delve/pkg/proc/fncall.go
Alessandro Arzilli 79ad269bbb proc: support setting string values when it requires an allocation (#1548)
Allow changing the value of a string variable to a new literal string,
which requires calling runtime.mallocgc to allocate the string into the
target process.

This means that a command like:

    call f("some string")

is now supported.

Additionally the command:

    call s = "some string"

is also supported.

Fixes #826
2019-06-17 09:51:29 -07:00

872 lines
27 KiB
Go

package proc
import (
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"reflect"
"sort"
"strconv"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
"golang.org/x/arch/x86/x86asm"
)
// This file implements the function call injection introduced in go1.11.
//
// The protocol is described in $GOROOT/src/runtime/asm_amd64.s in the
// comments for function runtime·debugCallV1.
//
// The main entry point is EvalExpressionWithCalls which will start a goroutine to
// evaluate the provided expression.
// This goroutine can either return immediately, if no function calls were
// needed, or write a continue request to the scope.callCtx.continueRequest
// channel. When this happens EvalExpressionWithCalls will call Continue and
// return.
//
// The Continue loop will write to scope.callCtx.continueCompleted when it
// hits a breakpoint in the call injection protocol.
//
// The work of setting up the function call and executing the protocol is
// done by evalFunctionCall and funcCallStep.
const (
debugCallFunctionNamePrefix1 = "debugCall"
debugCallFunctionNamePrefix2 = "runtime.debugCall"
debugCallFunctionName = "runtime.debugCallV1"
maxArgFrameSize = 65535
)
var (
errFuncCallUnsupported = errors.New("function calls not supported by this version of Go")
errFuncCallUnsupportedBackend = errors.New("backend does not support function calls")
errFuncCallInProgress = errors.New("cannot call function while another function call is already in progress")
errNotACallExpr = errors.New("not a function call")
errNoGoroutine = errors.New("no goroutine selected")
errGoroutineNotRunning = errors.New("selected goroutine not running")
errNotEnoughStack = errors.New("not enough stack space")
errTooManyArguments = errors.New("too many arguments")
errNotEnoughArguments = errors.New("not enough arguments")
errNoAddrUnsupported = errors.New("arguments to a function call must have an address")
errNotAGoFunction = errors.New("not a Go function")
errFuncCallNotAllowed = errors.New("function calls not allowed without using 'call'")
errFuncCallNotAllowedStrAlloc = errors.New("literal string can not be allocated because function calls are not allowed without using 'call'")
)
type functionCallState struct {
// savedRegs contains the saved registers
savedRegs Registers
// err contains a saved error
err error
// expr is the expression being evaluated
expr *ast.CallExpr
// fn is the function that is being called
fn *Function
// receiver is the receiver argument for the function
receiver *Variable
// closureAddr is the address of the closure being called
closureAddr uint64
// formalArgs are the formal arguments of fn
formalArgs []funcCallArg
// argFrameSize contains the size of the arguments
argFrameSize int64
// retvars contains the return variables after the function call terminates without panic'ing
retvars []*Variable
// panicvar is a variable used to store the value of the panic, if the
// called function panics.
panicvar *Variable
// lateCallFailure is set to true if the function call could not be
// completed after we started evaluating the arguments.
lateCallFailure bool
}
type callContext struct {
p Process
// checkEscape is true if the escape check should be performed.
// See service/api.DebuggerCommand.UnsafeCall in service/api/types.go.
checkEscape bool
// retLoadCfg is the load configuration used to load return values
retLoadCfg LoadConfig
// Write to continueRequest to request a call to Continue from the
// debugger's main goroutine.
// Read from continueCompleted to wait for the target process to stop at
// one of the interaction point of the function call protocol.
// To signal that evaluation is completed a value will be written to
// continueRequest having cont == false and the return values in ret.
continueRequest chan<- continueRequest
continueCompleted <-chan struct{}
}
type continueRequest struct {
cont bool
err error
ret *Variable
}
func (callCtx *callContext) doContinue() {
callCtx.continueRequest <- continueRequest{cont: true}
<-callCtx.continueCompleted
}
func (callCtx *callContext) doReturn(ret *Variable, err error) {
if callCtx == nil {
return
}
callCtx.continueRequest <- continueRequest{cont: false, ret: ret, err: err}
}
// EvalExpressionWithCalls is like EvalExpression but allows function calls in 'expr'.
// Because this can only be done in the current goroutine, unlike
// EvalExpression, EvalExpressionWithCalls is not a method of EvalScope.
func EvalExpressionWithCalls(p Process, expr string, retLoadCfg LoadConfig, checkEscape bool) error {
bi := p.BinInfo()
if !p.Common().fncallEnabled {
return errFuncCallUnsupportedBackend
}
if p.Common().continueCompleted != nil {
return errFuncCallInProgress
}
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
if dbgcallfn == nil {
return errFuncCallUnsupported
}
// check that the selected goroutine is running
g := p.SelectedGoroutine()
if g == nil {
return errNoGoroutine
}
if g.Status != Grunning || g.Thread == nil {
return errGoroutineNotRunning
}
scope, err := GoroutineScope(p.CurrentThread())
if err != nil {
return err
}
continueRequest := make(chan continueRequest)
continueCompleted := make(chan struct{})
scope.callCtx = &callContext{
p: p,
checkEscape: checkEscape,
retLoadCfg: retLoadCfg,
continueRequest: continueRequest,
continueCompleted: continueCompleted,
}
p.Common().continueRequest = continueRequest
p.Common().continueCompleted = continueCompleted
go scope.EvalExpression(expr, retLoadCfg)
contReq, ok := <-continueRequest
if contReq.cont {
return Continue(p)
}
return finishEvalExpressionWithCalls(p, contReq, ok)
}
func finishEvalExpressionWithCalls(p Process, contReq continueRequest, ok bool) error {
var err error
if !ok {
err = errors.New("internal error EvalExpressionWithCalls didn't return anything")
} else if contReq.err != nil {
if fpe, ispanic := contReq.err.(fncallPanicErr); ispanic {
p.CurrentThread().Common().returnValues = []*Variable{fpe.panicVar}
} else {
err = contReq.err
}
} else if contReq.ret == nil {
p.CurrentThread().Common().returnValues = nil
} else if contReq.ret.Addr == 0 && contReq.ret.DwarfType == nil {
// this is a variable returned by a function call with multiple return values
r := make([]*Variable, len(contReq.ret.Children))
for i := range contReq.ret.Children {
r[i] = &contReq.ret.Children[i]
}
p.CurrentThread().Common().returnValues = r
} else {
p.CurrentThread().Common().returnValues = []*Variable{contReq.ret}
}
p.Common().continueRequest = nil
close(p.Common().continueCompleted)
p.Common().continueCompleted = nil
return err
}
// evalFunctionCall evaluates a function call.
// If this is a built-in function it's evaluated directly.
// Otherwise this will start the function call injection protocol and
// request that the target process resumes.
// See the comment describing the field EvalScope.callCtx for a description
// of the preconditions that make starting the function call protocol
// possible.
// See runtime.debugCallV1 in $GOROOT/src/runtime/asm_amd64.s for a
// description of the protocol.
func (scope *EvalScope) evalFunctionCall(node *ast.CallExpr) (*Variable, error) {
r, err := scope.evalBuiltinCall(node)
if r != nil || err != nil {
// it was a builtin call
return r, err
}
if scope.callCtx == nil {
return nil, errFuncCallNotAllowed
}
p := scope.callCtx.p
bi := scope.BinInfo
if !p.Common().fncallEnabled {
return nil, errFuncCallUnsupportedBackend
}
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
if dbgcallfn == nil {
return nil, errFuncCallUnsupported
}
// check that the selected goroutine is running
g := p.SelectedGoroutine()
if g == nil {
return nil, errNoGoroutine
}
if g.Status != Grunning || g.Thread == nil {
return nil, errGoroutineNotRunning
}
// check that there are at least 256 bytes free on the stack
regs, err := g.Thread.Registers(true)
if err != nil {
return nil, err
}
regs = regs.Copy()
if regs.SP()-256 <= g.stacklo {
return nil, errNotEnoughStack
}
_, err = regs.Get(int(x86asm.RAX))
if err != nil {
return nil, errFuncCallUnsupportedBackend
}
fncall := functionCallState{
expr: node,
savedRegs: regs,
}
err = funcCallEvalFuncExpr(scope, &fncall, false)
if err != nil {
return nil, err
}
if err := callOP(bi, g.Thread, regs, dbgcallfn.Entry); err != nil {
return nil, err
}
// write the desired argument frame size at SP-(2*pointer_size) (the extra pointer is the saved PC)
if err := writePointer(bi, g.Thread, regs.SP()-3*uint64(bi.Arch.PtrSize()), uint64(fncall.argFrameSize)); err != nil {
return nil, err
}
fncallLog("function call initiated %v frame size %d\n", fncall.fn, fncall.argFrameSize)
spoff := int64(scope.Regs.Uint64Val(scope.Regs.SPRegNum)) - int64(g.stackhi)
bpoff := int64(scope.Regs.Uint64Val(scope.Regs.BPRegNum)) - int64(g.stackhi)
fboff := scope.Regs.FrameBase - int64(g.stackhi)
for {
scope.callCtx.doContinue()
g = p.SelectedGoroutine()
if g != nil {
// adjust the value of registers inside scope
for regnum := range scope.Regs.Regs {
switch uint64(regnum) {
case scope.Regs.PCRegNum, scope.Regs.SPRegNum, scope.Regs.BPRegNum:
// leave these alone
default:
// every other register is dirty and unrecoverable
scope.Regs.Regs[regnum] = nil
}
}
scope.Regs.Regs[scope.Regs.SPRegNum].Uint64Val = uint64(spoff + int64(g.stackhi))
scope.Regs.Regs[scope.Regs.BPRegNum].Uint64Val = uint64(bpoff + int64(g.stackhi))
scope.Regs.FrameBase = fboff + int64(g.stackhi)
scope.Regs.CFA = scope.frameOffset + int64(g.stackhi)
}
finished := funcCallStep(scope, &fncall)
if finished {
break
}
}
if fncall.err != nil {
return nil, fncall.err
}
if fncall.panicvar != nil {
return nil, fncallPanicErr{fncall.panicvar}
}
switch len(fncall.retvars) {
case 0:
r := scope.newVariable("", 0, nil, nil)
r.loaded = true
r.Unreadable = errors.New("no return values")
return r, nil
case 1:
return fncall.retvars[0], nil
default:
// create a fake variable without address or type to return multiple values
r := scope.newVariable("", 0, nil, nil)
r.loaded = true
r.Children = make([]Variable, len(fncall.retvars))
for i := range fncall.retvars {
r.Children[i] = *fncall.retvars[i]
}
return r, nil
}
}
// fncallPanicErr is the error returned if a called function panics
type fncallPanicErr struct {
panicVar *Variable
}
func (err fncallPanicErr) Error() string {
return fmt.Sprintf("panic calling a function")
}
func fncallLog(fmtstr string, args ...interface{}) {
logflags.FnCallLogger().Infof(fmtstr, args...)
}
// writePointer writes val as an architecture pointer at addr in mem.
func writePointer(bi *BinaryInfo, mem MemoryReadWriter, addr, val uint64) error {
ptrbuf := make([]byte, bi.Arch.PtrSize())
// TODO: use target architecture endianness instead of LittleEndian
switch len(ptrbuf) {
case 4:
binary.LittleEndian.PutUint32(ptrbuf, uint32(val))
case 8:
binary.LittleEndian.PutUint64(ptrbuf, val)
default:
panic(fmt.Errorf("unsupported pointer size %d", len(ptrbuf)))
}
_, err := mem.WriteMemory(uintptr(addr), ptrbuf)
return err
}
// callOP simulates a call instruction on the given thread:
// * pushes the current value of PC on the stack (adjusting SP)
// * changes the value of PC to callAddr
// Note: regs are NOT updated!
func callOP(bi *BinaryInfo, thread Thread, regs Registers, callAddr uint64) error {
sp := regs.SP()
// push PC on the stack
sp -= uint64(bi.Arch.PtrSize())
if err := thread.SetSP(sp); err != nil {
return err
}
if err := writePointer(bi, thread, sp, regs.PC()); err != nil {
return err
}
return thread.SetPC(callAddr)
}
// funcCallEvalFuncExpr evaluates expr.Fun and returns the function that we're trying to call.
// If allowCalls is false function calls will be disabled even if scope.callCtx != nil
func funcCallEvalFuncExpr(scope *EvalScope, fncall *functionCallState, allowCalls bool) error {
bi := scope.BinInfo
if !allowCalls {
callCtx := scope.callCtx
scope.callCtx = nil
defer func() {
scope.callCtx = callCtx
}()
}
fnvar, err := scope.evalAST(fncall.expr.Fun)
if err == errFuncCallNotAllowed {
// we can't determine the frame size because callexpr.Fun can't be
// evaluated without enabling function calls, just set up an argument
// frame for the maximum possible argument size.
fncall.argFrameSize = maxArgFrameSize
return nil
} else if err != nil {
return err
}
if fnvar.Kind != reflect.Func {
return fmt.Errorf("expression %q is not a function", exprToString(fncall.expr.Fun))
}
fnvar.loadValue(LoadConfig{false, 0, 0, 0, 0, 0})
if fnvar.Unreadable != nil {
return fnvar.Unreadable
}
if fnvar.Base == 0 {
return errors.New("nil pointer dereference")
}
fncall.fn = bi.PCToFunc(uint64(fnvar.Base))
if fncall.fn == nil {
return fmt.Errorf("could not find DIE for function %q", exprToString(fncall.expr.Fun))
}
if !fncall.fn.cu.isgo {
return errNotAGoFunction
}
fncall.closureAddr = fnvar.closureAddr
fncall.argFrameSize, fncall.formalArgs, err = funcCallArgs(fncall.fn, bi, false)
if err != nil {
return err
}
argnum := len(fncall.expr.Args)
if len(fnvar.Children) > 0 {
argnum++
fncall.receiver = &fnvar.Children[0]
fncall.receiver.Name = exprToString(fncall.expr.Fun)
}
if argnum > len(fncall.formalArgs) {
return errTooManyArguments
}
if argnum < len(fncall.formalArgs) {
return errNotEnoughArguments
}
return nil
}
type funcCallArg struct {
name string
typ godwarf.Type
off int64
isret bool
}
// funcCallEvalArgs evaluates the arguments of the function call, copying
// the into the argument frame starting at argFrameAddr.
func funcCallEvalArgs(scope *EvalScope, fncall *functionCallState, argFrameAddr uint64) error {
g := scope.callCtx.p.SelectedGoroutine()
if g == nil {
// this should never happen
return errNoGoroutine
}
if fncall.receiver != nil {
err := funcCallCopyOneArg(g, scope, fncall, fncall.receiver, &fncall.formalArgs[0], argFrameAddr)
if err != nil {
return err
}
fncall.formalArgs = fncall.formalArgs[1:]
}
for i := range fncall.formalArgs {
formalArg := &fncall.formalArgs[i]
actualArg, err := scope.evalAST(fncall.expr.Args[i])
if err != nil {
return fmt.Errorf("error evaluating %q as argument %s in function %s: %v", exprToString(fncall.expr.Args[i]), formalArg.name, fncall.fn.Name, err)
}
actualArg.Name = exprToString(fncall.expr.Args[i])
err = funcCallCopyOneArg(g, scope, fncall, actualArg, formalArg, argFrameAddr)
if err != nil {
return err
}
}
return nil
}
func funcCallCopyOneArg(g *G, scope *EvalScope, fncall *functionCallState, actualArg *Variable, formalArg *funcCallArg, argFrameAddr uint64) error {
if scope.callCtx.checkEscape {
//TODO(aarzilli): only apply the escapeCheck to leaking parameters.
if err := escapeCheck(actualArg, formalArg.name, g); err != nil {
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
}
}
//TODO(aarzilli): autmoatic wrapping in interfaces for cases not handled
// by convertToEface.
formalArgVar := newVariable(formalArg.name, uintptr(formalArg.off+int64(argFrameAddr)), formalArg.typ, scope.BinInfo, scope.Mem)
if err := scope.setValue(formalArgVar, actualArg, actualArg.Name); err != nil {
return err
}
return nil
}
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
const CFA = 0x1000
vrdr := reader.Variables(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(fn.Entry, fn.cu.image.StaticBase), int(^uint(0)>>1), false, true)
trustArgOrder := bi.Producer() != "" && goversion.ProducerAfterOrEqual(bi.Producer(), 1, 12)
// typechecks arguments, calculates argument frame size
for vrdr.Next() {
e := vrdr.Entry()
if e.Tag != dwarf.TagFormalParameter {
continue
}
entry, argname, typ, err := readVarEntry(e, fn.cu.image)
if err != nil {
return 0, nil, err
}
typ = resolveTypedef(typ)
var off int64
if trustArgOrder && fn.Name == "runtime.mallocgc" {
// runtime is always optimized and optimized code sometimes doesn't have
// location info for arguments, but we still want to call runtime.mallocgc.
off = argFrameSize
} else {
locprog, _, err := bi.locationExpr(entry, dwarf.AttrLocation, fn.Entry)
if err != nil {
return 0, nil, fmt.Errorf("could not get argument location of %s: %v", argname, err)
}
off, _, err = op.ExecuteStackProgram(op.DwarfRegisters{CFA: CFA, FrameBase: CFA}, locprog)
if err != nil {
return 0, nil, fmt.Errorf("unsupported location expression for argument %s: %v", argname, err)
}
off -= CFA
}
if e := off + typ.Size(); e > argFrameSize {
argFrameSize = e
}
if isret, _ := entry.Val(dwarf.AttrVarParam).(bool); !isret || includeRet {
formalArgs = append(formalArgs, funcCallArg{name: argname, typ: typ, off: off, isret: isret})
}
}
if err := vrdr.Err(); err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
sort.Slice(formalArgs, func(i, j int) bool {
return formalArgs[i].off < formalArgs[j].off
})
return argFrameSize, formalArgs, nil
}
func escapeCheck(v *Variable, name string, g *G) error {
switch v.Kind {
case reflect.Ptr:
var w *Variable
if len(v.Children) == 1 {
// this branch is here to support pointers constructed with typecasts from ints or the '&' operator
w = &v.Children[0]
} else {
w = v.maybeDereference()
}
return escapeCheckPointer(w.Addr, name, g)
case reflect.Chan, reflect.String, reflect.Slice:
return escapeCheckPointer(v.Base, name, g)
case reflect.Map:
sv := v.clone()
sv.RealType = resolveTypedef(&(v.RealType.(*godwarf.MapType).TypedefType))
sv = sv.maybeDereference()
return escapeCheckPointer(sv.Addr, name, g)
case reflect.Struct:
t := v.RealType.(*godwarf.StructType)
for _, field := range t.Field {
fv, _ := v.toField(field)
if err := escapeCheck(fv, fmt.Sprintf("%s.%s", name, field.Name), g); err != nil {
return err
}
}
case reflect.Array:
for i := int64(0); i < v.Len; i++ {
sv, _ := v.sliceAccess(int(i))
if err := escapeCheck(sv, fmt.Sprintf("%s[%d]", name, i), g); err != nil {
return err
}
}
case reflect.Func:
if err := escapeCheckPointer(uintptr(v.funcvalAddr()), name, g); err != nil {
return err
}
}
return nil
}
func escapeCheckPointer(addr uintptr, name string, g *G) error {
if uint64(addr) >= g.stacklo && uint64(addr) < g.stackhi {
return fmt.Errorf("stack object passed to escaping pointer: %s", name)
}
return nil
}
const (
debugCallAXPrecheckFailed = 8
debugCallAXCompleteCall = 0
debugCallAXReadReturn = 1
debugCallAXReadPanic = 2
debugCallAXRestoreRegisters = 16
)
// funcCallStep executes one step of the function call injection protocol.
func funcCallStep(callScope *EvalScope, fncall *functionCallState) bool {
p := callScope.callCtx.p
bi := p.BinInfo()
thread := p.CurrentThread()
regs, err := thread.Registers(false)
if err != nil {
fncall.err = err
return true
}
regs = regs.Copy()
rax, _ := regs.Get(int(x86asm.RAX))
if logflags.FnCall() {
loc, _ := thread.Location()
var pc uint64
var fnname string
if loc != nil {
pc = loc.PC
if loc.Fn != nil {
fnname = loc.Fn.Name
}
}
fncallLog("function call interrupt rax=%#x (PC=%#x in %s)\n", rax, pc, fnname)
}
switch rax {
case debugCallAXPrecheckFailed:
// get error from top of the stack and return it to user
errvar, err := readTopstackVariable(thread, regs, "string", loadFullValue)
if err != nil {
fncall.err = fmt.Errorf("could not get precheck error reason: %v", err)
break
}
errvar.Name = "err"
fncall.err = fmt.Errorf("%v", constant.StringVal(errvar.Value))
case debugCallAXCompleteCall:
// evaluate arguments of the target function, copy them into its argument frame and call the function
if fncall.fn == nil || fncall.receiver != nil || fncall.closureAddr != 0 {
// if we couldn't figure out which function we are calling before
// (because the function we are calling is the return value of a call to
// another function) now we have to figure it out by recursively
// evaluating the function calls.
// This also needs to be done if the function call has a receiver
// argument or a closure address (because those addresses could be on the stack
// and have changed position between the start of the call and now).
err := funcCallEvalFuncExpr(callScope, fncall, true)
if err != nil {
fncall.err = err
fncall.lateCallFailure = true
break
}
//TODO: double check that function call size isn't too big
}
// instead of evaluating the arguments we start first by pushing the call
// on the stack, this is the opposite of what would happen normally but
// it's necessary because otherwise the GC wouldn't be able to deal with
// the argument frame.
if fncall.closureAddr != 0 {
// When calling a function pointer we must set the DX register to the
// address of the function pointer itself.
thread.SetDX(fncall.closureAddr)
}
callOP(bi, thread, regs, fncall.fn.Entry)
err := funcCallEvalArgs(callScope, fncall, regs.SP())
if err != nil {
// rolling back the call, note: this works because we called regs.Copy() above
thread.SetSP(regs.SP())
thread.SetPC(regs.PC())
fncall.err = err
fncall.lateCallFailure = true
break
}
case debugCallAXRestoreRegisters:
// runtime requests that we restore the registers (all except pc and sp),
// this is also the last step of the function call protocol.
pc, sp := regs.PC(), regs.SP()
if err := thread.RestoreRegisters(fncall.savedRegs); err != nil {
fncall.err = fmt.Errorf("could not restore registers: %v", err)
}
if err := thread.SetPC(pc); err != nil {
fncall.err = fmt.Errorf("could not restore PC: %v", err)
}
if err := thread.SetSP(sp); err != nil {
fncall.err = fmt.Errorf("could not restore SP: %v", err)
}
if err := stepInstructionOut(p, thread, debugCallFunctionName, debugCallFunctionName); err != nil {
fncall.err = fmt.Errorf("could not step out of %s: %v", debugCallFunctionName, err)
}
return true
case debugCallAXReadReturn:
// read return arguments from stack
if fncall.panicvar != nil || fncall.lateCallFailure {
break
}
retScope, err := ThreadScope(thread)
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
// pretend we are still inside the function we called
fakeFunctionEntryScope(retScope, fncall.fn, int64(regs.SP()), regs.SP()-uint64(bi.Arch.PtrSize()))
fncall.retvars, err = retScope.Locals()
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
fncall.retvars = filterVariables(fncall.retvars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
if fncall.fn.Name == "runtime.mallocgc" && fncall.retvars[0].Unreadable != nil {
// return values never have a location for optimized functions and the
// runtime is always optimized. However we want to call runtime.mallocgc,
// so we fix the address of the return value manually.
fncall.retvars[0].Unreadable = nil
lastArg := fncall.formalArgs[len(fncall.formalArgs)-1]
fncall.retvars[0].Addr = uintptr(retScope.Regs.CFA + lastArg.off + int64(bi.Arch.PtrSize()))
}
loadValues(fncall.retvars, callScope.callCtx.retLoadCfg)
case debugCallAXReadPanic:
// read panic value from stack
fncall.panicvar, err = readTopstackVariable(thread, regs, "interface {}", callScope.callCtx.retLoadCfg)
if err != nil {
fncall.err = fmt.Errorf("could not get panic: %v", err)
break
}
fncall.panicvar.Name = "~panic"
fncall.panicvar.loadValue(callScope.callCtx.retLoadCfg)
if fncall.panicvar.Unreadable != nil {
fncall.err = fmt.Errorf("could not get panic: %v", fncall.panicvar.Unreadable)
break
}
default:
// Got an unknown AX value, this is probably bad but the safest thing
// possible is to ignore it and hope it didn't matter.
fncallLog("unknown value of AX %#x", rax)
}
return false
}
func readTopstackVariable(thread Thread, regs Registers, typename string, loadCfg LoadConfig) (*Variable, error) {
bi := thread.BinInfo()
scope, err := ThreadScope(thread)
if err != nil {
return nil, err
}
typ, err := bi.findType(typename)
if err != nil {
return nil, err
}
v := scope.newVariable("", uintptr(regs.SP()), typ, scope.Mem)
v.loadValue(loadCfg)
if v.Unreadable != nil {
return nil, v.Unreadable
}
return v, nil
}
// fakeEntryScope alters scope to pretend that we are at the entry point of
// fn and CFA and SP are the ones passed as argument.
// This function is used to create a scope for a call frame that doesn't
// exist anymore, to read the return variables of an injected function call,
// or after a stepout command.
func fakeFunctionEntryScope(scope *EvalScope, fn *Function, cfa int64, sp uint64) error {
scope.PC = fn.Entry
scope.Fn = fn
scope.File, scope.Line, _ = scope.BinInfo.PCToLine(fn.Entry)
scope.Regs.CFA = cfa
scope.Regs.Regs[scope.Regs.SPRegNum].Uint64Val = sp
fn.cu.image.dwarfReader.Seek(fn.offset)
e, err := fn.cu.image.dwarfReader.Next()
if err != nil {
return err
}
scope.Regs.FrameBase, _, _, _ = scope.BinInfo.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
return nil
}
func (fncall *functionCallState) returnValues() []*Variable {
if fncall.panicvar != nil {
return []*Variable{fncall.panicvar}
}
return fncall.retvars
}
// allocString allocates spaces for the contents of v if it needs to be allocated
func (scope *EvalScope) allocString(v *Variable) error {
if v.Base != 0 || v.Len == 0 {
// already allocated
return nil
}
if scope.callCtx == nil {
return errFuncCallNotAllowedStrAlloc
}
savedLoadCfg := scope.callCtx.retLoadCfg
scope.callCtx.retLoadCfg = loadFullValue
defer func() {
scope.callCtx.retLoadCfg = savedLoadCfg
}()
mallocv, err := scope.evalFunctionCall(&ast.CallExpr{
Fun: &ast.SelectorExpr{
X: &ast.Ident{Name: "runtime"},
Sel: &ast.Ident{Name: "mallocgc"},
},
Args: []ast.Expr{
&ast.BasicLit{Kind: token.INT, Value: strconv.Itoa(int(v.Len))},
&ast.Ident{Name: "nil"},
&ast.Ident{Name: "false"},
},
})
if err != nil {
return err
}
if mallocv.Unreadable != nil {
return mallocv.Unreadable
}
if mallocv.DwarfType.String() != "*void" {
return fmt.Errorf("unexpected return type for mallocgc call: %v", mallocv.DwarfType.String())
}
if len(mallocv.Children) != 1 {
return errors.New("internal error, could not interpret return value of mallocgc call")
}
v.Base = uintptr(mallocv.Children[0].Addr)
_, err = scope.Mem.WriteMemory(v.Base, []byte(constant.StringVal(v.Value)))
return err
}