delve/pkg/proc/proc.go
aarzilli 5155ef047f proc,dwarf/line: support is_stmt and prologue_end flags
Go1.11 uses the is_stmt flag of .debug_line to communicate which
assembly instructions are good places for breakpoints, we should
respect this flag.

These changes were introduced by:
* https://go-review.googlesource.com/c/go/+/102435/

Additionally when setting next breakpoints ignore all PC addresses that
belong to the same line as the one currently under at the cursor. This
matches the behavior of gdb and avoids stopping multiple times at the
heading line of a for statement with go1.11.

Change: https://go-review.googlesource.com/c/go/+/110416 adds the
prologue_end flag to the .debug_line section to communicate the end of
the stack-split prologue. We should use it instead of pattern matching
the disassembly when available.

Fixes #550

type of interfaces
'c7cde8b'.
2018-06-11 11:09:02 -07:00

603 lines
16 KiB
Go

package proc
import (
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/token"
"path/filepath"
"strconv"
)
var NotExecutableErr = errors.New("not an executable file")
var NotRecordedErr = errors.New("not a recording")
const UnrecoveredPanic = "unrecovered-panic"
// ProcessExitedError indicates that the process has exited and contains both
// process id and exit status.
type ProcessExitedError struct {
Pid int
Status int
}
func (pe ProcessExitedError) Error() string {
return fmt.Sprintf("Process %d has exited with status %d", pe.Pid, pe.Status)
}
// FindFileLocation returns the PC for a given file:line.
// Assumes that `file` is normalized to lower case and '/' on Windows.
func FindFileLocation(p Process, fileName string, lineno int) (uint64, error) {
pc, fn, err := p.BinInfo().LineToPC(fileName, lineno)
if err != nil {
return 0, err
}
if fn.Entry == pc {
pc, _ = FirstPCAfterPrologue(p, fn, true)
}
return pc, nil
}
type FunctionNotFoundError struct {
FuncName string
}
func (err *FunctionNotFoundError) Error() string {
return fmt.Sprintf("Could not find function %s\n", err.FuncName)
}
// FindFunctionLocation finds address of a function's line
// If firstLine == true is passed FindFunctionLocation will attempt to find the first line of the function
// If lineOffset is passed FindFunctionLocation will return the address of that line
// Pass lineOffset == 0 and firstLine == false if you want the address for the function's entry point
// Note that setting breakpoints at that address will cause surprising behavior:
// https://github.com/derekparker/delve/issues/170
func FindFunctionLocation(p Process, funcName string, firstLine bool, lineOffset int) (uint64, error) {
bi := p.BinInfo()
origfn := bi.LookupFunc[funcName]
if origfn == nil {
return 0, &FunctionNotFoundError{funcName}
}
if firstLine {
return FirstPCAfterPrologue(p, origfn, false)
} else if lineOffset > 0 {
filename, lineno := origfn.cu.lineInfo.PCToLine(origfn.Entry, origfn.Entry)
breakAddr, _, err := bi.LineToPC(filename, lineno+lineOffset)
return breakAddr, err
}
return origfn.Entry, nil
}
// Next continues execution until the next source line.
func Next(dbp Process) (err error) {
if dbp.Exited() {
return &ProcessExitedError{Pid: dbp.Pid()}
}
if dbp.Breakpoints().HasInternalBreakpoints() {
return fmt.Errorf("next while nexting")
}
if err = next(dbp, false, false); err != nil {
dbp.ClearInternalBreakpoints()
return
}
return Continue(dbp)
}
// Continue continues execution of the debugged
// process. It will continue until it hits a breakpoint
// or is otherwise stopped.
func Continue(dbp Process) error {
if dbp.Exited() {
return &ProcessExitedError{Pid: dbp.Pid()}
}
dbp.CheckAndClearManualStopRequest()
defer func() {
// Make sure we clear internal breakpoints if we simultaneously receive a
// manual stop request and hit a breakpoint.
if dbp.CheckAndClearManualStopRequest() {
dbp.ClearInternalBreakpoints()
}
}()
for {
if dbp.CheckAndClearManualStopRequest() {
dbp.ClearInternalBreakpoints()
return nil
}
trapthread, err := dbp.ContinueOnce()
if err != nil {
return err
}
threads := dbp.ThreadList()
if err := pickCurrentThread(dbp, trapthread, threads); err != nil {
return err
}
curthread := dbp.CurrentThread()
curbp := curthread.Breakpoint()
switch {
case curbp.Breakpoint == nil:
// runtime.Breakpoint or manual stop
if recorded, _ := dbp.Recorded(); onRuntimeBreakpoint(curthread) && !recorded {
// Single-step current thread until we exit runtime.breakpoint and
// runtime.Breakpoint.
// On go < 1.8 it was sufficient to single-step twice on go1.8 a change
// to the compiler requires 4 steps.
for {
if err = curthread.StepInstruction(); err != nil {
return err
}
loc, err := curthread.Location()
if err != nil || loc.Fn == nil || (loc.Fn.Name != "runtime.breakpoint" && loc.Fn.Name != "runtime.Breakpoint") {
if g := dbp.SelectedGoroutine(); g != nil {
g.CurrentLoc = *loc
}
break
}
}
}
return conditionErrors(threads)
case curbp.Active && curbp.Internal:
if curbp.Kind == StepBreakpoint {
// See description of proc.(*Process).next for the meaning of StepBreakpoints
if err := conditionErrors(threads); err != nil {
return err
}
regs, err := curthread.Registers(false)
if err != nil {
return err
}
pc := regs.PC()
text, err := disassemble(curthread, regs, dbp.Breakpoints(), dbp.BinInfo(), pc, pc+maxInstructionLength, true)
if err != nil {
return err
}
// here we either set a breakpoint into the destination of the CALL
// instruction or we determined that the called function is hidden,
// either way we need to resume execution
if err = setStepIntoBreakpoint(dbp, text, SameGoroutineCondition(dbp.SelectedGoroutine())); err != nil {
return err
}
} else {
if err := dbp.ClearInternalBreakpoints(); err != nil {
return err
}
return conditionErrors(threads)
}
case curbp.Active:
onNextGoroutine, err := onNextGoroutine(curthread, dbp.Breakpoints())
if err != nil {
return err
}
if onNextGoroutine {
err := dbp.ClearInternalBreakpoints()
if err != nil {
return err
}
}
if curbp.Name == UnrecoveredPanic {
dbp.ClearInternalBreakpoints()
}
return conditionErrors(threads)
default:
// not a manual stop, not on runtime.Breakpoint, not on a breakpoint, just repeat
}
}
}
func conditionErrors(threads []Thread) error {
var condErr error
for _, th := range threads {
if bp := th.Breakpoint(); bp.Breakpoint != nil && bp.CondError != nil {
if condErr == nil {
condErr = bp.CondError
} else {
return fmt.Errorf("multiple errors evaluating conditions")
}
}
}
return condErr
}
// pick a new dbp.currentThread, with the following priority:
// - a thread with onTriggeredInternalBreakpoint() == true
// - a thread with onTriggeredBreakpoint() == true (prioritizing trapthread)
// - trapthread
func pickCurrentThread(dbp Process, trapthread Thread, threads []Thread) error {
for _, th := range threads {
if bp := th.Breakpoint(); bp.Active && bp.Internal {
return dbp.SwitchThread(th.ThreadID())
}
}
if bp := trapthread.Breakpoint(); bp.Active {
return dbp.SwitchThread(trapthread.ThreadID())
}
for _, th := range threads {
if bp := th.Breakpoint(); bp.Active {
return dbp.SwitchThread(th.ThreadID())
}
}
return dbp.SwitchThread(trapthread.ThreadID())
}
// Step will continue until another source line is reached.
// Will step into functions.
func Step(dbp Process) (err error) {
if dbp.Exited() {
return &ProcessExitedError{Pid: dbp.Pid()}
}
if dbp.Breakpoints().HasInternalBreakpoints() {
return fmt.Errorf("next while nexting")
}
if err = next(dbp, true, false); err != nil {
switch err.(type) {
case ThreadBlockedError: // Noop
default:
dbp.ClearInternalBreakpoints()
return
}
}
return Continue(dbp)
}
// SameGoroutineCondition returns an expression that evaluates to true when
// the current goroutine is g.
func SameGoroutineCondition(g *G) ast.Expr {
if g == nil {
return nil
}
return &ast.BinaryExpr{
Op: token.EQL,
X: &ast.SelectorExpr{
X: &ast.SelectorExpr{
X: &ast.Ident{Name: "runtime"},
Sel: &ast.Ident{Name: "curg"},
},
Sel: &ast.Ident{Name: "goid"},
},
Y: &ast.BasicLit{Kind: token.INT, Value: strconv.Itoa(g.ID)},
}
}
func frameoffCondition(frameoff int64) ast.Expr {
return &ast.BinaryExpr{
Op: token.EQL,
X: &ast.SelectorExpr{
X: &ast.Ident{Name: "runtime"},
Sel: &ast.Ident{Name: "frameoff"},
},
Y: &ast.BasicLit{Kind: token.INT, Value: strconv.FormatInt(frameoff, 10)},
}
}
func andFrameoffCondition(cond ast.Expr, frameoff int64) ast.Expr {
if cond == nil {
return nil
}
return &ast.BinaryExpr{
Op: token.LAND,
X: cond,
Y: frameoffCondition(frameoff),
}
}
// StepOut will continue until the current goroutine exits the
// function currently being executed or a deferred function is executed
func StepOut(dbp Process) error {
if dbp.Exited() {
return &ProcessExitedError{Pid: dbp.Pid()}
}
selg := dbp.SelectedGoroutine()
curthread := dbp.CurrentThread()
topframe, retframe, err := topframe(selg, curthread)
if err != nil {
return err
}
success := false
defer func() {
if !success {
dbp.ClearInternalBreakpoints()
}
}()
if topframe.Inlined {
if err := next(dbp, false, true); err != nil {
return err
}
success = true
return Continue(dbp)
}
sameGCond := SameGoroutineCondition(selg)
retFrameCond := andFrameoffCondition(sameGCond, retframe.FrameOffset())
var deferpc uint64 = 0
if filepath.Ext(topframe.Current.File) == ".go" {
if selg != nil {
deferPCEntry := selg.DeferPC()
if deferPCEntry != 0 {
deferfn := dbp.BinInfo().PCToFunc(deferPCEntry)
deferpc, err = FirstPCAfterPrologue(dbp, deferfn, false)
if err != nil {
return err
}
}
}
}
if deferpc != 0 && deferpc != topframe.Current.PC {
bp, err := dbp.SetBreakpoint(deferpc, NextDeferBreakpoint, sameGCond)
if err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
if bp != nil {
// For StepOut we do not want to step into the deferred function
// when it's called by runtime.deferreturn so we do not populate
// DeferReturns.
bp.DeferReturns = []uint64{}
}
}
if topframe.Ret == 0 && deferpc == 0 {
return errors.New("nothing to stepout to")
}
if topframe.Ret != 0 {
_, err := dbp.SetBreakpoint(topframe.Ret, NextBreakpoint, retFrameCond)
if err != nil {
if _, isexists := err.(BreakpointExistsError); !isexists {
return err
}
}
}
if bp := curthread.Breakpoint(); bp.Breakpoint == nil {
curthread.SetCurrentBreakpoint()
}
success = true
return Continue(dbp)
}
// If the argument of GoroutinesInfo implements AllGCache GoroutinesInfo
// will use the pointer returned by AllGCache as a cache.
type AllGCache interface {
AllGCache() *[]*G
}
// GoroutinesInfo returns an array of G structures representing the information
// Delve cares about from the internal runtime G structure.
func GoroutinesInfo(dbp Process) ([]*G, error) {
if dbp.Exited() {
return nil, &ProcessExitedError{Pid: dbp.Pid()}
}
if dbp, ok := dbp.(AllGCache); ok {
if allGCache := dbp.AllGCache(); *allGCache != nil {
return *allGCache, nil
}
}
var (
threadg = map[int]*G{}
allg []*G
rdr = dbp.BinInfo().DwarfReader()
)
threads := dbp.ThreadList()
for _, th := range threads {
if th.Blocked() {
continue
}
g, _ := GetG(th)
if g != nil {
threadg[g.ID] = g
}
}
addr, err := rdr.AddrFor("runtime.allglen")
if err != nil {
return nil, err
}
allglenBytes := make([]byte, 8)
_, err = dbp.CurrentThread().ReadMemory(allglenBytes, uintptr(addr))
if err != nil {
return nil, err
}
allglen := binary.LittleEndian.Uint64(allglenBytes)
rdr.Seek(0)
allgentryaddr, err := rdr.AddrFor("runtime.allgs")
if err != nil {
// try old name (pre Go 1.6)
allgentryaddr, err = rdr.AddrFor("runtime.allg")
if err != nil {
return nil, err
}
}
faddr := make([]byte, dbp.BinInfo().Arch.PtrSize())
_, err = dbp.CurrentThread().ReadMemory(faddr, uintptr(allgentryaddr))
if err != nil {
return nil, err
}
allgptr := binary.LittleEndian.Uint64(faddr)
for i := uint64(0); i < allglen; i++ {
gvar, err := newGVariable(dbp.CurrentThread(), uintptr(allgptr+(i*uint64(dbp.BinInfo().Arch.PtrSize()))), true)
if err != nil {
return nil, err
}
g, err := gvar.parseG()
if err != nil {
return nil, err
}
if thg, allocated := threadg[g.ID]; allocated {
loc, err := thg.Thread.Location()
if err != nil {
return nil, err
}
g.Thread = thg.Thread
// Prefer actual thread location information.
g.CurrentLoc = *loc
g.SystemStack = thg.SystemStack
}
if g.Status != Gdead {
allg = append(allg, g)
}
}
if dbp, ok := dbp.(AllGCache); ok {
allGCache := dbp.AllGCache()
*allGCache = allg
}
return allg, nil
}
// FindGoroutine returns a G struct representing the goroutine
// specified by `gid`.
func FindGoroutine(dbp Process, gid int) (*G, error) {
if gid == -1 {
return dbp.SelectedGoroutine(), nil
}
gs, err := GoroutinesInfo(dbp)
if err != nil {
return nil, err
}
for i := range gs {
if gs[i].ID == gid {
return gs[i], nil
}
}
return nil, fmt.Errorf("Unknown goroutine %d", gid)
}
// ConvertEvalScope returns a new EvalScope in the context of the
// specified goroutine ID and stack frame.
func ConvertEvalScope(dbp Process, gid, frame int) (*EvalScope, error) {
if dbp.Exited() {
return nil, &ProcessExitedError{Pid: dbp.Pid()}
}
ct := dbp.CurrentThread()
g, err := FindGoroutine(dbp, gid)
if err != nil {
return nil, err
}
if g == nil {
return ThreadScope(ct)
}
var thread MemoryReadWriter
if g.Thread == nil {
thread = ct
} else {
thread = g.Thread
}
locs, err := g.Stacktrace(frame + 1)
if err != nil {
return nil, err
}
if frame >= len(locs) {
return nil, fmt.Errorf("Frame %d does not exist in goroutine %d", frame, gid)
}
return FrameToScope(dbp.BinInfo(), thread, g, locs[frame:]...), nil
}
// FrameToScope returns a new EvalScope for frames[0].
// If frames has at least two elements all memory between
// frames[0].Regs.SP() and frames[1].Regs.CFA will be cached.
// Otherwise all memory between frames[0].Regs.SP() and frames[0].Regs.CFA
// will be cached.
func FrameToScope(bi *BinaryInfo, thread MemoryReadWriter, g *G, frames ...Stackframe) *EvalScope {
var gvar *Variable
if g != nil {
gvar = g.variable
}
// Creates a cacheMem that will preload the entire stack frame the first
// time any local variable is read.
// Remember that the stack grows downward in memory.
minaddr := frames[0].Regs.SP()
var maxaddr uint64
if len(frames) > 1 && frames[0].SystemStack == frames[1].SystemStack {
maxaddr = uint64(frames[1].Regs.CFA)
} else {
maxaddr = uint64(frames[0].Regs.CFA)
}
if maxaddr > minaddr && maxaddr-minaddr < maxFramePrefetchSize {
thread = cacheMemory(thread, uintptr(minaddr), int(maxaddr-minaddr))
}
s := &EvalScope{Location: frames[0].Call, Regs: frames[0].Regs, Mem: thread, Gvar: gvar, BinInfo: bi, frameOffset: frames[0].FrameOffset()}
s.PC = frames[0].lastpc
return s
}
// CreateUnrecoverablePanicBreakpoint creates the unrecoverable-panic breakpoint.
// This function is meant to be called by implementations of the Process interface.
func CreateUnrecoveredPanicBreakpoint(p Process, writeBreakpoint writeBreakpointFn, breakpoints *BreakpointMap) {
panicpc, err := FindFunctionLocation(p, "runtime.startpanic", true, 0)
if _, isFnNotFound := err.(*FunctionNotFoundError); isFnNotFound {
panicpc, err = FindFunctionLocation(p, "runtime.fatalpanic", true, 0)
}
if err == nil {
bp, err := breakpoints.SetWithID(-1, panicpc, writeBreakpoint)
if err == nil {
bp.Name = UnrecoveredPanic
bp.Variables = []string{"runtime.curg._panic.arg"}
}
}
}
// FirstPCAfterPrologue returns the address of the first
// instruction after the prologue for function fn.
// If sameline is set FirstPCAfterPrologue will always return an
// address associated with the same line as fn.Entry.
func FirstPCAfterPrologue(p Process, fn *Function, sameline bool) (uint64, error) {
pc, _, line, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End)
if ok {
if !sameline {
return pc, nil
} else {
_, entryLine := fn.cu.lineInfo.PCToLine(fn.Entry, fn.Entry)
if entryLine == line {
return pc, nil
}
}
}
pc, err := firstPCAfterPrologueDisassembly(p, fn, sameline)
if err != nil {
return fn.Entry, err
}
if pc == fn.Entry {
// Look for the first instruction with the stmt flag set, so that setting a
// breakpoint with file:line and with the function name always result on
// the same instruction being selected.
entryFile, entryLine := fn.cu.lineInfo.PCToLine(fn.Entry, fn.Entry)
if pc, _, err := p.BinInfo().LineToPC(entryFile, entryLine); err == nil {
return pc, nil
}
}
return pc, nil
}