInstruction:
d.log.Debug("single stepping")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.StepInstruction()
case api.ReverseStepInstruction:
d.log.Debug("reverse single stepping")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.StepInstruction()
case api.StepOut:
d.log.Debug("step out")
if err := d.target.ChangeDirection(proc.Forward); err != nil {
return nil, err
}
err = d.target.StepOut()
case api.ReverseStepOut:
d.log.Debug("reverse step out")
if err := d.target.ChangeDirection(proc.Backward); err != nil {
return nil, err
}
err = d.target.StepOut()
case api.SwitchThread:
d.log.Debugf("switching to thread %d", command.ThreadID)
t := proc.ValidTargets{Group: d.target}
for t.Next() {
if _, ok := t.FindThread(command.ThreadID); ok {
d.target.Selected = t.Target
break
}
}
err = d.target.Selected.SwitchThread(command.ThreadID)
withBreakpointInfo = false
case api.SwitchGoroutine:
d.log.Debugf("switching to goroutine %d", command.GoroutineID)
var g *proc.G
g, err = proc.FindGoroutine(d.target.Selected, command.GoroutineID)
if err == nil {
err = d.target.Selected.SwitchGoroutine(g)
}
withBreakpointInfo = false
case api.Halt:
// RequestManualStop already called
withBreakpointInfo = false
}
if err != nil {
var errProcessExited proc.ErrProcessExited
if errors.As(err, &errProcessExited) && command.Name != api.SwitchGoroutine && command.Name != api.SwitchThread {
state := &api.DebuggerState{}
state.Pid = d.target.Selected.Pid()
state.Exited = true
state.ExitStatus = errProcessExited.Status
state.Err = errProcessExited
return state, nil
}
return nil, err
}
state, stateErr := d.state(api.LoadConfigToProc(command.ReturnInfoLoadConfig), withBreakpointInfo)
if stateErr != nil {
return state, stateErr
}
for _, th := range state.Threads {
if th.Breakpoint != nil && th.Breakpoint.TraceReturn {
for _, v := range th.BreakpointInfo.Arguments {
if (v.Flags & api.VariableReturnArgument) != 0 {
th.ReturnValues = append(th.ReturnValues, v)
}
}
}
}
if bp := state.CurrentThread.Breakpoint; bp != nil && isBpHitCondNotSatisfiable(bp) {
bp.Disabled = true
d.amendBreakpoint(bp)
}
return state, err
}
func (d *Debugger) collectBreakpointInformation(apiThread *api.Thread, thread proc.Thread) error {
if apiThread.Breakpoint == nil || apiThread.BreakpointInfo != nil {
return nil
}
bp := apiThread.Breakpoint
bpi := &api.BreakpointInfo{}
apiThread.BreakpointInfo = bpi
tgt := d.target.TargetForThread(thread.ThreadID())
// If we're dealing with a stripped binary don't attempt to load more
// information, we won't be able to.
img := tgt.BinInfo().PCToImage(bp.Addr)
if img != nil && img.Stripped() {
return nil
}
if bp.Goroutine {
g, err := proc.GetG(thread)
if err != nil {
return err
}
bpi.Goroutine = api.ConvertGoroutine(tgt, g)
}
if bp.Stacktrace > 0 {
rawlocs, err := proc.ThreadStacktrace(tgt, thread, bp.Stacktrace)
if err != nil {
return err
}
bpi.Stacktrace, err = d.convertStacktrace(rawlocs, nil)
if err != nil {
return err
}
}
if len(bp.Variables) == 0 && bp.LoadArgs == nil && bp.LoadLocals == nil {
// don't try to create goroutine scope if there is nothing to load
return nil
}
s, err := proc.GoroutineScope(tgt, thread)
if err != nil {
return err
}
if len(bp.Variables) > 0 {
bpi.Variables = make([]api.Variable, len(bp.Variables))
}
for i := range bp.Variables {
v, err := s.EvalExpression(bp.Variables[i], proc.LoadConfig{FollowPointers: true, MaxVariableRecurse: 1, MaxStringLen: 64, MaxArrayValues: 64, MaxStructFields: -1})
if err != nil {
bpi.Variables[i] = api.Variable{Name: bp.Variables[i], Unreadable: fmt.Sprintf("eval error: %v", err)}
} else {
bpi.Variables[i] = *api.ConvertVar(v)
}
}
if bp.LoadArgs != nil {
if vars, err := s.FunctionArguments(*api.LoadConfigToProc(bp.LoadArgs)); err == nil {
bpi.Arguments = api.ConvertVars(vars)
}
}
if bp.LoadLocals != nil {
if locals, err := s.LocalVariables(*api.LoadConfigToProc(bp.LoadLocals)); err == nil {
bpi.Locals = api.ConvertVars(locals)
}
}
return nil
}
// Sources returns a list of the source files for target binary.
func (d *Debugger) Sources(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
files := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, f := range t.BinInfo().Sources {
if regex.MatchString(f) {
files = append(files, f)
}
}
}
sort.Strings(files)
files = uniq(files)
return files, nil
}
func uniq(s []string) []string {
if len(s) == 0 {
return s
}
src, dst := 1, 1
for src < len(s) {
if s[src] != s[dst-1] {
s[dst] = s[src]
dst++
}
src++
}
return s[:dst]
}
// Functions returns a list of functions in the target process.
func (d *Debugger) Functions(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
funcs := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
for _, f := range t.BinInfo().Functions {
if regex.MatchString(f.Name) {
funcs = append(funcs, f.Name)
}
}
}
sort.Strings(funcs)
funcs = uniq(funcs)
return funcs, nil
}
// Types returns all type information in the binary.
func (d *Debugger) Types(filter string) ([]string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
r := []string{}
t := proc.ValidTargets{Group: d.target}
for t.Next() {
types, err := t.BinInfo().Types()
if err != nil {
return nil, err
}
for _, typ := range types {
if regex.MatchString(typ) {
r = append(r, typ)
}
}
}
sort.Strings(r)
r = uniq(r)
return r, nil
}
// PackageVariables returns a list of package variables for the thread,
// optionally regexp filtered using regexp described in 'filter'.
func (d *Debugger) PackageVariables(filter string, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
p := d.target.Selected
regex, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("invalid filter argument: %s", err.Error())
}
scope, err := proc.ThreadScope(p, p.CurrentThread())
if err != nil {
return nil, err
}
pv, err := scope.PackageVariables(cfg)
if err != nil {
return nil, err
}
pvr := pv[:0]
for i := range pv {
if regex.MatchString(pv[i].Name) {
pvr = append(pvr, pv[i])
}
}
return pvr, nil
}
// ThreadRegisters returns registers of the specified thread.
func (d *Debugger) ThreadRegisters(threadID int) (*op.DwarfRegisters, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
thread, found := d.target.Selected.FindThread(threadID)
if !found {
return nil, fmt.Errorf("couldn't find thread %d", threadID)
}
regs, err := thread.Registers()
if err != nil {
return nil, err
}
return d.target.Selected.BinInfo().Arch.RegistersToDwarfRegisters(0, regs), nil
}
// ScopeRegisters returns registers for the specified scope.
func (d *Debugger) ScopeRegisters(goid int64, frame, deferredCall int) (*op.DwarfRegisters, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return &s.Regs, nil
}
// DwarfRegisterToString returns the name and value representation of the given register.
func (d *Debugger) DwarfRegisterToString(i int, reg *op.DwarfRegister) (string, bool, string) {
return d.target.Selected.BinInfo().Arch.DwarfRegisterToString(i, reg)
}
// LocalVariables returns a list of the local variables.
func (d *Debugger) LocalVariables(goid int64, frame, deferredCall int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.LocalVariables(cfg)
}
// FunctionArguments returns the arguments to the current function.
func (d *Debugger) FunctionArguments(goid int64, frame, deferredCall int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.FunctionArguments(cfg)
}
// Function returns the current function.
func (d *Debugger) Function(goid int64, frame, deferredCall int) (*proc.Function, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.Fn, nil
}
// EvalVariableInScope will attempt to evaluate the 'expr' in the scope
// corresponding to the given 'frame' on the goroutine identified by 'goid'.
func (d *Debugger) EvalVariableInScope(goid int64, frame, deferredCall int, expr string, cfg proc.LoadConfig) (*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
return s.EvalExpression(expr, cfg)
}
// LoadResliced will attempt to 'reslice' a map, array or slice so that the values
// up to cfg.MaxArrayValues children are loaded starting from index start.
func (d *Debugger) LoadResliced(v *proc.Variable, start int, cfg proc.LoadConfig) (*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return v.LoadResliced(start, cfg)
}
// SetVariableInScope will set the value of the variable represented by
// 'symbol' to the value given, in the given scope.
func (d *Debugger) SetVariableInScope(goid int64, frame, deferredCall int, symbol, value string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return err
}
return s.SetVariable(symbol, value)
}
// Goroutines will return a list of goroutines in the target process.
func (d *Debugger) Goroutines(start, count int) ([]*proc.G, int, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return proc.GoroutinesInfo(d.target.Selected, start, count)
}
// FilterGoroutines returns the goroutines in gs that satisfy the specified filters.
func (d *Debugger) FilterGoroutines(gs []*proc.G, filters []api.ListGoroutinesFilter) []*proc.G {
if len(filters) == 0 {
return gs
}
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
r := []*proc.G{}
for _, g := range gs {
ok := true
for i := range filters {
if !matchGoroutineFilter(d.target.Selected, g, &filters[i]) {
ok = false
break
}
}
if ok {
r = append(r, g)
}
}
return r
}
func matchGoroutineFilter(tgt *proc.Target, g *proc.G, filter *api.ListGoroutinesFilter) bool {
var val bool
switch filter.Kind {
default:
fallthrough
case api.GoroutineFieldNone:
val = true
case api.GoroutineCurrentLoc:
val = matchGoroutineLocFilter(g.CurrentLoc, filter.Arg)
case api.GoroutineUserLoc:
val = matchGoroutineLocFilter(g.UserCurrent(), filter.Arg)
case api.GoroutineGoLoc:
val = matchGoroutineLocFilter(g.Go(), filter.Arg)
case api.GoroutineStartLoc:
val = matchGoroutineLocFilter(g.StartLoc(tgt), filter.Arg)
case api.GoroutineLabel:
idx := strings.Index(filter.Arg, "=")
if idx >= 0 {
val = g.Labels()[filter.Arg[:idx]] == filter.Arg[idx+1:]
} else {
_, val = g.Labels()[filter.Arg]
}
case api.GoroutineRunning:
val = g.Thread != nil
case api.GoroutineUser:
val = !g.System(tgt)
case api.GoroutineWaitingOnChannel:
val = true // handled elsewhere
}
if filter.Negated {
val = !val
}
return val
}
func matchGoroutineLocFilter(loc proc.Location, arg string) bool {
return strings.Contains(formatLoc(loc), arg)
}
func formatLoc(loc proc.Location) string {
fnname := "?"
if loc.Fn != nil {
fnname = loc.Fn.Name
}
return fmt.Sprintf("%s:%d in %s", loc.File, loc.Line, fnname)
}
// GroupGoroutines divides goroutines in gs into groups as specified by
// group.{GroupBy,GroupByKey}. A maximum of group.MaxGroupMembers are saved in
// each group, but the total number of goroutines in each group is recorded. If
// group.MaxGroups is set, then at most that many groups are returned. If some
// groups end up being dropped because of this limit, the tooManyGroups return
// value is set.
//
// The first return value represents the goroutines that have been included in
// one of the returned groups (subject to the MaxGroupMembers and MaxGroups
// limits). The second return value represents the groups.
func (d *Debugger) GroupGoroutines(gs []*proc.G, group *api.GoroutineGroupingOptions) ([]*proc.G, []api.GoroutineGroup, bool) {
if group.GroupBy == api.GoroutineFieldNone {
return gs, nil, false
}
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
groupMembers := map[string][]*proc.G{}
totals := map[string]int{}
for _, g := range gs {
var key string
switch group.GroupBy {
case api.GoroutineCurrentLoc:
key = formatLoc(g.CurrentLoc)
case api.GoroutineUserLoc:
key = formatLoc(g.UserCurrent())
case api.GoroutineGoLoc:
key = formatLoc(g.Go())
case api.GoroutineStartLoc:
key = formatLoc(g.StartLoc(d.target.Selected))
case api.GoroutineLabel:
key = fmt.Sprintf("%s=%s", group.GroupByKey, g.Labels()[group.GroupByKey])
case api.GoroutineRunning:
key = fmt.Sprintf("running=%v", g.Thread != nil)
case api.GoroutineUser:
key = fmt.Sprintf("user=%v", !g.System(d.target.Selected))
}
if len(groupMembers[key]) < group.MaxGroupMembers {
groupMembers[key] = append(groupMembers[key], g)
}
totals[key]++
}
keys := make([]string, 0, len(groupMembers))
for key := range groupMembers {
keys = append(keys, key)
}
sort.Strings(keys)
tooManyGroups := false
gsout := []*proc.G{}
groups := []api.GoroutineGroup{}
for _, key := range keys {
if group.MaxGroups > 0 && len(groups) >= group.MaxGroups {
tooManyGroups = true
break
}
groups = append(groups, api.GoroutineGroup{Name: key, Offset: len(gsout), Count: len(groupMembers[key]), Total: totals[key]})
gsout = append(gsout, groupMembers[key]...)
}
return gsout, groups, tooManyGroups
}
// Stacktrace returns a list of Stackframes for the given goroutine. The
// length of the returned list will be min(stack_len, depth).
// If 'full' is true, then local vars, function args, etc. will be returned as well.
func (d *Debugger) Stacktrace(goroutineID int64, depth int, opts api.StacktraceOptions) ([]proc.Stackframe, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
if g == nil {
return proc.ThreadStacktrace(d.target.Selected, d.target.Selected.CurrentThread(), depth)
} else {
return proc.GoroutineStacktrace(d.target.Selected, g, depth, proc.StacktraceOptions(opts))
}
}
// Ancestors returns the stacktraces for the ancestors of a goroutine.
func (d *Debugger) Ancestors(goroutineID int64, numAncestors, depth int) ([]api.Ancestor, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
if g == nil {
return nil, errors.New("no selected goroutine")
}
ancestors, err := proc.Ancestors(d.target.Selected, g, numAncestors)
if err != nil {
return nil, err
}
r := make([]api.Ancestor, len(ancestors))
for i := range ancestors {
r[i].ID = ancestors[i].ID
if ancestors[i].Unreadable != nil {
r[i].Unreadable = ancestors[i].Unreadable.Error()
continue
}
frames, err := ancestors[i].Stack(depth)
if err != nil {
r[i].Unreadable = fmt.Sprintf("could not read ancestor stacktrace: %v", err)
continue
}
r[i].Stack, err = d.convertStacktrace(frames, nil)
if err != nil {
r[i].Unreadable = fmt.Sprintf("could not read ancestor stacktrace: %v", err)
}
}
return r, nil
}
// ConvertStacktrace converts a slice of proc.Stackframe into a slice of
// api.Stackframe, loading local variables and arguments of each frame if
// cfg is not nil.
func (d *Debugger) ConvertStacktrace(rawlocs []proc.Stackframe, cfg *proc.LoadConfig) ([]api.Stackframe, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.convertStacktrace(rawlocs, cfg)
}
func (d *Debugger) convertStacktrace(rawlocs []proc.Stackframe, cfg *proc.LoadConfig) ([]api.Stackframe, error) {
locations := make([]api.Stackframe, 0, len(rawlocs))
for i := range rawlocs {
frame := api.Stackframe{
Location: api.ConvertLocation(rawlocs[i].Call),
FrameOffset: rawlocs[i].FrameOffset(),
FramePointerOffset: rawlocs[i].FramePointerOffset(),
Defers: d.convertDefers(rawlocs[i].Defers),
Bottom: rawlocs[i].Bottom,
}
if rawlocs[i].Err != nil {
frame.Err = rawlocs[i].Err.Error()
}
if cfg != nil && rawlocs[i].Current.Fn != nil {
var err error
scope := proc.FrameToScope(d.target.Selected, d.target.Selected.Memory(), nil, 0, rawlocs[i:]...)
locals, err := scope.LocalVariables(*cfg)
if err != nil {
return nil, err
}
arguments, err := scope.FunctionArguments(*cfg)
if err != nil {
return nil, err
}
frame.Locals = api.ConvertVars(locals)
frame.Arguments = api.ConvertVars(arguments)
}
locations = append(locations, frame)
}
return locations, nil
}
func (d *Debugger) convertDefers(defers []*proc.Defer) []api.Defer {
r := make([]api.Defer, len(defers))
for i := range defers {
ddf, ddl, ddfn := defers[i].DeferredFunc(d.target.Selected)
drf, drl, drfn := d.target.Selected.BinInfo().PCToLine(defers[i].DeferPC)
if defers[i].Unreadable != nil {
r[i].Unreadable = defers[i].Unreadable.Error()
} else {
var entry = defers[i].DeferPC
if ddfn != nil {
entry = ddfn.Entry
}
r[i] = api.Defer{
DeferredLoc: api.ConvertLocation(proc.Location{
PC: entry,
File: ddf,
Line: ddl,
Fn: ddfn,
}),
DeferLoc: api.ConvertLocation(proc.Location{
PC: defers[i].DeferPC,
File: drf,
Line: drl,
Fn: drfn,
}),
SP: defers[i].SP,
}
}
}
return r
}
// CurrentPackage returns the fully qualified name of the
// package corresponding to the function location of the
// current thread.
func (d *Debugger) CurrentPackage() (string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return "", err
}
loc, err := d.target.Selected.CurrentThread().Location()
if err != nil {
return "", err
}
if loc.Fn == nil {
return "", fmt.Errorf("unable to determine current package due to unspecified function location")
}
return loc.Fn.PackageName(), nil
}
// FindLocation will find the location specified by 'locStr'.
func (d *Debugger) FindLocation(goid int64, frame, deferredCall int, locStr string, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, string, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, "", err
}
loc, err := locspec.Parse(locStr)
if err != nil {
return nil, "", err
}
return d.findLocation(goid, frame, deferredCall, locStr, loc, includeNonExecutableLines, substitutePathRules)
}
// FindLocationSpec will find the location specified by 'locStr' and 'locSpec'.
// 'locSpec' should be the result of calling 'locspec.Parse(locStr)'. 'locStr'
// is also passed, because it made be used to broaden the search criteria, if
// the parsed result did not find anything.
func (d *Debugger) FindLocationSpec(goid int64, frame, deferredCall int, locStr string, locSpec locspec.LocationSpec, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
locs, _, err := d.findLocation(goid, frame, deferredCall, locStr, locSpec, includeNonExecutableLines, substitutePathRules)
return locs, err
}
func (d *Debugger) findLocation(goid int64, frame, deferredCall int, locStr string, locSpec locspec.LocationSpec, includeNonExecutableLines bool, substitutePathRules [][2]string) ([]api.Location, string, error) {
locations := []api.Location{}
t := proc.ValidTargets{Group: d.target}
subst := ""
for t.Next() {
pid := t.Pid()
s, _ := proc.ConvertEvalScope(t.Target, goid, frame, deferredCall)
locs, s1, err := locSpec.Find(t.Target, d.processArgs, s, locStr, includeNonExecutableLines, substitutePathRules)
if s1 != "" {
subst = s1
}
if err != nil {
return nil, "", err
}
for i := range locs {
if locs[i].PC == 0 {
continue
}
file, line, fn := t.BinInfo().PCToLine(locs[i].PC)
locs[i].File = file
locs[i].Line = line
locs[i].Function = api.ConvertFunction(fn)
locs[i].PCPids = make([]int, len(locs[i].PCs))
for j := range locs[i].PCs {
locs[i].PCPids[j] = pid
}
}
locations = append(locations, locs...)
}
return locations, subst, nil
}
// Disassemble code between startPC and endPC.
// if endPC == 0 it will find the function containing startPC and disassemble the whole function.
func (d *Debugger) Disassemble(goroutineID int64, addr1, addr2 uint64) ([]proc.AsmInstruction, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
if addr2 == 0 {
fn := d.target.Selected.BinInfo().PCToFunc(addr1)
if fn == nil {
return nil, fmt.Errorf("address %#x does not belong to any function", addr1)
}
addr1 = fn.Entry
addr2 = fn.End
}
g, err := proc.FindGoroutine(d.target.Selected, goroutineID)
if err != nil {
return nil, err
}
curthread := d.target.Selected.CurrentThread()
if g != nil && g.Thread != nil {
curthread = g.Thread
}
regs, _ := curthread.Registers()
return proc.Disassemble(d.target.Selected.Memory(), regs, d.target.Selected.Breakpoints(), d.target.Selected.BinInfo(), addr1, addr2)
}
func (d *Debugger) AsmInstructionText(inst *proc.AsmInstruction, flavour proc.AssemblyFlavour) string {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return inst.Text(flavour, d.target.Selected.BinInfo())
}
// Recorded returns true if the target is a recording.
func (d *Debugger) Recorded() (recorded bool, tracedir string) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Recorded()
}
// FindThreadReturnValues returns the return values of the function that
// the thread of the given 'id' just stepped out of.
func (d *Debugger) FindThreadReturnValues(id int, cfg proc.LoadConfig) ([]*proc.Variable, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
if _, err := d.target.Valid(); err != nil {
return nil, err
}
thread, found := d.target.Selected.FindThread(id)
if !found {
return nil, fmt.Errorf("could not find thread %d", id)
}
return thread.Common().ReturnValues(cfg), nil
}
// Checkpoint will set a checkpoint specified by the locspec.
func (d *Debugger) Checkpoint(where string) (int, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Checkpoint(where)
}
// Checkpoints will return a list of checkpoints.
func (d *Debugger) Checkpoints() ([]proc.Checkpoint, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Checkpoints()
}
// ClearCheckpoint will clear the checkpoint of the given ID.
func (d *Debugger) ClearCheckpoint(id int) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.ClearCheckpoint(id)
}
// ListDynamicLibraries returns a list of loaded dynamic libraries.
func (d *Debugger) ListDynamicLibraries() []*proc.Image {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().Images[1:] // skips the first image because it's the executable file
}
// ExamineMemory returns the raw memory stored at the given address.
// The amount of data to be read is specified by length.
// This function will return an error if it reads less than `length` bytes.
func (d *Debugger) ExamineMemory(address uint64, length int) ([]byte, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
mem := d.target.Selected.Memory()
data := make([]byte, length)
n, err := mem.ReadMemory(data, address)
if err != nil {
return nil, err
}
if length != n {
return nil, errors.New("the specific range has exceeded readable area")
}
return data, nil
}
func (d *Debugger) GetVersion(out *api.GetVersionOut) error {
if d.config.CoreFile != "" {
if d.config.Backend == "rr" {
out.Backend = "rr"
} else {
out.Backend = "core"
}
} else {
if d.config.Backend == "default" {
if runtime.GOOS == "darwin" {
out.Backend = "lldb"
} else {
out.Backend = "native"
}
} else {
out.Backend = d.config.Backend
}
}
if !d.isRecording() && !d.IsRunning() {
out.TargetGoVersion = d.target.Selected.BinInfo().Producer()
}
out.MinSupportedVersionOfGo = fmt.Sprintf("%d.%d.0", goversion.MinSupportedVersionOfGoMajor, goversion.MinSupportedVersionOfGoMinor)
out.MaxSupportedVersionOfGo = fmt.Sprintf("%d.%d.0", goversion.MaxSupportedVersionOfGoMajor, goversion.MaxSupportedVersionOfGoMinor)
return nil
}
// ListPackagesBuildInfo returns the list of packages used by the program along with
// the directory where each package was compiled and optionally the list of
// files constituting the package.
func (d *Debugger) ListPackagesBuildInfo(includeFiles bool) []*proc.PackageBuildInfo {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.BinInfo().ListPackagesBuildInfo(includeFiles)
}
// StopRecording stops a recording (if one is in progress)
func (d *Debugger) StopRecording() error {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
if d.stopRecording == nil {
return ErrNotRecording
}
return d.stopRecording()
}
// StopReason returns the reason why the target process is stopped.
// A process could be stopped for multiple simultaneous reasons, in which
// case only one will be reported.
func (d *Debugger) StopReason() proc.StopReason {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.Selected.StopReason
}
// LockTarget acquires the target mutex.
func (d *Debugger) LockTarget() {
d.targetMutex.Lock()
}
// UnlockTarget releases the target mutex.
func (d *Debugger) UnlockTarget() {
d.targetMutex.Unlock()
}
// DumpStart starts a core dump to dest.
func (d *Debugger) DumpStart(dest string) error {
d.targetMutex.Lock()
// targetMutex will only be unlocked when the dump is done
//TODO(aarzilli): what do we do if the user switches to a different target after starting a dump but before it's finished?
if !d.target.CanDump {
d.targetMutex.Unlock()
return ErrCoreDumpNotSupported
}
d.dumpState.Mutex.Lock()
defer d.dumpState.Mutex.Unlock()
if d.dumpState.Dumping {
d.targetMutex.Unlock()
return ErrCoreDumpInProgress
}
fh, err := os.Create(dest)
if err != nil {
d.targetMutex.Unlock()
return err
}
d.dumpState.Dumping = true
d.dumpState.AllDone = false
d.dumpState.Canceled = false
d.dumpState.DoneChan = make(chan struct{})
d.dumpState.ThreadsDone = 0
d.dumpState.ThreadsTotal = 0
d.dumpState.MemDone = 0
d.dumpState.MemTotal = 0
d.dumpState.Err = nil
go func() {
defer d.targetMutex.Unlock()
d.target.Selected.Dump(fh, 0, &d.dumpState)
}()
return nil
}
// DumpWait waits for the dump to finish, or for the duration of wait.
// Returns the state of the dump.
// If wait == 0 returns immediately.
func (d *Debugger) DumpWait(wait time.Duration) *proc.DumpState {
d.dumpState.Mutex.Lock()
if !d.dumpState.Dumping {
d.dumpState.Mutex.Unlock()
return &d.dumpState
}
d.dumpState.Mutex.Unlock()
if wait > 0 {
alarm := time.After(wait)
select {
case <-alarm:
case <-d.dumpState.DoneChan:
}
}
return &d.dumpState
}
// DumpCancel cancels a dump in progress
func (d *Debugger) DumpCancel() error {
d.dumpState.Mutex.Lock()
d.dumpState.Canceled = true
d.dumpState.Mutex.Unlock()
return nil
}
func (d *Debugger) Target() *proc.Target {
return d.target.Selected
}
func (d *Debugger) TargetGroup() *proc.TargetGroup {
return d.target
}
func (d *Debugger) BuildID() string {
return d.target.Selected.BinInfo().BuildID
}
func (d *Debugger) AttachPid() int {
return d.config.AttachPid
}
func (d *Debugger) GetBufferedTracepoints() []api.TracepointResult {
traces := d.target.Selected.GetBufferedTracepoints()
if traces == nil {
return nil
}
results := make([]api.TracepointResult, len(traces))
for i, trace := range traces {
results[i].IsRet = trace.IsRet
f, l, fn := d.target.Selected.BinInfo().PCToLine(uint64(trace.FnAddr))
results[i].FunctionName = fn.Name
results[i].Line = l
results[i].File = f
results[i].GoroutineID = trace.GoroutineID
for _, p := range trace.InputParams {
results[i].InputParams = append(results[i].InputParams, *api.ConvertVar(p))
}
for _, p := range trace.ReturnParams {
results[i].ReturnParams = append(results[i].ReturnParams, *api.ConvertVar(p))
}
}
return results
}
// FollowExec enabled or disables follow exec mode.
func (d *Debugger) FollowExec(enabled bool, regex string) error {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.FollowExec(enabled, regex)
}
// FollowExecEnabled returns true if follow exec mode is enabled.
func (d *Debugger) FollowExecEnabled() bool {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
return d.target.FollowExecEnabled()
}
func (d *Debugger) SetDebugInfoDirectories(v []string) {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
it := proc.ValidTargets{Group: d.target}
for it.Next() {
it.BinInfo().DebugInfoDirectories = v
}
}
func (d *Debugger) DebugInfoDirectories() []string {
d.recordMutex.Lock()
defer d.recordMutex.Unlock()
return d.target.Selected.BinInfo().DebugInfoDirectories
}
// ChanGoroutines returns the list of goroutines waiting on the channel specified by expr.
func (d *Debugger) ChanGoroutines(goid int64, frame, deferredCall int, expr string, start, count int) ([]*proc.G, error) {
d.targetMutex.Lock()
defer d.targetMutex.Unlock()
s, err := proc.ConvertEvalScope(d.target.Selected, goid, frame, deferredCall)
if err != nil {
return nil, err
}
goids, err := s.ChanGoroutines(expr, start, count)
if err != nil {
return nil, err
}
gs := make([]*proc.G, len(goids))
for i := range goids {
g, err := proc.FindGoroutine(d.target.Selected, goids[i])
if g == nil {
g = &proc.G{Unreadable: err}
}
gs[i] = g
}
return gs, nil
}
func go11DecodeErrorCheck(err error) error {
if !errors.Is(err, dwarf.DecodeError{}) {
return err
}
gover, ok := goversion.Installed()
if !ok || !gover.AfterOrEqual(goversion.GoVersion{Major: 1, Minor: 11, Rev: -1}) || goversion.VersionAfterOrEqual(runtime.Version(), 1, 11) {
return err
}
return fmt.Errorf("executables built by Go 1.11 or later need Delve built by Go 1.11 or later")
}
const NoDebugWarning string = "debuggee must not be built with 'go run' or -ldflags='-s -w', which strip debug info"
func noDebugErrorWarning(err error) error {
if errors.Is(err, dwarf.DecodeError{}) || strings.Contains(err.Error(), "could not open debug info") {
return fmt.Errorf("%s - %s", err.Error(), NoDebugWarning)
}
return err
}
func verifyBinaryFormat(exePath string) (string, error) {
fullpath, err := filepath.Abs(exePath)
if err != nil {
return "", err
}
f, err := os.Open(fullpath)
if err != nil {
return "", err
}
defer f.Close()
// Skip this check on Windows.
// TODO(derekparker) exec.LookPath looks for valid Windows extensions.
// We don't create our binaries with valid extensions, even though we should.
// Skip this check for now.
if runtime.GOOS != "windows" {
_, err = exec.LookPath(fullpath)
if err != nil {
return "", api.ErrNotExecutable
}
}
// check that the binary format is what we expect for the host system
var exe io.Closer
switch runtime.GOOS {
case "darwin":
exe, err = macho.NewFile(f)
case "linux", "freebsd":
exe, err = elf.NewFile(f)
case "windows":
exe, err = pe.NewFile(f)
default:
panic("attempting to open file Delve cannot parse")
}
if err != nil {
return "", api.ErrNotExecutable
}
exe.Close()
return fullpath, nil
}
var attachErrorMessage = attachErrorMessageDefault
func attachErrorMessageDefault(pid int, err error) error {
return fmt.Errorf("could not attach to pid %d: %s", pid, err)
}