
Delve represents registerized variables (fully or partially) using compositeMemory, implementing proc.(*compositeMemory).WriteMemory is necessary to make SetVariable and function calls work when Go will switch to using the register calling convention in 1.17. This commit also makes some refactoring by moving the code that converts between register numbers and register names out of pkg/proc into a different package.
417 lines
14 KiB
Go
417 lines
14 KiB
Go
package proc
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/go-delve/delve/pkg/dwarf/frame"
|
|
"github.com/go-delve/delve/pkg/dwarf/op"
|
|
"github.com/go-delve/delve/pkg/dwarf/regnum"
|
|
"golang.org/x/arch/arm64/arm64asm"
|
|
)
|
|
|
|
var arm64BreakInstruction = []byte{0x0, 0x0, 0x20, 0xd4}
|
|
|
|
// ARM64Arch returns an initialized ARM64
|
|
// struct.
|
|
func ARM64Arch(goos string) *Arch {
|
|
return &Arch{
|
|
Name: "arm64",
|
|
ptrSize: 8,
|
|
maxInstructionLength: 4,
|
|
breakpointInstruction: arm64BreakInstruction,
|
|
breakInstrMovesPC: false,
|
|
derefTLS: false,
|
|
prologues: prologuesARM64,
|
|
fixFrameUnwindContext: arm64FixFrameUnwindContext,
|
|
switchStack: arm64SwitchStack,
|
|
regSize: arm64RegSize,
|
|
RegistersToDwarfRegisters: arm64RegistersToDwarfRegisters,
|
|
addrAndStackRegsToDwarfRegisters: arm64AddrAndStackRegsToDwarfRegisters,
|
|
DwarfRegisterToString: arm64DwarfRegisterToString,
|
|
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
|
|
asmDecode: arm64AsmDecode,
|
|
usesLR: true,
|
|
PCRegNum: regnum.ARM64_PC,
|
|
SPRegNum: regnum.ARM64_SP,
|
|
}
|
|
}
|
|
|
|
func arm64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
|
|
a := bi.Arch
|
|
if a.sigreturnfn == nil {
|
|
a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
|
|
}
|
|
|
|
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
|
|
// When there's no frame descriptor entry use BP (the frame pointer) instead
|
|
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
|
|
// - cfa is bp + a.PtrSize()*2
|
|
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
|
|
// - sp is cfa
|
|
|
|
// When the signal handler runs it will move the execution to the signal
|
|
// handling stack (installed using the sigaltstack system call).
|
|
// This isn't a proper stack switch: the pointer to g in TLS will still
|
|
// refer to whatever g was executing on that thread before the signal was
|
|
// received.
|
|
// Since go did not execute a stack switch the previous value of sp, pc
|
|
// and bp is not saved inside g.sched, as it normally would.
|
|
// The only way to recover is to either read sp/pc from the signal context
|
|
// parameter (the ucontext_t* parameter) or to unconditionally follow the
|
|
// frame pointer when we get to runtime.sigreturn (which is what we do
|
|
// here).
|
|
|
|
return &frame.FrameContext{
|
|
RetAddrReg: regnum.ARM64_PC,
|
|
Regs: map[uint64]frame.DWRule{
|
|
regnum.ARM64_PC: frame.DWRule{
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-a.PtrSize()),
|
|
},
|
|
regnum.ARM64_BP: frame.DWRule{
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-2 * a.PtrSize()),
|
|
},
|
|
regnum.ARM64_SP: frame.DWRule{
|
|
Rule: frame.RuleValOffset,
|
|
Offset: 0,
|
|
},
|
|
},
|
|
CFA: frame.DWRule{
|
|
Rule: frame.RuleCFA,
|
|
Reg: regnum.ARM64_BP,
|
|
Offset: int64(2 * a.PtrSize()),
|
|
},
|
|
}
|
|
}
|
|
|
|
if a.crosscall2fn == nil {
|
|
a.crosscall2fn = bi.LookupFunc["crosscall2"]
|
|
}
|
|
|
|
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
|
|
rule := fctxt.CFA
|
|
if rule.Offset == crosscall2SPOffsetBad {
|
|
switch bi.GOOS {
|
|
case "windows":
|
|
rule.Offset += crosscall2SPOffsetWindows
|
|
default:
|
|
rule.Offset += crosscall2SPOffsetNonWindows
|
|
}
|
|
}
|
|
fctxt.CFA = rule
|
|
}
|
|
|
|
// We assume that RBP is the frame pointer and we want to keep it updated,
|
|
// so that we can use it to unwind the stack even when we encounter frames
|
|
// without descriptor entries.
|
|
// If there isn't a rule already we emit one.
|
|
if fctxt.Regs[regnum.ARM64_BP].Rule == frame.RuleUndefined {
|
|
fctxt.Regs[regnum.ARM64_BP] = frame.DWRule{
|
|
Rule: frame.RuleFramePointer,
|
|
Reg: regnum.ARM64_BP,
|
|
Offset: 0,
|
|
}
|
|
}
|
|
if fctxt.Regs[regnum.ARM64_LR].Rule == frame.RuleUndefined {
|
|
fctxt.Regs[regnum.ARM64_LR] = frame.DWRule{
|
|
Rule: frame.RuleFramePointer,
|
|
Reg: regnum.ARM64_LR,
|
|
Offset: 0,
|
|
}
|
|
}
|
|
|
|
return fctxt
|
|
}
|
|
|
|
const arm64cgocallSPOffsetSaveSlot = 0x8
|
|
const prevG0schedSPOffsetSaveSlot = 0x10
|
|
const spAlign = 16
|
|
|
|
func arm64SwitchStack(it *stackIterator, callFrameRegs *op.DwarfRegisters) bool {
|
|
if it.frame.Current.Fn != nil {
|
|
switch it.frame.Current.Fn.Name {
|
|
case "runtime.asmcgocall", "runtime.cgocallback_gofunc", "runtime.sigpanic", "runtime.cgocallback":
|
|
//do nothing
|
|
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
|
|
// Look for "top of stack" functions.
|
|
it.atend = true
|
|
return true
|
|
case "crosscall2":
|
|
//The offsets get from runtime/cgo/asm_arm64.s:10
|
|
newsp, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*24), int64(it.bi.Arch.PtrSize()))
|
|
newbp, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*14), int64(it.bi.Arch.PtrSize()))
|
|
newlr, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*15), int64(it.bi.Arch.PtrSize()))
|
|
if it.regs.Reg(it.regs.BPRegNum) != nil {
|
|
it.regs.Reg(it.regs.BPRegNum).Uint64Val = uint64(newbp)
|
|
} else {
|
|
reg, _ := it.readRegisterAt(it.regs.BPRegNum, it.regs.SP()+8*14)
|
|
it.regs.AddReg(it.regs.BPRegNum, reg)
|
|
}
|
|
it.regs.Reg(it.regs.LRRegNum).Uint64Val = uint64(newlr)
|
|
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(newsp)
|
|
it.pc = newlr
|
|
return true
|
|
default:
|
|
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
|
|
// The runtime switches to the system stack in multiple places.
|
|
// This usually happens through a call to runtime.systemstack but there
|
|
// are functions that switch to the system stack manually (for example
|
|
// runtime.morestack).
|
|
// Since we are only interested in printing the system stack for cgo
|
|
// calls we switch directly to the goroutine stack if we detect that the
|
|
// function at the top of the stack is a runtime function.
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
fn := it.bi.PCToFunc(it.frame.Ret)
|
|
if fn == nil {
|
|
return false
|
|
}
|
|
switch fn.Name {
|
|
case "runtime.asmcgocall":
|
|
if !it.systemstack {
|
|
return false
|
|
}
|
|
|
|
// This function is called by a goroutine to execute a C function and
|
|
// switches from the goroutine stack to the system stack.
|
|
// Since we are unwinding the stack from callee to caller we have to switch
|
|
// from the system stack to the goroutine stack.
|
|
off, _ := readIntRaw(it.mem, uint64(callFrameRegs.SP()+arm64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize()))
|
|
oldsp := callFrameRegs.SP()
|
|
newsp := uint64(int64(it.stackhi) - off)
|
|
|
|
// runtime.asmcgocall can also be called from inside the system stack,
|
|
// in that case no stack switch actually happens
|
|
if newsp == oldsp {
|
|
return false
|
|
}
|
|
it.systemstack = false
|
|
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = uint64(int64(newsp))
|
|
return false
|
|
|
|
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
|
|
// For a detailed description of how this works read the long comment at
|
|
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
|
|
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_arm64.s
|
|
//
|
|
// When a C functions calls back into go it will eventually call into
|
|
// runtime.cgocallback_gofunc which is the function that does the stack
|
|
// switch from the system stack back into the goroutine stack
|
|
// Since we are going backwards on the stack here we see the transition
|
|
// as goroutine stack -> system stack.
|
|
if it.systemstack {
|
|
return false
|
|
}
|
|
|
|
it.loadG0SchedSP()
|
|
if it.g0_sched_sp <= 0 {
|
|
return false
|
|
}
|
|
// entering the system stack
|
|
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = it.g0_sched_sp
|
|
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
|
|
|
|
it.g0_sched_sp, _ = readUintRaw(it.mem, uint64(callFrameRegs.SP()+prevG0schedSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize()))
|
|
it.systemstack = true
|
|
return false
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func arm64RegSize(regnum uint64) int {
|
|
// fp registers
|
|
if regnum >= 64 && regnum <= 95 {
|
|
return 16
|
|
}
|
|
|
|
return 8 // general registers
|
|
}
|
|
|
|
// The mapping between hardware registers and DWARF registers is specified
|
|
// in the DWARF for the ARM® Architecture page 7,
|
|
// Table 1
|
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040b/IHI0040B_aadwarf.pdf
|
|
var arm64DwarfToHardware = map[int]arm64asm.Reg{
|
|
0: arm64asm.X0,
|
|
1: arm64asm.X1,
|
|
2: arm64asm.X2,
|
|
3: arm64asm.X3,
|
|
4: arm64asm.X4,
|
|
5: arm64asm.X5,
|
|
6: arm64asm.X6,
|
|
7: arm64asm.X7,
|
|
8: arm64asm.X8,
|
|
9: arm64asm.X9,
|
|
10: arm64asm.X10,
|
|
11: arm64asm.X11,
|
|
12: arm64asm.X12,
|
|
13: arm64asm.X13,
|
|
14: arm64asm.X14,
|
|
15: arm64asm.X15,
|
|
16: arm64asm.X16,
|
|
17: arm64asm.X17,
|
|
18: arm64asm.X18,
|
|
19: arm64asm.X19,
|
|
20: arm64asm.X20,
|
|
21: arm64asm.X21,
|
|
22: arm64asm.X22,
|
|
23: arm64asm.X23,
|
|
24: arm64asm.X24,
|
|
25: arm64asm.X25,
|
|
26: arm64asm.X26,
|
|
27: arm64asm.X27,
|
|
28: arm64asm.X28,
|
|
29: arm64asm.X29,
|
|
30: arm64asm.X30,
|
|
31: arm64asm.SP,
|
|
|
|
64: arm64asm.V0,
|
|
65: arm64asm.V1,
|
|
66: arm64asm.V2,
|
|
67: arm64asm.V3,
|
|
68: arm64asm.V4,
|
|
69: arm64asm.V5,
|
|
70: arm64asm.V6,
|
|
71: arm64asm.V7,
|
|
72: arm64asm.V8,
|
|
73: arm64asm.V9,
|
|
74: arm64asm.V10,
|
|
75: arm64asm.V11,
|
|
76: arm64asm.V12,
|
|
77: arm64asm.V13,
|
|
78: arm64asm.V14,
|
|
79: arm64asm.V15,
|
|
80: arm64asm.V16,
|
|
81: arm64asm.V17,
|
|
82: arm64asm.V18,
|
|
83: arm64asm.V19,
|
|
84: arm64asm.V20,
|
|
85: arm64asm.V21,
|
|
86: arm64asm.V22,
|
|
87: arm64asm.V23,
|
|
88: arm64asm.V24,
|
|
89: arm64asm.V25,
|
|
90: arm64asm.V26,
|
|
91: arm64asm.V27,
|
|
92: arm64asm.V28,
|
|
93: arm64asm.V29,
|
|
94: arm64asm.V30,
|
|
95: arm64asm.V31,
|
|
}
|
|
|
|
var arm64NameToDwarf = func() map[string]int {
|
|
r := make(map[string]int)
|
|
for i := 0; i <= 30; i++ {
|
|
r[fmt.Sprintf("x%d", i)] = i
|
|
}
|
|
r["pc"] = int(regnum.ARM64_PC)
|
|
r["lr"] = int(regnum.ARM64_LR)
|
|
r["sp"] = 31
|
|
for i := 0; i <= 31; i++ {
|
|
r[fmt.Sprintf("v%d", i)] = i + 64
|
|
}
|
|
return r
|
|
}()
|
|
|
|
func maxArm64DwarfRegister() int {
|
|
max := int(regnum.ARM64_PC)
|
|
for i := range arm64DwarfToHardware {
|
|
if i > max {
|
|
max = i
|
|
}
|
|
}
|
|
return max
|
|
}
|
|
|
|
func arm64RegistersToDwarfRegisters(staticBase uint64, regs Registers) op.DwarfRegisters {
|
|
dregs := make([]*op.DwarfRegister, maxArm64DwarfRegister()+1)
|
|
|
|
dregs[regnum.ARM64_PC] = op.DwarfRegisterFromUint64(regs.PC())
|
|
dregs[regnum.ARM64_SP] = op.DwarfRegisterFromUint64(regs.SP())
|
|
dregs[regnum.ARM64_BP] = op.DwarfRegisterFromUint64(regs.BP())
|
|
if lr, err := regs.Get(int(arm64asm.X30)); err != nil {
|
|
dregs[regnum.ARM64_LR] = op.DwarfRegisterFromUint64(lr)
|
|
}
|
|
|
|
for dwarfReg, asmReg := range arm64DwarfToHardware {
|
|
v, err := regs.Get(int(asmReg))
|
|
if err == nil {
|
|
dregs[dwarfReg] = op.DwarfRegisterFromUint64(v)
|
|
}
|
|
}
|
|
|
|
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
|
|
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, arm64NameToDwarf))
|
|
return *dr
|
|
}
|
|
|
|
func arm64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
|
|
dregs := make([]*op.DwarfRegister, regnum.ARM64_PC+1)
|
|
dregs[regnum.ARM64_PC] = op.DwarfRegisterFromUint64(pc)
|
|
dregs[regnum.ARM64_SP] = op.DwarfRegisterFromUint64(sp)
|
|
dregs[regnum.ARM64_BP] = op.DwarfRegisterFromUint64(bp)
|
|
dregs[regnum.ARM64_LR] = op.DwarfRegisterFromUint64(lr)
|
|
|
|
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
|
|
}
|
|
|
|
func arm64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
|
|
name = regnum.ARM64ToName(uint64(i))
|
|
|
|
if reg == nil {
|
|
return name, false, ""
|
|
}
|
|
|
|
if reg.Bytes != nil && name[0] == 'V' {
|
|
buf := bytes.NewReader(reg.Bytes)
|
|
|
|
var out bytes.Buffer
|
|
var vi [16]uint8
|
|
for i := range vi {
|
|
_ = binary.Read(buf, binary.LittleEndian, &vi[i])
|
|
}
|
|
//D
|
|
fmt.Fprintf(&out, " {\n\tD = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
|
|
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
|
|
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
|
|
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x}},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
|
|
|
|
//S
|
|
fmt.Fprintf(&out, " \n\tS = {u = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
|
|
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
|
|
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
|
|
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x}},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
|
|
|
|
//H
|
|
fmt.Fprintf(&out, " \n\tH = {u = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
|
|
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
|
|
fmt.Fprintf(&out, " s = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
|
|
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x}},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
|
|
|
|
//B
|
|
fmt.Fprintf(&out, " \n\tB = {u = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
|
|
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x},", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
|
|
fmt.Fprintf(&out, " s = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
|
|
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x}}", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
|
|
|
|
//Q
|
|
fmt.Fprintf(&out, " \n\tQ = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
|
|
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x},", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
|
|
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
|
|
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x}}\n\t}", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
|
|
return name, true, out.String()
|
|
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) < 16) {
|
|
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
|
|
}
|
|
return name, false, fmt.Sprintf("%#x", reg.Bytes)
|
|
}
|