
This patch removes the old error-prone way of tracking whether the tracepoint is for a function entry or return. Instead of trying to guess, let the data structure simply tell us directly.
249 lines
7.6 KiB
C
249 lines
7.6 KiB
C
#include "include/trace.bpf.h"
|
|
#include <string.h>
|
|
|
|
#define STRING_KIND 24
|
|
|
|
// parse_string_param will parse a string parameter. The parsed value of the string
|
|
// will be put into param->deref_val. This function expects the string struct
|
|
// which contains a pointer to the string and the length of the string to have
|
|
// already been read from memory and passed in as param->val.
|
|
__always_inline
|
|
int parse_string_param(struct pt_regs *ctx, function_parameter_t *param) {
|
|
u64 str_len;
|
|
size_t str_addr;
|
|
|
|
memcpy(&str_addr, param->val, sizeof(str_addr));
|
|
memcpy(&str_len, param->val + sizeof(str_addr), sizeof(str_len));
|
|
param->daddr = str_addr;
|
|
|
|
if (str_addr != 0) {
|
|
if (str_len > 0x30) {
|
|
str_len = 0x30;
|
|
}
|
|
int ret = bpf_probe_read_user(¶m->deref_val, str_len, (void *)(str_addr));
|
|
if (ret < 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__always_inline
|
|
int parse_param_stack(struct pt_regs *ctx, function_parameter_t *param) {
|
|
long ret;
|
|
size_t addr = ctx->sp + param->offset;
|
|
ret = bpf_probe_read_user(¶m->val, param->size, (void *)(addr));
|
|
if (ret < 0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__always_inline
|
|
void get_value_from_register(struct pt_regs *ctx, void *dest, int reg_num) {
|
|
switch (reg_num) {
|
|
case 0: // RAX
|
|
memcpy(dest, &ctx->ax, sizeof(ctx->ax));
|
|
break;
|
|
case 1: // RDX
|
|
memcpy(dest, &ctx->dx, sizeof(ctx->dx));
|
|
break;
|
|
case 2: // RCX
|
|
memcpy(dest, &ctx->cx, sizeof(ctx->cx));
|
|
break;
|
|
case 3: // RBX
|
|
memcpy(dest, &ctx->bx, sizeof(ctx->bx));
|
|
break;
|
|
case 4: // RSI
|
|
memcpy(dest, &ctx->si, sizeof(ctx->si));
|
|
break;
|
|
case 5: // RDI
|
|
memcpy(dest, &ctx->di, sizeof(ctx->di));
|
|
break;
|
|
case 6: // RBP
|
|
memcpy(dest, &ctx->bp, sizeof(ctx->bp));
|
|
break;
|
|
case 7: // RSP
|
|
memcpy(dest, &ctx->sp, sizeof(ctx->sp));
|
|
break;
|
|
case 8: // R8
|
|
memcpy(dest, &ctx->r8, sizeof(ctx->r8));
|
|
break;
|
|
case 9: // R9
|
|
memcpy(dest, &ctx->r9, sizeof(ctx->r9));
|
|
break;
|
|
case 10: // R10
|
|
memcpy(dest, &ctx->r10, sizeof(ctx->r10));
|
|
break;
|
|
case 11: // R11
|
|
memcpy(dest, &ctx->r11, sizeof(ctx->r11));
|
|
break;
|
|
case 12: // R12
|
|
memcpy(dest, &ctx->r12, sizeof(ctx->r12));
|
|
break;
|
|
case 13: // R13
|
|
memcpy(dest, &ctx->r13, sizeof(ctx->r13));
|
|
break;
|
|
case 14: // R14
|
|
memcpy(dest, &ctx->r14, sizeof(ctx->r14));
|
|
break;
|
|
case 15: // R15
|
|
memcpy(dest, &ctx->r15, sizeof(ctx->r15));
|
|
break;
|
|
}
|
|
}
|
|
|
|
__always_inline
|
|
int parse_param_registers(struct pt_regs *ctx, function_parameter_t *param) {
|
|
switch (param->n_pieces) {
|
|
case 6:
|
|
get_value_from_register(ctx, param->val+40, param->reg_nums[5]);
|
|
case 5:
|
|
get_value_from_register(ctx, param->val+32, param->reg_nums[4]);
|
|
case 4:
|
|
get_value_from_register(ctx, param->val+24, param->reg_nums[3]);
|
|
case 3:
|
|
get_value_from_register(ctx, param->val+16, param->reg_nums[2]);
|
|
case 2:
|
|
get_value_from_register(ctx, param->val+8, param->reg_nums[1]);
|
|
case 1:
|
|
get_value_from_register(ctx, param->val, param->reg_nums[0]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__always_inline
|
|
int parse_param(struct pt_regs *ctx, function_parameter_t *param) {
|
|
if (param->size > 0x30) {
|
|
return 0;
|
|
}
|
|
|
|
// Parse the initial value of the parameter.
|
|
// If the parameter is a basic type, we will be finished here.
|
|
// If the parameter is a more complex type such as a string or
|
|
// a slice we will need some further processing below.
|
|
int ret = 0;
|
|
if (param->in_reg) {
|
|
ret = parse_param_registers(ctx, param);
|
|
} else {
|
|
ret = parse_param_stack(ctx, param);
|
|
}
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
switch (param->kind) {
|
|
case STRING_KIND:
|
|
return parse_string_param(ctx, param);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
__always_inline
|
|
int get_goroutine_id(function_parameter_list_t *parsed_args) {
|
|
// Since eBPF programs have such strict stack requirements
|
|
// me must implement our own heap using a ringbuffer.
|
|
// Reserve some memory in our "heap" for the task_struct.
|
|
struct task_struct *task;
|
|
task = bpf_ringbuf_reserve(&heap, sizeof(struct task_struct), 0);
|
|
if (!task) {
|
|
return 0;
|
|
}
|
|
|
|
// Get the current task.
|
|
__u64 task_ptr = bpf_get_current_task();
|
|
if (!task_ptr)
|
|
{
|
|
bpf_ringbuf_discard(task, 0);
|
|
return 0;
|
|
}
|
|
// The bpf_get_current_task helper returns us the address of the task_struct in
|
|
// kernel memory. Use the bpf_probe_read_kernel helper to read the struct out of
|
|
// kernel memory.
|
|
bpf_probe_read_kernel(task, sizeof(struct task_struct), (void*)(task_ptr));
|
|
|
|
// Get the Goroutine ID which is stored in thread local storage.
|
|
__u64 goid;
|
|
size_t g_addr;
|
|
bpf_probe_read_user(&g_addr, sizeof(void *), (void*)(task->thread.fsbase+parsed_args->g_addr_offset));
|
|
bpf_probe_read_user(&goid, sizeof(void *), (void*)(g_addr+parsed_args->goid_offset));
|
|
parsed_args->goroutine_id = goid;
|
|
|
|
// Free back up the memory we reserved for the task_struct.
|
|
bpf_ringbuf_discard(task, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__always_inline
|
|
void parse_params(struct pt_regs *ctx, unsigned int n_params, function_parameter_t params[6]) {
|
|
// Since we cannot loop in eBPF programs let's take adavantage of the
|
|
// fact that in C switch cases will pass through automatically.
|
|
switch (n_params) {
|
|
case 6:
|
|
parse_param(ctx, ¶ms[5]);
|
|
case 5:
|
|
parse_param(ctx, ¶ms[4]);
|
|
case 4:
|
|
parse_param(ctx, ¶ms[3]);
|
|
case 3:
|
|
parse_param(ctx, ¶ms[2]);
|
|
case 2:
|
|
parse_param(ctx, ¶ms[1]);
|
|
case 1:
|
|
parse_param(ctx, ¶ms[0]);
|
|
}
|
|
}
|
|
|
|
SEC("uprobe/dlv_trace")
|
|
int uprobe__dlv_trace(struct pt_regs *ctx) {
|
|
function_parameter_list_t *args;
|
|
function_parameter_list_t *parsed_args;
|
|
uint64_t key = ctx->ip;
|
|
|
|
args = bpf_map_lookup_elem(&arg_map, &key);
|
|
if (!args) {
|
|
return 1;
|
|
}
|
|
|
|
parsed_args = bpf_ringbuf_reserve(&events, sizeof(function_parameter_list_t), 0);
|
|
if (!parsed_args) {
|
|
return 1;
|
|
}
|
|
|
|
// Initialize the parsed_args struct.
|
|
parsed_args->goid_offset = args->goid_offset;
|
|
parsed_args->g_addr_offset = args->g_addr_offset;
|
|
parsed_args->goroutine_id = args->goroutine_id;
|
|
parsed_args->fn_addr = args->fn_addr;
|
|
parsed_args->n_parameters = args->n_parameters;
|
|
parsed_args->n_ret_parameters = args->n_ret_parameters;
|
|
parsed_args->is_ret = args->is_ret;
|
|
memcpy(parsed_args->params, args->params, sizeof(args->params));
|
|
memcpy(parsed_args->ret_params, args->ret_params, sizeof(args->ret_params));
|
|
|
|
if (!get_goroutine_id(parsed_args)) {
|
|
bpf_ringbuf_discard(parsed_args, 0);
|
|
return 1;
|
|
}
|
|
|
|
if (!args->is_ret) {
|
|
// In uprobe at function entry.
|
|
|
|
// Parse input parameters.
|
|
parse_params(ctx, args->n_parameters, parsed_args->params);
|
|
} else {
|
|
// We are now stopped at the RET instruction for this function.
|
|
|
|
// Parse output parameters.
|
|
parse_params(ctx, args->n_ret_parameters, parsed_args->ret_params);
|
|
}
|
|
|
|
bpf_ringbuf_submit(parsed_args, BPF_RB_FORCE_WAKEUP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
char _license[] SEC("license") = "Dual MIT/GPL";
|