delve/pkg/proc/breakpoints.go
Suzy Mueller b2afb7cd20
pkg/proc: add support for hit count condition breakpoints (#2490)
* pkg/proc: implement support for hit count breakpoints

* update comment

* udpate hitcount comment

* update HitCond description

* add test for hit condition error

* respond to review

* service/dap: add support for hit count breakpoints

* use amendbps to preserve hit counts

* update test health doc

* fix failing test

* simplify hit conditions

* REmove RequestString, use name instead

* update backend_test_health.md

* document hit count cond

* fix tests
2021-05-28 11:21:53 -07:00

619 lines
18 KiB
Go

package proc
import (
"errors"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"go/token"
"reflect"
)
const (
// UnrecoveredPanic is the name given to the unrecovered panic breakpoint.
UnrecoveredPanic = "unrecovered-panic"
// FatalThrow is the name given to the breakpoint triggered when the target
// process dies because of a fatal runtime error.
FatalThrow = "runtime-fatal-throw"
unrecoveredPanicID = -1
fatalThrowID = -2
)
// Breakpoint represents a physical breakpoint. Stores information on the break
// point including the byte of data that originally was stored at that
// address.
type Breakpoint struct {
// File & line information for printing.
FunctionName string
File string
Line int
Addr uint64 // Address breakpoint is set for.
OriginalData []byte // If software breakpoint, the data we replace with breakpoint instruction.
Name string // User defined name of the breakpoint
LogicalID int // ID of the logical breakpoint that owns this physical breakpoint
WatchExpr string
WatchType WatchType
HWBreakIndex uint8 // hardware breakpoint index
// Kind describes whether this is an internal breakpoint (for next'ing or
// stepping).
// A single breakpoint can be both a UserBreakpoint and some kind of
// internal breakpoint, but it can not be two different kinds of internal
// breakpoint.
Kind BreakpointKind
// Breakpoint information
Tracepoint bool // Tracepoint flag
TraceReturn bool
Goroutine bool // Retrieve goroutine information
Stacktrace int // Number of stack frames to retrieve
Variables []string // Variables to evaluate
LoadArgs *LoadConfig
LoadLocals *LoadConfig
HitCount map[int]uint64 // Number of times a breakpoint has been reached in a certain goroutine
TotalHitCount uint64 // Number of times a breakpoint has been reached
// DeferReturns: when kind == NextDeferBreakpoint this breakpoint
// will also check if the caller is runtime.gopanic or if the return
// address is in the DeferReturns array.
// Next uses NextDeferBreakpoints for the breakpoint it sets on the
// deferred function, DeferReturns is populated with the
// addresses of calls to runtime.deferreturn in the current
// function. This ensures that the breakpoint on the deferred
// function only triggers on panic or on the defer call to
// the function, not when the function is called directly
DeferReturns []uint64
// Cond: if not nil the breakpoint will be triggered only if evaluating Cond returns true
Cond ast.Expr
// internalCond is the same as Cond but used for the condition of internal breakpoints
internalCond ast.Expr
// HitCond: if not nil the breakpoint will be triggered only if the evaluated HitCond returns
// true with the TotalHitCount.
HitCond *struct {
Op token.Token
Val int
}
// ReturnInfo describes how to collect return variables when this
// breakpoint is hit as a return breakpoint.
returnInfo *returnBreakpointInfo
}
// BreakpointKind determines the behavior of delve when the
// breakpoint is reached.
type BreakpointKind uint16
const (
// UserBreakpoint is a user set breakpoint
UserBreakpoint BreakpointKind = (1 << iota)
// NextBreakpoint is a breakpoint set by Next, Continue
// will stop on it and delete it
NextBreakpoint
// NextDeferBreakpoint is a breakpoint set by Next on the
// first deferred function. In addition to checking their condition
// breakpoints of this kind will also check that the function has been
// called by runtime.gopanic or through runtime.deferreturn.
NextDeferBreakpoint
// StepBreakpoint is a breakpoint set by Step on a CALL instruction,
// Continue will set a new breakpoint (of NextBreakpoint kind) on the
// destination of CALL, delete this breakpoint and then continue again
StepBreakpoint
)
// WatchType is the watchpoint type
type WatchType uint8
const (
WatchRead WatchType = 1 << iota
WatchWrite
)
// Read returns true if the hardware breakpoint should trigger on memory reads.
func (wtype WatchType) Read() bool {
return wtype&WatchRead != 0
}
// Write returns true if the hardware breakpoint should trigger on memory writes.
func (wtype WatchType) Write() bool {
return wtype&WatchWrite != 0
}
// Size returns the size in bytes of the hardware breakpoint.
func (wtype WatchType) Size() int {
return int(wtype >> 4)
}
// withSize returns a new HWBreakType with the size set to the specified value
func (wtype WatchType) withSize(sz uint8) WatchType {
return WatchType((sz << 4) | uint8(wtype&0xf))
}
var ErrHWBreakUnsupported = errors.New("hardware breakpoints not implemented")
func (bp *Breakpoint) String() string {
return fmt.Sprintf("Breakpoint %d at %#v %s:%d (%d)", bp.LogicalID, bp.Addr, bp.File, bp.Line, bp.TotalHitCount)
}
// BreakpointExistsError is returned when trying to set a breakpoint at
// an address that already has a breakpoint set for it.
type BreakpointExistsError struct {
File string
Line int
Addr uint64
}
func (bpe BreakpointExistsError) Error() string {
return fmt.Sprintf("Breakpoint exists at %s:%d at %x", bpe.File, bpe.Line, bpe.Addr)
}
// InvalidAddressError represents the result of
// attempting to set a breakpoint at an invalid address.
type InvalidAddressError struct {
Address uint64
}
func (iae InvalidAddressError) Error() string {
return fmt.Sprintf("Invalid address %#v\n", iae.Address)
}
type returnBreakpointInfo struct {
retFrameCond ast.Expr
fn *Function
frameOffset int64
spOffset int64
}
// CheckCondition evaluates bp's condition on thread.
func (bp *Breakpoint) CheckCondition(thread Thread) BreakpointState {
bpstate := BreakpointState{Breakpoint: bp, Active: false, Internal: false, CondError: nil}
bpstate.checkCond(thread)
// Update the breakpoint hit counts.
if bpstate.Breakpoint != nil && bpstate.Active {
if g, err := GetG(thread); err == nil {
bpstate.HitCount[g.ID]++
}
bpstate.TotalHitCount++
}
bpstate.checkHitCond(thread)
return bpstate
}
func (bpstate *BreakpointState) checkCond(thread Thread) {
if bpstate.Cond == nil && bpstate.internalCond == nil {
bpstate.Active = true
bpstate.Internal = bpstate.IsInternal()
return
}
nextDeferOk := true
if bpstate.Kind&NextDeferBreakpoint != 0 {
var err error
frames, err := ThreadStacktrace(thread, 2)
if err == nil {
nextDeferOk = isPanicCall(frames)
if !nextDeferOk {
nextDeferOk, _ = isDeferReturnCall(frames, bpstate.DeferReturns)
}
}
}
if bpstate.IsInternal() {
// Check internalCondition if this is also an internal breakpoint
bpstate.Active, bpstate.CondError = evalBreakpointCondition(thread, bpstate.internalCond)
bpstate.Active = bpstate.Active && nextDeferOk
if bpstate.Active || bpstate.CondError != nil {
bpstate.Internal = true
return
}
}
if bpstate.IsUser() {
// Check normal condition if this is also a user breakpoint
bpstate.Active, bpstate.CondError = evalBreakpointCondition(thread, bpstate.Cond)
}
}
// checkHitCond evaluates bp's hit condition on thread.
func (bpstate *BreakpointState) checkHitCond(thread Thread) {
if bpstate.HitCond == nil || !bpstate.Active || bpstate.Internal {
return
}
// Evaluate the breakpoint condition.
switch bpstate.HitCond.Op {
case token.EQL:
bpstate.Active = int(bpstate.TotalHitCount) == bpstate.HitCond.Val
case token.NEQ:
bpstate.Active = int(bpstate.TotalHitCount) != bpstate.HitCond.Val
case token.GTR:
bpstate.Active = int(bpstate.TotalHitCount) > bpstate.HitCond.Val
case token.LSS:
bpstate.Active = int(bpstate.TotalHitCount) < bpstate.HitCond.Val
case token.GEQ:
bpstate.Active = int(bpstate.TotalHitCount) >= bpstate.HitCond.Val
case token.LEQ:
bpstate.Active = int(bpstate.TotalHitCount) <= bpstate.HitCond.Val
case token.REM:
bpstate.Active = int(bpstate.TotalHitCount)%bpstate.HitCond.Val == 0
}
}
func isPanicCall(frames []Stackframe) bool {
return len(frames) >= 3 && frames[2].Current.Fn != nil && frames[2].Current.Fn.Name == "runtime.gopanic"
}
func isDeferReturnCall(frames []Stackframe, deferReturns []uint64) (bool, uint64) {
if len(frames) >= 1 {
for _, pc := range deferReturns {
if frames[0].Ret == pc {
return true, pc
}
}
}
return false, 0
}
// IsInternal returns true if bp is an internal breakpoint.
// User-set breakpoints can overlap with internal breakpoints, in that case
// both IsUser and IsInternal will be true.
func (bp *Breakpoint) IsInternal() bool {
return bp.Kind != UserBreakpoint
}
// IsUser returns true if bp is a user-set breakpoint.
// User-set breakpoints can overlap with internal breakpoints, in that case
// both IsUser and IsInternal will be true.
func (bp *Breakpoint) IsUser() bool {
return bp.Kind&UserBreakpoint != 0
}
func evalBreakpointCondition(thread Thread, cond ast.Expr) (bool, error) {
if cond == nil {
return true, nil
}
scope, err := GoroutineScope(thread)
if err != nil {
scope, err = ThreadScope(thread)
if err != nil {
return true, err
}
}
v, err := scope.evalAST(cond)
if err != nil {
return true, fmt.Errorf("error evaluating expression: %v", err)
}
if v.Kind != reflect.Bool {
return true, errors.New("condition expression not boolean")
}
v.loadValue(loadFullValue)
if v.Unreadable != nil {
return true, fmt.Errorf("condition expression unreadable: %v", v.Unreadable)
}
return constant.BoolVal(v.Value), nil
}
// NoBreakpointError is returned when trying to
// clear a breakpoint that does not exist.
type NoBreakpointError struct {
Addr uint64
}
func (nbp NoBreakpointError) Error() string {
return fmt.Sprintf("no breakpoint at %#v", nbp.Addr)
}
// BreakpointMap represents an (address, breakpoint) map.
type BreakpointMap struct {
M map[uint64]*Breakpoint
breakpointIDCounter int
internalBreakpointIDCounter int
}
// NewBreakpointMap creates a new BreakpointMap.
func NewBreakpointMap() BreakpointMap {
return BreakpointMap{
M: make(map[uint64]*Breakpoint),
}
}
// SetBreakpoint sets a breakpoint at addr, and stores it in the process wide
// break point table.
func (t *Target) SetBreakpoint(addr uint64, kind BreakpointKind, cond ast.Expr) (*Breakpoint, error) {
return t.setBreakpointInternal(addr, kind, 0, cond)
}
// SetWatchpoint sets a data breakpoint at addr and stores it in the
// process wide break point table.
func (t *Target) SetWatchpoint(scope *EvalScope, expr string, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if (wtype&WatchWrite == 0) && (wtype&WatchRead == 0) {
return nil, errors.New("at least one of read and write must be set for watchpoint")
}
n, err := parser.ParseExpr(expr)
if err != nil {
return nil, err
}
xv, err := scope.evalAST(n)
if err != nil {
return nil, err
}
if xv.Addr == 0 || xv.Flags&VariableFakeAddress != 0 || xv.DwarfType == nil {
return nil, fmt.Errorf("can not watch %q", expr)
}
if xv.Unreadable != nil {
return nil, fmt.Errorf("expression %q is unreadable: %v", expr, xv.Unreadable)
}
if xv.Kind == reflect.UnsafePointer || xv.Kind == reflect.Invalid {
return nil, fmt.Errorf("can not watch variable of type %s", xv.Kind.String())
}
sz := xv.DwarfType.Size()
if sz <= 0 || sz > int64(t.BinInfo().Arch.PtrSize()) {
//TODO(aarzilli): it is reasonable to expect to be able to watch string
//and interface variables and we could support it by watching certain
//member fields here.
return nil, fmt.Errorf("can not watch variable of type %s", xv.DwarfType.String())
}
if xv.Addr >= scope.g.stack.lo && xv.Addr < scope.g.stack.hi {
//TODO(aarzilli): support watching stack variables
return nil, errors.New("can not watch stack allocated variable")
}
bp, err := t.setBreakpointInternal(xv.Addr, UserBreakpoint, wtype.withSize(uint8(sz)), cond)
if bp != nil {
bp.WatchExpr = expr
}
return bp, err
}
func (t *Target) setBreakpointInternal(addr uint64, kind BreakpointKind, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if valid, err := t.Valid(); !valid {
return nil, err
}
bpmap := t.Breakpoints()
if bp, ok := bpmap.M[addr]; ok {
// We can overlap one internal breakpoint with one user breakpoint, we
// need to support this otherwise a conditional breakpoint can mask a
// breakpoint set by next or step.
if (kind != UserBreakpoint && bp.Kind != UserBreakpoint) || (kind == UserBreakpoint && bp.IsUser()) {
return bp, BreakpointExistsError{bp.File, bp.Line, bp.Addr}
}
bp.Kind |= kind
if kind != UserBreakpoint {
bp.internalCond = cond
} else {
bp.Cond = cond
}
return bp, nil
}
f, l, fn := t.BinInfo().PCToLine(uint64(addr))
fnName := ""
if fn != nil {
fnName = fn.Name
}
hwidx := uint8(0)
if wtype != 0 {
m := make(map[uint8]bool)
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
m[bp.HWBreakIndex] = true
}
}
for hwidx = 0; true; hwidx++ {
if !m[hwidx] {
break
}
}
}
newBreakpoint := &Breakpoint{
FunctionName: fnName,
WatchType: wtype,
HWBreakIndex: hwidx,
File: f,
Line: l,
Addr: addr,
Kind: kind,
HitCount: map[int]uint64{},
}
err := t.proc.WriteBreakpoint(newBreakpoint)
if err != nil {
return nil, err
}
if kind != UserBreakpoint {
bpmap.internalBreakpointIDCounter++
newBreakpoint.LogicalID = bpmap.internalBreakpointIDCounter
newBreakpoint.internalCond = cond
} else {
bpmap.breakpointIDCounter++
newBreakpoint.LogicalID = bpmap.breakpointIDCounter
newBreakpoint.Cond = cond
}
bpmap.M[addr] = newBreakpoint
return newBreakpoint, nil
}
// SetBreakpointWithID creates a breakpoint at addr, with the specified logical ID.
func (t *Target) SetBreakpointWithID(id int, addr uint64) (*Breakpoint, error) {
bpmap := t.Breakpoints()
bp, err := t.SetBreakpoint(addr, UserBreakpoint, nil)
if err == nil {
bp.LogicalID = id
bpmap.breakpointIDCounter--
}
return bp, err
}
// ClearBreakpoint clears the breakpoint at addr.
func (t *Target) ClearBreakpoint(addr uint64) (*Breakpoint, error) {
if valid, err := t.Valid(); !valid {
return nil, err
}
bpmap := t.Breakpoints()
bp, ok := bpmap.M[addr]
if !ok {
return nil, NoBreakpointError{Addr: addr}
}
bp.Kind &= ^UserBreakpoint
bp.Cond = nil
if bp.Kind != 0 {
return bp, nil
}
if err := t.proc.EraseBreakpoint(bp); err != nil {
return nil, err
}
delete(bpmap.M, addr)
return bp, nil
}
// ClearInternalBreakpoints removes all internal breakpoints from the map,
// calling clearBreakpoint on each one.
func (t *Target) ClearInternalBreakpoints() error {
bpmap := t.Breakpoints()
threads := t.ThreadList()
for addr, bp := range bpmap.M {
bp.Kind = bp.Kind & UserBreakpoint
bp.internalCond = nil
bp.returnInfo = nil
if bp.Kind != 0 {
continue
}
if err := t.proc.EraseBreakpoint(bp); err != nil {
return err
}
for _, thread := range threads {
if thread.Breakpoint().Breakpoint == bp {
thread.Breakpoint().Clear()
}
}
delete(bpmap.M, addr)
}
return nil
}
// HasInternalBreakpoints returns true if bpmap has at least one internal
// breakpoint set.
func (bpmap *BreakpointMap) HasInternalBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.IsInternal() {
return true
}
}
return false
}
// HasHWBreakpoints returns true if there are hardware breakpoints.
func (bpmap *BreakpointMap) HasHWBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
return true
}
}
return false
}
// BreakpointState describes the state of a breakpoint in a thread.
type BreakpointState struct {
*Breakpoint
// Active is true if the breakpoint condition was met.
Active bool
// Internal is true if the breakpoint was matched as an internal
// breakpoint.
Internal bool
// CondError contains any error encountered while evaluating the
// breakpoint's condition.
CondError error
}
// Clear zeros the struct.
func (bpstate *BreakpointState) Clear() {
bpstate.Breakpoint = nil
bpstate.Active = false
bpstate.Internal = false
bpstate.CondError = nil
}
func (bpstate *BreakpointState) String() string {
s := bpstate.Breakpoint.String()
if bpstate.Active {
s += " active"
}
if bpstate.Internal {
s += " internal"
}
return s
}
func configureReturnBreakpoint(bi *BinaryInfo, bp *Breakpoint, topframe *Stackframe, retFrameCond ast.Expr) {
if topframe.Current.Fn == nil {
return
}
bp.returnInfo = &returnBreakpointInfo{
retFrameCond: retFrameCond,
fn: topframe.Current.Fn,
frameOffset: topframe.FrameOffset(),
spOffset: topframe.FrameOffset() - int64(bi.Arch.PtrSize()), // must be the value that SP had at the entry point of the function
}
}
func (rbpi *returnBreakpointInfo) Collect(thread Thread) []*Variable {
if rbpi == nil {
return nil
}
g, err := GetG(thread)
if err != nil {
return returnInfoError("could not get g", err, thread.ProcessMemory())
}
scope, err := GoroutineScope(thread)
if err != nil {
return returnInfoError("could not get scope", err, thread.ProcessMemory())
}
v, err := scope.evalAST(rbpi.retFrameCond)
if err != nil || v.Unreadable != nil || v.Kind != reflect.Bool {
// This condition was evaluated as part of the breakpoint condition
// evaluation, if the errors happen they will be reported as part of the
// condition errors.
return nil
}
if !constant.BoolVal(v.Value) {
// Breakpoint not hit as a return breakpoint.
return nil
}
oldFrameOffset := rbpi.frameOffset + int64(g.stack.hi)
oldSP := uint64(rbpi.spOffset + int64(g.stack.hi))
err = fakeFunctionEntryScope(scope, rbpi.fn, oldFrameOffset, oldSP)
if err != nil {
return returnInfoError("could not read function entry", err, thread.ProcessMemory())
}
vars, err := scope.Locals()
if err != nil {
return returnInfoError("could not evaluate return variables", err, thread.ProcessMemory())
}
vars = filterVariables(vars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
return vars
}
func returnInfoError(descr string, err error, mem MemoryReadWriter) []*Variable {
v := newConstant(constant.MakeString(fmt.Sprintf("%s: %v", descr, err.Error())), mem)
v.Name = "return value read error"
return []*Variable{v}
}