delve/pkg/proc/variables.go
Alessandro Arzilli 7c82164264
terminal,service: Add filtering and grouping to goroutines command (#2504)
Adds filtering and grouping to the goroutines command.

The current implementation of the goroutines command is modeled after
the threads command of gdb. It works well for programs that have up to
a couple dozen goroutines but becomes unusable quickly after that.

This commit adds the ability to filter and group goroutines by several
different properties, allowing a better debugging experience on
programs that have hundreds or thousands of goroutines.
2021-07-01 11:25:33 -07:00

2428 lines
66 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/constant"
"go/token"
"math"
"reflect"
"sort"
"strconv"
"strings"
"unsafe"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/goversion"
)
const (
maxErrCount = 3 // Max number of read errors to accept while evaluating slices, arrays and structs
maxArrayStridePrefetch = 1024 // Maximum size of array stride for which we will prefetch the array contents
hashTophashEmptyZero = 0 // used by map reading code, indicates an empty cell
hashTophashEmptyOne = 1 // used by map reading code, indicates an empty cell in Go 1.12 and later
hashMinTopHashGo111 = 4 // used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.11
hashMinTopHashGo112 = 5 // used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.12
maxFramePrefetchSize = 1 * 1024 * 1024 // Maximum prefetch size for a stack frame
maxMapBucketsFactor = 100 // Maximum numbers of map buckets to read for every requested map entry when loading variables through (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments.
maxGoroutineUserCurrentDepth = 30 // Maximum depth used by (*G).UserCurrent to search its location
)
type floatSpecial uint8
const (
// FloatIsNormal means the value is a normal float.
FloatIsNormal floatSpecial = iota
// FloatIsNaN means the float is a special NaN value.
FloatIsNaN
// FloatIsPosInf means the float is a special positive inifitiy value.
FloatIsPosInf
// FloatIsNegInf means the float is a special negative infinity value.
FloatIsNegInf
)
type variableFlags uint16
const (
// VariableEscaped is set for local variables that escaped to the heap
//
// The compiler performs escape analysis on local variables, the variables
// that may outlive the stack frame are allocated on the heap instead and
// only the address is recorded on the stack. These variables will be
// marked with this flag.
VariableEscaped variableFlags = (1 << iota)
// VariableShadowed is set for local variables that are shadowed by a
// variable with the same name in another scope
VariableShadowed
// VariableConstant means this variable is a constant value
VariableConstant
// VariableArgument means this variable is a function argument
VariableArgument
// VariableReturnArgument means this variable is a function return value
VariableReturnArgument
// VariableFakeAddress means the address of this variable is either fake
// (i.e. the variable is partially or completely stored in a CPU register
// and doesn't have a real address) or possibly no longer availabe (because
// the variable is the return value of a function call and allocated on a
// frame that no longer exists)
VariableFakeAddress
// VariableCPrt means the variable is a C pointer
VariableCPtr
// VariableCPURegister means this variable is a CPU register.
VariableCPURegister
)
// Variable represents a variable. It contains the address, name,
// type and other information parsed from both the Dwarf information
// and the memory of the debugged process.
// If OnlyAddr is true, the variables value has not been loaded.
type Variable struct {
Addr uint64
OnlyAddr bool
Name string
DwarfType godwarf.Type
RealType godwarf.Type
Kind reflect.Kind
mem MemoryReadWriter
bi *BinaryInfo
Value constant.Value
FloatSpecial floatSpecial
reg *op.DwarfRegister // contains the value of this variable if VariableCPURegister flag is set and loaded is false
Len int64
Cap int64
Flags variableFlags
// Base address of arrays, Base address of the backing array for slices (0 for nil slices)
// Base address of the backing byte array for strings
// address of the struct backing chan and map variables
// address of the function entry point for function variables (0 for nil function pointers)
Base uint64
stride int64
fieldType godwarf.Type
// closureAddr is the closure address for function variables (0 for non-closures)
closureAddr uint64
// number of elements to skip when loading a map
mapSkip int
Children []Variable
loaded bool
Unreadable error
LocationExpr *locationExpr // location expression
DeclLine int64 // line number of this variable's declaration
}
// LoadConfig controls how variables are loaded from the targets memory.
type LoadConfig struct {
// FollowPointers requests pointers to be automatically dereferenced.
FollowPointers bool
// MaxVariableRecurse is how far to recurse when evaluating nested types.
MaxVariableRecurse int
// MaxStringLen is the maximum number of bytes read from a string
MaxStringLen int
// MaxArrayValues is the maximum number of elements read from an array, a slice or a map.
MaxArrayValues int
// MaxStructFields is the maximum number of fields read from a struct, -1 will read all fields.
MaxStructFields int
// MaxMapBuckets is the maximum number of map buckets to read before giving up.
// A value of 0 will read as many buckets as necessary until the entire map
// is read or MaxArrayValues is reached.
//
// Loading a map is an operation that issues O(num_buckets) operations.
// Normally the number of buckets is proportional to the number of elements
// in the map, since the runtime tries to keep the load factor of maps
// between 40% and 80%.
//
// It is possible, however, to create very sparse maps either by:
// a) adding lots of entries to a map and then deleting most of them, or
// b) using the make(mapType, N) expression with a very large N
//
// When this happens delve will have to scan many empty buckets to find the
// few entries in the map.
// MaxMapBuckets can be set to avoid annoying slowdowns␣while reading
// very sparse maps.
//
// Since there is no good way for a user of delve to specify the value of
// MaxMapBuckets, this field is not actually exposed through the API.
// Instead (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments
// set this field automatically to MaxArrayValues * maxMapBucketsFactor.
// Every other invocation uses the default value of 0, obtaining the old behavior.
// In practice this means that debuggers using the ListLocalVars or
// ListFunctionArgs API will not experience a massive slowdown when a very
// sparse map is in scope, but evaluating a single variable will still work
// correctly, even if the variable in question is a very sparse map.
MaxMapBuckets int
}
var loadSingleValue = LoadConfig{false, 0, 64, 0, 0, 0}
var loadFullValue = LoadConfig{true, 1, 64, 64, -1, 0}
var loadFullValueLongerStrings = LoadConfig{true, 1, 1024 * 1024, 64, -1, 0}
// G status, from: src/runtime/runtime2.go
const (
Gidle uint64 = iota // 0
Grunnable // 1 runnable and on a run queue
Grunning // 2
Gsyscall // 3
Gwaiting // 4
GmoribundUnused // 5 currently unused, but hardcoded in gdb scripts
Gdead // 6
Genqueue // 7 Only the Gscanenqueue is used.
Gcopystack // 8 in this state when newstack is moving the stack
)
// G represents a runtime G (goroutine) structure (at least the
// fields that Delve is interested in).
type G struct {
ID int // Goroutine ID
PC uint64 // PC of goroutine when it was parked.
SP uint64 // SP of goroutine when it was parked.
BP uint64 // BP of goroutine when it was parked (go >= 1.7).
LR uint64 // LR of goroutine when it was parked.
GoPC uint64 // PC of 'go' statement that created this goroutine.
StartPC uint64 // PC of the first function run on this goroutine.
Status uint64
stack stack // value of stack
WaitSince int64
WaitReason int64
SystemStack bool // SystemStack is true if this goroutine is currently executing on a system stack.
// Information on goroutine location
CurrentLoc Location
// Thread that this goroutine is currently allocated to
Thread Thread
variable *Variable
Unreadable error // could not read the G struct
labels *map[string]string // G's pprof labels, computed on demand in Labels() method
}
// stack represents a stack span in the target process.
type stack struct {
hi, lo uint64
}
// GetG returns information on the G (goroutine) that is executing on this thread.
//
// The G structure for a thread is stored in thread local storage. Here we simply
// calculate the address and read and parse the G struct.
//
// We cannot simply use the allg linked list in order to find the M that represents
// the given OS thread and follow its G pointer because on Darwin mach ports are not
// universal, so our port for this thread would not map to the `id` attribute of the M
// structure. Also, when linked against libc, Go prefers the libc version of clone as
// opposed to the runtime version. This has the consequence of not setting M.id for
// any thread, regardless of OS.
//
// In order to get around all this craziness, we read the address of the G structure for
// the current thread from the thread local storage area.
func GetG(thread Thread) (*G, error) {
if thread.Common().g != nil {
return thread.Common().g, nil
}
if loc, _ := thread.Location(); loc != nil && loc.Fn != nil && loc.Fn.Name == "runtime.clone" {
// When threads are executing runtime.clone the value of TLS is unreliable.
return nil, nil
}
gaddr, err := getGVariable(thread)
if err != nil {
return nil, err
}
g, err := gaddr.parseG()
if err != nil {
return nil, err
}
if g.ID == 0 {
// The runtime uses a special goroutine with ID == 0 to mark that the
// current goroutine is executing on the system stack (sometimes also
// referred to as the g0 stack or scheduler stack, I'm not sure if there's
// actually any difference between those).
// For our purposes it's better if we always return the real goroutine
// since the rest of the code assumes the goroutine ID is univocal.
// The real 'current goroutine' is stored in g0.m.curg
mvar, err := g.variable.structMember("m")
if err != nil {
return nil, err
}
curgvar, err := mvar.structMember("curg")
if err != nil {
return nil, err
}
g, err = curgvar.parseG()
if err != nil {
if _, ok := err.(ErrNoGoroutine); ok {
err = ErrNoGoroutine{thread.ThreadID()}
}
return nil, err
}
g.SystemStack = true
}
g.Thread = thread
if loc, err := thread.Location(); err == nil {
g.CurrentLoc = *loc
}
thread.Common().g = g
return g, nil
}
// GoroutinesInfo searches for goroutines starting at index 'start', and
// returns an array of up to 'count' (or all found elements, if 'count' is 0)
// G structures representing the information Delve care about from the internal
// runtime G structure.
// GoroutinesInfo also returns the next index to be used as 'start' argument
// while scanning for all available goroutines, or -1 if there was an error
// or if the index already reached the last possible value.
func GoroutinesInfo(dbp *Target, start, count int) ([]*G, int, error) {
if _, err := dbp.Valid(); err != nil {
return nil, -1, err
}
if dbp.gcache.allGCache != nil {
// We can't use the cached array to fulfill a subrange request
if start == 0 && (count == 0 || count >= len(dbp.gcache.allGCache)) {
return dbp.gcache.allGCache, -1, nil
}
}
var (
threadg = map[int]*G{}
allg []*G
)
threads := dbp.ThreadList()
for _, th := range threads {
g, _ := GetG(th)
if g != nil {
threadg[g.ID] = g
}
}
allgptr, allglen, err := dbp.gcache.getRuntimeAllg(dbp.BinInfo(), dbp.Memory())
if err != nil {
return nil, -1, err
}
for i := uint64(start); i < allglen; i++ {
if count != 0 && len(allg) >= count {
return allg, int(i), nil
}
gvar, err := newGVariable(dbp.CurrentThread(), allgptr+(i*uint64(dbp.BinInfo().Arch.PtrSize())), true)
if err != nil {
allg = append(allg, &G{Unreadable: err})
continue
}
g, err := gvar.parseG()
if err != nil {
allg = append(allg, &G{Unreadable: err})
continue
}
if thg, allocated := threadg[g.ID]; allocated {
loc, err := thg.Thread.Location()
if err != nil {
return nil, -1, err
}
g.Thread = thg.Thread
// Prefer actual thread location information.
g.CurrentLoc = *loc
g.SystemStack = thg.SystemStack
}
if g.Status != Gdead {
allg = append(allg, g)
}
dbp.gcache.addGoroutine(g)
}
if start == 0 {
dbp.gcache.allGCache = allg
}
return allg, -1, nil
}
// FindGoroutine returns a G struct representing the goroutine
// specified by `gid`.
func FindGoroutine(dbp *Target, gid int) (*G, error) {
if selg := dbp.SelectedGoroutine(); (gid == -1) || (selg != nil && selg.ID == gid) || (selg == nil && gid == 0) {
// Return the currently selected goroutine in the following circumstances:
//
// 1. if the caller asks for gid == -1 (because that's what a goroutine ID of -1 means in our API).
// 2. if gid == selg.ID.
// this serves two purposes: (a) it's an optimizations that allows us
// to avoid reading any other goroutine and, more importantly, (b) we
// could be reading an incorrect value for the goroutine ID of a thread.
// This condition usually happens when a goroutine calls runtime.clone
// and for a short period of time two threads will appear to be running
// the same goroutine.
// 3. if the caller asks for gid == 0 and the selected goroutine is
// either 0 or nil.
// Goroutine 0 is special, it either means we have no current goroutine
// (for example, running C code), or that we are running on a special
// stack (system stack, signal handling stack) and we didn't properly
// detect it.
// Since there could be multiple goroutines '0' running simultaneously
// if the user requests it return the one that's already selected or
// nil if there isn't a selected goroutine.
return selg, nil
}
if gid == 0 {
return nil, fmt.Errorf("unknown goroutine %d", gid)
}
if g := dbp.gcache.partialGCache[gid]; g != nil {
return g, nil
}
// Calling GoroutinesInfo could be slow if there are many goroutines
// running, check if a running goroutine has been requested first.
for _, thread := range dbp.ThreadList() {
g, _ := GetG(thread)
if g != nil && g.ID == gid {
return g, nil
}
}
const goroutinesInfoLimit = 10
nextg := 0
for nextg >= 0 {
var gs []*G
var err error
gs, nextg, err = GoroutinesInfo(dbp, nextg, goroutinesInfoLimit)
if err != nil {
return nil, err
}
for i := range gs {
if gs[i].ID == gid {
if gs[i].Unreadable != nil {
return nil, gs[i].Unreadable
}
return gs[i], nil
}
}
}
return nil, fmt.Errorf("unknown goroutine %d", gid)
}
func getGVariable(thread Thread) (*Variable, error) {
regs, err := thread.Registers()
if err != nil {
return nil, err
}
gaddr, hasgaddr := regs.GAddr()
if !hasgaddr {
var err error
gaddr, err = readUintRaw(thread.ProcessMemory(), regs.TLS()+thread.BinInfo().GStructOffset(), int64(thread.BinInfo().Arch.PtrSize()))
if err != nil {
return nil, err
}
}
return newGVariable(thread, gaddr, thread.BinInfo().Arch.DerefTLS())
}
func newGVariable(thread Thread, gaddr uint64, deref bool) (*Variable, error) {
typ, err := thread.BinInfo().findType("runtime.g")
if err != nil {
return nil, err
}
if deref {
typ = &godwarf.PtrType{
CommonType: godwarf.CommonType{
ByteSize: int64(thread.BinInfo().Arch.PtrSize()),
Name: "",
ReflectKind: reflect.Ptr,
Offset: 0,
},
Type: typ,
}
}
return newVariableFromThread(thread, "", gaddr, typ), nil
}
// Defer returns the top-most defer of the goroutine.
func (g *G) Defer() *Defer {
if g.variable.Unreadable != nil {
return nil
}
dvar, _ := g.variable.structMember("_defer")
if dvar == nil {
return nil
}
dvar = dvar.maybeDereference()
if dvar.Addr == 0 {
return nil
}
d := &Defer{variable: dvar}
d.load()
return d
}
// UserCurrent returns the location the users code is at,
// or was at before entering a runtime function.
func (g *G) UserCurrent() Location {
it, err := g.stackIterator(0)
if err != nil {
return g.CurrentLoc
}
for count := 0; it.Next() && count < maxGoroutineUserCurrentDepth; count++ {
frame := it.Frame()
if frame.Call.Fn != nil {
name := frame.Call.Fn.Name
if strings.Contains(name, ".") && (!strings.HasPrefix(name, "runtime.") || frame.Call.Fn.exportedRuntime()) {
return frame.Call
}
}
}
return g.CurrentLoc
}
// Go returns the location of the 'go' statement
// that spawned this goroutine.
func (g *G) Go() Location {
pc := g.GoPC
if fn := g.variable.bi.PCToFunc(pc); fn != nil {
// Backup to CALL instruction.
// Mimics runtime/traceback.go:677.
if g.GoPC > fn.Entry {
pc--
}
}
f, l, fn := g.variable.bi.PCToLine(pc)
return Location{PC: g.GoPC, File: f, Line: l, Fn: fn}
}
// StartLoc returns the starting location of the goroutine.
func (g *G) StartLoc() Location {
f, l, fn := g.variable.bi.PCToLine(g.StartPC)
return Location{PC: g.StartPC, File: f, Line: l, Fn: fn}
}
// System returns true if g is a system goroutine. See isSystemGoroutine in
// $GOROOT/src/runtime/traceback.go.
func (g *G) System() bool {
loc := g.StartLoc()
if loc.Fn == nil {
return false
}
switch loc.Fn.Name {
case "runtime.main", "runtime.handleAsyncEvent", "runtime.runfinq":
return false
}
return strings.HasPrefix(loc.Fn.Name, "runtime.")
}
func (g *G) Labels() map[string]string {
if g.labels != nil {
return *g.labels
}
var labels map[string]string
if labelsVar := g.variable.loadFieldNamed("labels"); labelsVar != nil && len(labelsVar.Children) == 1 {
if address := labelsVar.Children[0]; address.Addr != 0 {
labelMapType, _ := g.variable.bi.findType("runtime/pprof.labelMap")
if labelMapType != nil {
labelMap := newVariable("", address.Addr, labelMapType, g.variable.bi, g.variable.mem)
labelMap.loadValue(loadFullValue)
labels = map[string]string{}
for i := range labelMap.Children {
if i%2 == 0 {
k := labelMap.Children[i]
v := labelMap.Children[i+1]
labels[constant.StringVal(k.Value)] = constant.StringVal(v.Value)
}
}
}
}
}
g.labels = &labels
return *g.labels
}
type Ancestor struct {
ID int64 // Goroutine ID
Unreadable error
pcsVar *Variable
}
// IsNilErr is returned when a variable is nil.
type IsNilErr struct {
name string
}
func (err *IsNilErr) Error() string {
return fmt.Sprintf("%s is nil", err.name)
}
func globalScope(bi *BinaryInfo, image *Image, mem MemoryReadWriter) *EvalScope {
return &EvalScope{Location: Location{}, Regs: op.DwarfRegisters{StaticBase: image.StaticBase}, Mem: mem, g: nil, BinInfo: bi, frameOffset: 0}
}
func newVariableFromThread(t Thread, name string, addr uint64, dwarfType godwarf.Type) *Variable {
return newVariable(name, addr, dwarfType, t.BinInfo(), t.ProcessMemory())
}
func (v *Variable) newVariable(name string, addr uint64, dwarfType godwarf.Type, mem MemoryReadWriter) *Variable {
return newVariable(name, addr, dwarfType, v.bi, mem)
}
func newVariable(name string, addr uint64, dwarfType godwarf.Type, bi *BinaryInfo, mem MemoryReadWriter) *Variable {
if styp, isstruct := dwarfType.(*godwarf.StructType); isstruct && !strings.Contains(styp.Name, "<") && !strings.Contains(styp.Name, "{") {
// For named structs the compiler will emit a DW_TAG_structure_type entry
// and a DW_TAG_typedef entry.
//
// Normally variables refer to the typedef entry but sometimes global
// variables will refer to the struct entry incorrectly.
// Also the runtime type offset resolution (runtimeTypeToDIE) will return
// the struct entry directly.
//
// In both cases we prefer to have a typedef type for consistency's sake.
//
// So we wrap all struct types into a fake typedef type except for:
// a. types not defined by go
// b. anonymous struct types (they contain the '{' character)
// c. Go internal struct types used to describe maps (they contain the '<'
// character).
cu := bi.Images[dwarfType.Common().Index].findCompileUnitForOffset(dwarfType.Common().Offset)
if cu != nil && cu.isgo {
dwarfType = &godwarf.TypedefType{
CommonType: *(dwarfType.Common()),
Type: dwarfType,
}
}
}
v := &Variable{
Name: name,
Addr: addr,
DwarfType: dwarfType,
mem: mem,
bi: bi,
}
v.RealType = resolveTypedef(v.DwarfType)
switch t := v.RealType.(type) {
case *godwarf.PtrType:
v.Kind = reflect.Ptr
if _, isvoid := t.Type.(*godwarf.VoidType); isvoid {
v.Kind = reflect.UnsafePointer
} else if isCgoType(bi, t) {
v.Flags |= VariableCPtr
v.fieldType = t.Type
v.stride = alignAddr(v.fieldType.Size(), v.fieldType.Align())
v.Len = 0
if isCgoCharPtr(bi, t) {
v.Kind = reflect.String
}
if v.Addr != 0 {
v.Base, v.Unreadable = readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
}
}
case *godwarf.ChanType:
v.Kind = reflect.Chan
if v.Addr != 0 {
v.loadChanInfo()
}
case *godwarf.MapType:
v.Kind = reflect.Map
case *godwarf.StringType:
v.Kind = reflect.String
v.stride = 1
v.fieldType = &godwarf.UintType{BasicType: godwarf.BasicType{CommonType: godwarf.CommonType{ByteSize: 1, Name: "byte"}, BitSize: 8, BitOffset: 0}}
if v.Addr != 0 {
v.Base, v.Len, v.Unreadable = readStringInfo(v.mem, v.bi.Arch, v.Addr)
}
case *godwarf.SliceType:
v.Kind = reflect.Slice
if v.Addr != 0 {
v.loadSliceInfo(t)
}
case *godwarf.InterfaceType:
v.Kind = reflect.Interface
case *godwarf.StructType:
v.Kind = reflect.Struct
case *godwarf.ArrayType:
v.Kind = reflect.Array
v.Base = v.Addr
v.Len = t.Count
v.Cap = -1
v.fieldType = t.Type
v.stride = 0
if t.Count > 0 {
v.stride = t.ByteSize / t.Count
}
case *godwarf.ComplexType:
switch t.ByteSize {
case 8:
v.Kind = reflect.Complex64
case 16:
v.Kind = reflect.Complex128
}
case *godwarf.IntType:
v.Kind = reflect.Int
case *godwarf.CharType:
// Rest of the code assumes that Kind == reflect.Int implies RealType ==
// godwarf.IntType.
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
v.Kind = reflect.Int
case *godwarf.UcharType:
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
v.Kind = reflect.Int
case *godwarf.UintType:
v.Kind = reflect.Uint
case *godwarf.FloatType:
switch t.ByteSize {
case 4:
v.Kind = reflect.Float32
case 8:
v.Kind = reflect.Float64
}
case *godwarf.BoolType:
v.Kind = reflect.Bool
case *godwarf.FuncType:
v.Kind = reflect.Func
case *godwarf.VoidType:
v.Kind = reflect.Invalid
case *godwarf.UnspecifiedType:
v.Kind = reflect.Invalid
default:
v.Unreadable = fmt.Errorf("unknown type: %T", t)
}
return v
}
func resolveTypedef(typ godwarf.Type) godwarf.Type {
for {
switch tt := typ.(type) {
case *godwarf.TypedefType:
typ = tt.Type
case *godwarf.QualType:
typ = tt.Type
default:
return typ
}
}
}
func newConstant(val constant.Value, mem MemoryReadWriter) *Variable {
v := &Variable{Value: val, mem: mem, loaded: true}
switch val.Kind() {
case constant.Int:
v.Kind = reflect.Int
case constant.Float:
v.Kind = reflect.Float64
case constant.Bool:
v.Kind = reflect.Bool
case constant.Complex:
v.Kind = reflect.Complex128
case constant.String:
v.Kind = reflect.String
v.Len = int64(len(constant.StringVal(val)))
}
v.Flags |= VariableConstant
return v
}
var nilVariable = &Variable{
Name: "nil",
Addr: 0,
Base: 0,
Kind: reflect.Ptr,
Children: []Variable{{Addr: 0, OnlyAddr: true}},
}
func (v *Variable) clone() *Variable {
r := *v
return &r
}
// TypeString returns the string representation
// of the type of this variable.
func (v *Variable) TypeString() string {
if v == nilVariable {
return "nil"
}
if v.DwarfType == nil {
return v.Kind.String()
}
if v.DwarfType.Common().Name != "" {
return v.DwarfType.Common().Name
}
r := v.DwarfType.String()
if r == "*void" {
cu := v.bi.Images[v.DwarfType.Common().Index].findCompileUnitForOffset(v.DwarfType.Common().Offset)
if cu != nil && cu.isgo {
r = "unsafe.Pointer"
}
}
return r
}
func (v *Variable) toField(field *godwarf.StructField) (*Variable, error) {
if v.Unreadable != nil {
return v.clone(), nil
}
if v.Addr == 0 {
return nil, &IsNilErr{v.Name}
}
name := ""
if v.Name != "" {
parts := strings.Split(field.Name, ".")
if len(parts) > 1 {
name = fmt.Sprintf("%s.%s", v.Name, parts[1])
} else {
name = fmt.Sprintf("%s.%s", v.Name, field.Name)
}
}
return v.newVariable(name, uint64(int64(v.Addr)+field.ByteOffset), field.Type, v.mem), nil
}
// ErrNoGoroutine returned when a G could not be found
// for a specific thread.
type ErrNoGoroutine struct {
tid int
}
func (ng ErrNoGoroutine) Error() string {
return fmt.Sprintf("no G executing on thread %d", ng.tid)
}
var ErrUnreadableG = errors.New("could not read G struct")
func (v *Variable) parseG() (*G, error) {
mem := v.mem
gaddr := uint64(v.Addr)
_, deref := v.RealType.(*godwarf.PtrType)
if deref {
var err error
gaddr, err = readUintRaw(mem, gaddr, int64(v.bi.Arch.PtrSize()))
if err != nil {
return nil, fmt.Errorf("error derefing *G %s", err)
}
}
if gaddr == 0 {
id := 0
if thread, ok := mem.(Thread); ok {
id = thread.ThreadID()
}
return nil, ErrNoGoroutine{tid: id}
}
for {
if _, isptr := v.RealType.(*godwarf.PtrType); !isptr {
break
}
v = v.maybeDereference()
}
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
schedVar := v.loadFieldNamed("sched")
if schedVar == nil {
return nil, ErrUnreadableG
}
pc, _ := constant.Int64Val(schedVar.fieldVariable("pc").Value)
sp, _ := constant.Int64Val(schedVar.fieldVariable("sp").Value)
var bp, lr int64
if bpvar := schedVar.fieldVariable("bp"); bpvar != nil && bpvar.Value != nil {
bp, _ = constant.Int64Val(bpvar.Value)
}
if bpvar := schedVar.fieldVariable("lr"); bpvar != nil && bpvar.Value != nil {
lr, _ = constant.Int64Val(bpvar.Value)
}
unreadable := false
loadInt64Maybe := func(name string) int64 {
vv := v.loadFieldNamed(name)
if vv == nil {
unreadable = true
return 0
}
n, _ := constant.Int64Val(vv.Value)
return n
}
id := loadInt64Maybe("goid")
gopc := loadInt64Maybe("gopc")
startpc := loadInt64Maybe("startpc")
waitSince := loadInt64Maybe("waitsince")
waitReason := int64(0)
if producer := v.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
waitReason = loadInt64Maybe("waitreason")
}
var stackhi, stacklo uint64
if stackVar := v.loadFieldNamed("stack"); stackVar != nil {
if stackhiVar := stackVar.fieldVariable("hi"); stackhiVar != nil {
stackhi, _ = constant.Uint64Val(stackhiVar.Value)
}
if stackloVar := stackVar.fieldVariable("lo"); stackloVar != nil {
stacklo, _ = constant.Uint64Val(stackloVar.Value)
}
}
status := loadInt64Maybe("atomicstatus")
if unreadable {
return nil, ErrUnreadableG
}
f, l, fn := v.bi.PCToLine(uint64(pc))
v.Name = "runtime.curg"
g := &G{
ID: int(id),
GoPC: uint64(gopc),
StartPC: uint64(startpc),
PC: uint64(pc),
SP: uint64(sp),
BP: uint64(bp),
LR: uint64(lr),
Status: uint64(status),
WaitSince: waitSince,
WaitReason: waitReason,
CurrentLoc: Location{PC: uint64(pc), File: f, Line: l, Fn: fn},
variable: v,
stack: stack{hi: stackhi, lo: stacklo},
}
return g, nil
}
func (v *Variable) loadFieldNamed(name string) *Variable {
v, err := v.structMember(name)
if err != nil {
return nil
}
v.loadValue(loadFullValue)
if v.Unreadable != nil {
return nil
}
return v
}
func (v *Variable) fieldVariable(name string) *Variable {
if !v.loaded {
panic("fieldVariable called on a variable that wasn't loaded")
}
for i := range v.Children {
if child := &v.Children[i]; child.Name == name {
return child
}
}
return nil
}
var errTracebackAncestorsDisabled = errors.New("tracebackancestors is disabled")
// Ancestors returns the list of ancestors for g.
func Ancestors(p Process, g *G, n int) ([]Ancestor, error) {
scope := globalScope(p.BinInfo(), p.BinInfo().Images[0], p.Memory())
tbav, err := scope.EvalExpression("runtime.debug.tracebackancestors", loadSingleValue)
if err == nil && tbav.Unreadable == nil && tbav.Kind == reflect.Int {
tba, _ := constant.Int64Val(tbav.Value)
if tba == 0 {
return nil, errTracebackAncestorsDisabled
}
}
av, err := g.variable.structMember("ancestors")
if err != nil {
return nil, err
}
av = av.maybeDereference()
av.loadValue(LoadConfig{MaxArrayValues: n, MaxVariableRecurse: 1, MaxStructFields: -1})
if av.Unreadable != nil {
return nil, err
}
if av.Addr == 0 {
// no ancestors
return nil, nil
}
r := make([]Ancestor, len(av.Children))
for i := range av.Children {
if av.Children[i].Unreadable != nil {
r[i].Unreadable = av.Children[i].Unreadable
continue
}
goidv := av.Children[i].fieldVariable("goid")
if goidv.Unreadable != nil {
r[i].Unreadable = goidv.Unreadable
continue
}
r[i].ID, _ = constant.Int64Val(goidv.Value)
pcsVar := av.Children[i].fieldVariable("pcs")
if pcsVar.Unreadable != nil {
r[i].Unreadable = pcsVar.Unreadable
}
pcsVar.loaded = false
pcsVar.Children = pcsVar.Children[:0]
r[i].pcsVar = pcsVar
}
return r, nil
}
// Stack returns the stack trace of ancestor 'a' as saved by the runtime.
func (a *Ancestor) Stack(n int) ([]Stackframe, error) {
if a.Unreadable != nil {
return nil, a.Unreadable
}
pcsVar := a.pcsVar.clone()
pcsVar.loadValue(LoadConfig{MaxArrayValues: n})
if pcsVar.Unreadable != nil {
return nil, pcsVar.Unreadable
}
r := make([]Stackframe, len(pcsVar.Children))
for i := range pcsVar.Children {
if pcsVar.Children[i].Unreadable != nil {
r[i] = Stackframe{Err: pcsVar.Children[i].Unreadable}
continue
}
if pcsVar.Children[i].Kind != reflect.Uint {
return nil, fmt.Errorf("wrong type for pcs item %d: %v", i, pcsVar.Children[i].Kind)
}
pc, _ := constant.Int64Val(pcsVar.Children[i].Value)
fn := a.pcsVar.bi.PCToFunc(uint64(pc))
if fn == nil {
loc := Location{PC: uint64(pc)}
r[i] = Stackframe{Current: loc, Call: loc}
continue
}
pc2 := uint64(pc)
if pc2-1 >= fn.Entry {
pc2--
}
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc2)
loc := Location{PC: uint64(pc), File: f, Line: ln, Fn: fn}
r[i] = Stackframe{Current: loc, Call: loc}
}
r[len(r)-1].Bottom = pcsVar.Len == int64(len(pcsVar.Children))
return r, nil
}
func (v *Variable) structMember(memberName string) (*Variable, error) {
if v.Unreadable != nil {
return v.clone(), nil
}
vname := v.Name
if v.loaded && (v.Flags&VariableFakeAddress) != 0 {
for i := range v.Children {
if v.Children[i].Name == memberName {
return &v.Children[i], nil
}
}
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
}
switch v.Kind {
case reflect.Chan:
v = v.clone()
v.RealType = resolveTypedef(&(v.RealType.(*godwarf.ChanType).TypedefType))
case reflect.Interface:
v.loadInterface(0, false, LoadConfig{})
if len(v.Children) > 0 {
v = &v.Children[0]
}
}
queue := []*Variable{v}
seen := map[string]struct{}{} // prevent infinite loops
first := true
for len(queue) > 0 {
v := queue[0]
queue = append(queue[:0], queue[1:]...)
if _, isseen := seen[v.RealType.String()]; isseen {
continue
}
seen[v.RealType.String()] = struct{}{}
structVar := v.maybeDereference()
structVar.Name = v.Name
if structVar.Unreadable != nil {
return structVar, nil
}
switch t := structVar.RealType.(type) {
case *godwarf.StructType:
for _, field := range t.Field {
if field.Name == memberName {
return structVar.toField(field)
}
isEmbeddedStructMember :=
field.Embedded ||
(field.Type.Common().Name == field.Name) ||
(len(field.Name) > 1 &&
field.Name[0] == '*' &&
field.Type.Common().Name[1:] == field.Name[1:])
if !isEmbeddedStructMember {
continue
}
embeddedVar, err := structVar.toField(field)
if err != nil {
return nil, err
}
// Check for embedded field referenced by type name
parts := strings.Split(field.Name, ".")
if len(parts) > 1 && parts[1] == memberName {
return embeddedVar, nil
}
embeddedVar.Name = structVar.Name
queue = append(queue, embeddedVar)
}
default:
if first {
return nil, fmt.Errorf("%s (type %s) is not a struct", vname, structVar.TypeString())
}
}
first = false
}
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
}
func readVarEntry(entry *godwarf.Tree, image *Image) (name string, typ godwarf.Type, err error) {
name, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
return "", nil, fmt.Errorf("malformed variable DIE (name)")
}
typ, err = entry.Type(image.dwarf, image.index, image.typeCache)
if err != nil {
return "", nil, err
}
return name, typ, nil
}
// Extracts the name and type of a variable from a dwarf entry
// then executes the instructions given in the DW_AT_location attribute to grab the variable's address
func extractVarInfoFromEntry(bi *BinaryInfo, image *Image, regs op.DwarfRegisters, mem MemoryReadWriter, entry *godwarf.Tree) (*Variable, error) {
if entry.Tag != dwarf.TagFormalParameter && entry.Tag != dwarf.TagVariable {
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", entry.Tag.String())
}
n, t, err := readVarEntry(entry, image)
if err != nil {
return nil, err
}
addr, pieces, descr, err := bi.Location(entry, dwarf.AttrLocation, regs.PC(), regs)
if pieces != nil {
addr = fakeAddress
var cmem *compositeMemory
cmem, err = newCompositeMemory(mem, bi.Arch, regs, pieces)
if cmem != nil {
mem = cmem
}
}
v := newVariable(n, uint64(addr), t, bi, mem)
if pieces != nil {
v.Flags |= VariableFakeAddress
}
v.LocationExpr = descr
v.DeclLine, _ = entry.Val(dwarf.AttrDeclLine).(int64)
if err != nil {
v.Unreadable = err
}
return v, nil
}
// If v is a pointer a new variable is returned containing the value pointed by v.
func (v *Variable) maybeDereference() *Variable {
if v.Unreadable != nil {
return v
}
switch t := v.RealType.(type) {
case *godwarf.PtrType:
if v.Addr == 0 && len(v.Children) == 1 && v.loaded {
// fake pointer variable constructed by casting an integer to a pointer type
return &v.Children[0]
}
ptrval, err := readUintRaw(v.mem, v.Addr, t.ByteSize)
r := v.newVariable("", ptrval, t.Type, DereferenceMemory(v.mem))
if err != nil {
r.Unreadable = err
}
return r
default:
return v
}
}
func loadValues(vars []*Variable, cfg LoadConfig) {
for i := range vars {
vars[i].loadValueInternal(0, cfg)
}
}
// Extracts the value of the variable at the given address.
func (v *Variable) loadValue(cfg LoadConfig) {
v.loadValueInternal(0, cfg)
}
func (v *Variable) loadValueInternal(recurseLevel int, cfg LoadConfig) {
if v.Unreadable != nil || v.loaded || (v.Addr == 0 && v.Base == 0) {
return
}
v.loaded = true
switch v.Kind {
case reflect.Ptr, reflect.UnsafePointer:
v.Len = 1
v.Children = []Variable{*v.maybeDereference()}
if cfg.FollowPointers {
// Don't increase the recursion level when dereferencing pointers
// unless this is a pointer to interface (which could cause an infinite loop)
nextLvl := recurseLevel
if v.Children[0].Kind == reflect.Interface {
nextLvl++
}
v.Children[0].loadValueInternal(nextLvl, cfg)
} else {
v.Children[0].OnlyAddr = true
}
case reflect.Chan:
sv := v.clone()
sv.RealType = resolveTypedef(&(sv.RealType.(*godwarf.ChanType).TypedefType))
sv = sv.maybeDereference()
sv.loadValueInternal(0, loadFullValue)
v.Children = sv.Children
v.Len = sv.Len
v.Base = sv.Addr
case reflect.Map:
if recurseLevel <= cfg.MaxVariableRecurse {
v.loadMap(recurseLevel, cfg)
} else {
// loads length so that the client knows that the map isn't empty
v.mapIterator()
}
case reflect.String:
var val string
switch {
case v.Flags&VariableCPtr != 0:
var done bool
val, done, v.Unreadable = readCStringValue(DereferenceMemory(v.mem), v.Base, cfg)
if v.Unreadable == nil {
v.Len = int64(len(val))
if !done {
v.Len++
}
}
case v.Flags&VariableCPURegister != 0:
val = fmt.Sprintf("%x", v.reg.Bytes)
s := v.Base - fakeAddress
if s < uint64(len(val)) {
val = val[s:]
if v.Len >= 0 && v.Len < int64(len(val)) {
val = val[:v.Len]
}
}
default:
val, v.Unreadable = readStringValue(DereferenceMemory(v.mem), v.Base, v.Len, cfg)
}
v.Value = constant.MakeString(val)
case reflect.Slice, reflect.Array:
v.loadArrayValues(recurseLevel, cfg)
case reflect.Struct:
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
t := v.RealType.(*godwarf.StructType)
v.Len = int64(len(t.Field))
// Recursively call extractValue to grab
// the value of all the members of the struct.
if recurseLevel <= cfg.MaxVariableRecurse {
v.Children = make([]Variable, 0, len(t.Field))
for i, field := range t.Field {
if cfg.MaxStructFields >= 0 && len(v.Children) >= cfg.MaxStructFields {
break
}
f, _ := v.toField(field)
v.Children = append(v.Children, *f)
v.Children[i].Name = field.Name
v.Children[i].loadValueInternal(recurseLevel+1, cfg)
}
}
case reflect.Interface:
v.loadInterface(recurseLevel, true, cfg)
case reflect.Complex64, reflect.Complex128:
v.readComplex(v.RealType.(*godwarf.ComplexType).ByteSize)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
var val int64
val, v.Unreadable = readIntRaw(v.mem, v.Addr, v.RealType.(*godwarf.IntType).ByteSize)
v.Value = constant.MakeInt64(val)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Flags&VariableCPURegister != 0 {
v.Value = constant.MakeUint64(v.reg.Uint64Val)
} else {
var val uint64
val, v.Unreadable = readUintRaw(v.mem, v.Addr, v.RealType.(*godwarf.UintType).ByteSize)
v.Value = constant.MakeUint64(val)
}
case reflect.Bool:
val := make([]byte, 1)
_, err := v.mem.ReadMemory(val, v.Addr)
v.Unreadable = err
if err == nil {
v.Value = constant.MakeBool(val[0] != 0)
}
case reflect.Float32, reflect.Float64:
var val float64
val, v.Unreadable = v.readFloatRaw(v.RealType.(*godwarf.FloatType).ByteSize)
v.Value = constant.MakeFloat64(val)
switch {
case math.IsInf(val, +1):
v.FloatSpecial = FloatIsPosInf
case math.IsInf(val, -1):
v.FloatSpecial = FloatIsNegInf
case math.IsNaN(val):
v.FloatSpecial = FloatIsNaN
}
case reflect.Func:
v.readFunctionPtr()
default:
v.Unreadable = fmt.Errorf("unknown or unsupported kind: \"%s\"", v.Kind.String())
}
}
// convertToEface converts srcv into an "interface {}" and writes it to
// dstv.
// Dstv must be a variable of type "inteface {}" and srcv must either be an
// interface or a pointer shaped variable (map, channel, pointer or struct
// containing a single pointer)
func convertToEface(srcv, dstv *Variable) error {
if dstv.RealType.String() != "interface {}" {
return &typeConvErr{srcv.DwarfType, dstv.RealType}
}
if _, isiface := srcv.RealType.(*godwarf.InterfaceType); isiface {
// iface -> eface conversion
_type, data, _ := srcv.readInterface()
if srcv.Unreadable != nil {
return srcv.Unreadable
}
_type = _type.maybeDereference()
dstv.writeEmptyInterface(uint64(_type.Addr), data)
return nil
}
typeAddr, typeKind, runtimeTypeFound, err := dwarfToRuntimeType(srcv.bi, srcv.mem, srcv.RealType)
if err != nil {
return err
}
if !runtimeTypeFound || typeKind&kindDirectIface == 0 {
return &typeConvErr{srcv.DwarfType, dstv.RealType}
}
return dstv.writeEmptyInterface(typeAddr, srcv)
}
func readStringInfo(mem MemoryReadWriter, arch *Arch, addr uint64) (uint64, int64, error) {
// string data structure is always two ptrs in size. Addr, followed by len
// http://research.swtch.com/godata
mem = cacheMemory(mem, addr, arch.PtrSize()*2)
// read len
strlen, err := readIntRaw(mem, addr+uint64(arch.PtrSize()), int64(arch.PtrSize()))
if err != nil {
return 0, 0, fmt.Errorf("could not read string len %s", err)
}
if strlen < 0 {
return 0, 0, fmt.Errorf("invalid length: %d", strlen)
}
// read addr
addr, err = readUintRaw(mem, addr, int64(arch.PtrSize()))
if err != nil {
return 0, 0, fmt.Errorf("could not read string pointer %s", err)
}
if addr == 0 {
return 0, 0, nil
}
return addr, strlen, nil
}
func readStringValue(mem MemoryReadWriter, addr uint64, strlen int64, cfg LoadConfig) (string, error) {
if strlen == 0 {
return "", nil
}
count := strlen
if count > int64(cfg.MaxStringLen) {
count = int64(cfg.MaxStringLen)
}
val := make([]byte, int(count))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return "", fmt.Errorf("could not read string at %#v due to %s", addr, err)
}
return string(val), nil
}
func readCStringValue(mem MemoryReadWriter, addr uint64, cfg LoadConfig) (string, bool, error) {
buf := make([]byte, cfg.MaxStringLen) //
val := buf[:0] // part of the string we've already read
for len(buf) > 0 {
// Reads some memory for the string but (a) never more than we would
// need (considering cfg.MaxStringLen), and (b) never cross a page boundary
// until we're sure we have to.
// The page check is needed to avoid getting an I/O error for reading
// memory we don't even need.
// We don't know how big a page is but 1024 is a reasonable minimum common
// divisor for all architectures.
curaddr := addr + uint64(len(val))
maxsize := int(alignAddr(int64(curaddr+1), 1024) - int64(curaddr))
size := len(buf)
if size > maxsize {
size = maxsize
}
_, err := mem.ReadMemory(buf[:size], curaddr)
if err != nil {
return "", false, fmt.Errorf("could not read string at %#v due to %s", addr, err)
}
done := false
for i := 0; i < size; i++ {
if buf[i] == 0 {
done = true
size = i
break
}
}
val = val[:len(val)+size]
buf = buf[size:]
if done {
return string(val), true, nil
}
}
return string(val), false, nil
}
const (
sliceArrayFieldName = "array"
sliceLenFieldName = "len"
sliceCapFieldName = "cap"
)
func (v *Variable) loadSliceInfo(t *godwarf.SliceType) {
v.mem = cacheMemory(v.mem, v.Addr, int(t.Size()))
var err error
for _, f := range t.Field {
switch f.Name {
case sliceArrayFieldName:
var base uint64
base, err = readUintRaw(v.mem, uint64(int64(v.Addr)+f.ByteOffset), f.Type.Size())
if err == nil {
v.Base = base
// Dereference array type to get value type
ptrType, ok := f.Type.(*godwarf.PtrType)
if !ok {
v.Unreadable = fmt.Errorf("Invalid type %s in slice array", f.Type)
return
}
v.fieldType = ptrType.Type
}
case sliceLenFieldName:
lstrAddr, _ := v.toField(f)
lstrAddr.loadValue(loadSingleValue)
err = lstrAddr.Unreadable
if err == nil {
v.Len, _ = constant.Int64Val(lstrAddr.Value)
}
case sliceCapFieldName:
cstrAddr, _ := v.toField(f)
cstrAddr.loadValue(loadSingleValue)
err = cstrAddr.Unreadable
if err == nil {
v.Cap, _ = constant.Int64Val(cstrAddr.Value)
}
}
if err != nil {
v.Unreadable = err
return
}
}
v.stride = v.fieldType.Size()
if t, ok := v.fieldType.(*godwarf.PtrType); ok {
v.stride = t.ByteSize
}
}
// loadChanInfo loads the buffer size of the channel and changes the type of
// the buf field from unsafe.Pointer to an array of the correct type.
func (v *Variable) loadChanInfo() {
chanType, ok := v.RealType.(*godwarf.ChanType)
if !ok {
v.Unreadable = errors.New("bad channel type")
return
}
sv := v.clone()
sv.RealType = resolveTypedef(&(chanType.TypedefType))
sv = sv.maybeDereference()
if sv.Unreadable != nil || sv.Addr == 0 {
return
}
v.Base = sv.Addr
structType, ok := sv.DwarfType.(*godwarf.StructType)
if !ok {
v.Unreadable = errors.New("bad channel type")
return
}
lenAddr, _ := sv.toField(structType.Field[1])
lenAddr.loadValue(loadSingleValue)
if lenAddr.Unreadable != nil {
v.Unreadable = fmt.Errorf("unreadable length: %v", lenAddr.Unreadable)
return
}
chanLen, _ := constant.Uint64Val(lenAddr.Value)
newStructType := &godwarf.StructType{}
*newStructType = *structType
newStructType.Field = make([]*godwarf.StructField, len(structType.Field))
for i := range structType.Field {
field := &godwarf.StructField{}
*field = *structType.Field[i]
if field.Name == "buf" {
field.Type = pointerTo(fakeArrayType(chanLen, chanType.ElemType), v.bi.Arch)
}
newStructType.Field[i] = field
}
v.RealType = &godwarf.ChanType{
TypedefType: godwarf.TypedefType{
CommonType: chanType.TypedefType.CommonType,
Type: pointerTo(newStructType, v.bi.Arch),
},
ElemType: chanType.ElemType,
}
}
func (v *Variable) loadArrayValues(recurseLevel int, cfg LoadConfig) {
if v.Unreadable != nil {
return
}
if v.Len < 0 {
v.Unreadable = errors.New("Negative array length")
return
}
count := v.Len
// Cap number of elements
if count > int64(cfg.MaxArrayValues) {
count = int64(cfg.MaxArrayValues)
}
if v.stride < maxArrayStridePrefetch {
v.mem = cacheMemory(v.mem, v.Base, int(v.stride*count))
}
errcount := 0
mem := v.mem
if v.Kind != reflect.Array {
mem = DereferenceMemory(mem)
}
for i := int64(0); i < count; i++ {
fieldvar := v.newVariable("", uint64(int64(v.Base)+(i*v.stride)), v.fieldType, mem)
fieldvar.loadValueInternal(recurseLevel+1, cfg)
if fieldvar.Unreadable != nil {
errcount++
}
v.Children = append(v.Children, *fieldvar)
if errcount > maxErrCount {
break
}
}
}
func (v *Variable) readComplex(size int64) {
var fs int64
switch size {
case 8:
fs = 4
case 16:
fs = 8
default:
v.Unreadable = fmt.Errorf("invalid size (%d) for complex type", size)
return
}
ftyp := &godwarf.FloatType{BasicType: godwarf.BasicType{CommonType: godwarf.CommonType{ByteSize: fs, Name: fmt.Sprintf("float%d", fs)}, BitSize: fs * 8, BitOffset: 0}}
realvar := v.newVariable("real", v.Addr, ftyp, v.mem)
imagvar := v.newVariable("imaginary", v.Addr+uint64(fs), ftyp, v.mem)
realvar.loadValue(loadSingleValue)
imagvar.loadValue(loadSingleValue)
v.Value = constant.BinaryOp(realvar.Value, token.ADD, constant.MakeImag(imagvar.Value))
}
func (v *Variable) writeComplex(real, imag float64, size int64) error {
err := v.writeFloatRaw(real, int64(size/2))
if err != nil {
return err
}
imagaddr := *v
imagaddr.Addr += uint64(size / 2)
return imagaddr.writeFloatRaw(imag, int64(size/2))
}
func readIntRaw(mem MemoryReadWriter, addr uint64, size int64) (int64, error) {
var n int64
val := make([]byte, int(size))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return 0, err
}
switch size {
case 1:
n = int64(int8(val[0]))
case 2:
n = int64(int16(binary.LittleEndian.Uint16(val)))
case 4:
n = int64(int32(binary.LittleEndian.Uint32(val)))
case 8:
n = int64(binary.LittleEndian.Uint64(val))
}
return n, nil
}
func (v *Variable) writeUint(value uint64, size int64) error {
val := make([]byte, size)
switch size {
case 1:
val[0] = byte(value)
case 2:
binary.LittleEndian.PutUint16(val, uint16(value))
case 4:
binary.LittleEndian.PutUint32(val, uint32(value))
case 8:
binary.LittleEndian.PutUint64(val, uint64(value))
}
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
func readUintRaw(mem MemoryReadWriter, addr uint64, size int64) (uint64, error) {
var n uint64
val := make([]byte, int(size))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return 0, err
}
switch size {
case 1:
n = uint64(val[0])
case 2:
n = uint64(binary.LittleEndian.Uint16(val))
case 4:
n = uint64(binary.LittleEndian.Uint32(val))
case 8:
n = uint64(binary.LittleEndian.Uint64(val))
}
return n, nil
}
func (v *Variable) readFloatRaw(size int64) (float64, error) {
val := make([]byte, int(size))
_, err := v.mem.ReadMemory(val, v.Addr)
if err != nil {
return 0.0, err
}
buf := bytes.NewBuffer(val)
switch size {
case 4:
n := float32(0)
binary.Read(buf, binary.LittleEndian, &n)
return float64(n), nil
case 8:
n := float64(0)
binary.Read(buf, binary.LittleEndian, &n)
return n, nil
}
return 0.0, fmt.Errorf("could not read float")
}
func (v *Variable) writeFloatRaw(f float64, size int64) error {
buf := bytes.NewBuffer(make([]byte, 0, size))
switch size {
case 4:
n := float32(f)
binary.Write(buf, binary.LittleEndian, n)
case 8:
n := float64(f)
binary.Write(buf, binary.LittleEndian, n)
}
_, err := v.mem.WriteMemory(v.Addr, buf.Bytes())
return err
}
func (v *Variable) writeBool(value bool) error {
val := []byte{0}
val[0] = *(*byte)(unsafe.Pointer(&value))
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
func (v *Variable) writeZero() error {
val := make([]byte, v.RealType.Size())
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
// writeInterface writes the empty interface of type typeAddr and data as the data field.
func (v *Variable) writeEmptyInterface(typeAddr uint64, data *Variable) error {
dstType, dstData, _ := v.readInterface()
if v.Unreadable != nil {
return v.Unreadable
}
dstType.writeUint(typeAddr, dstType.RealType.Size())
dstData.writeCopy(data)
return nil
}
func (v *Variable) writeSlice(len, cap int64, base uint64) error {
for _, f := range v.RealType.(*godwarf.SliceType).Field {
switch f.Name {
case sliceArrayFieldName:
arrv, _ := v.toField(f)
if err := arrv.writeUint(uint64(base), arrv.RealType.Size()); err != nil {
return err
}
case sliceLenFieldName:
lenv, _ := v.toField(f)
if err := lenv.writeUint(uint64(len), lenv.RealType.Size()); err != nil {
return err
}
case sliceCapFieldName:
capv, _ := v.toField(f)
if err := capv.writeUint(uint64(cap), capv.RealType.Size()); err != nil {
return err
}
}
}
return nil
}
func (v *Variable) writeString(len, base uint64) error {
writePointer(v.bi, v.mem, uint64(v.Addr), base)
writePointer(v.bi, v.mem, uint64(v.Addr)+uint64(v.bi.Arch.PtrSize()), len)
return nil
}
func (v *Variable) writeCopy(srcv *Variable) error {
buf := make([]byte, srcv.RealType.Size())
_, err := srcv.mem.ReadMemory(buf, srcv.Addr)
if err != nil {
return err
}
_, err = v.mem.WriteMemory(v.Addr, buf)
return err
}
func (v *Variable) readFunctionPtr() {
// dereference pointer to find function pc
v.closureAddr = v.funcvalAddr()
if v.Unreadable != nil {
return
}
if v.closureAddr == 0 {
v.Base = 0
v.Value = constant.MakeString("")
return
}
val, err := readUintRaw(v.mem, v.closureAddr, int64(v.bi.Arch.PtrSize()))
if err != nil {
v.Unreadable = err
return
}
v.Base = val
fn := v.bi.PCToFunc(uint64(v.Base))
if fn == nil {
v.Unreadable = fmt.Errorf("could not find function for %#v", v.Base)
return
}
v.Value = constant.MakeString(fn.Name)
}
// funcvalAddr reads the address of the funcval contained in a function variable.
func (v *Variable) funcvalAddr() uint64 {
val, err := readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
if err != nil {
v.Unreadable = err
return 0
}
return val
}
func (v *Variable) loadMap(recurseLevel int, cfg LoadConfig) {
it := v.mapIterator()
if it == nil {
return
}
it.maxNumBuckets = uint64(cfg.MaxMapBuckets)
if v.Len == 0 || int64(v.mapSkip) >= v.Len || cfg.MaxArrayValues == 0 {
return
}
for skip := 0; skip < v.mapSkip; skip++ {
if ok := it.next(); !ok {
v.Unreadable = fmt.Errorf("map index out of bounds")
return
}
}
count := 0
errcount := 0
for it.next() {
key := it.key()
var val *Variable
if it.values.fieldType.Size() > 0 {
val = it.value()
} else {
val = v.newVariable("", it.values.Addr, it.values.fieldType, DereferenceMemory(v.mem))
}
key.loadValueInternal(recurseLevel+1, cfg)
val.loadValueInternal(recurseLevel+1, cfg)
if key.Unreadable != nil || val.Unreadable != nil {
errcount++
}
v.Children = append(v.Children, *key, *val)
count++
if errcount > maxErrCount {
break
}
if count >= cfg.MaxArrayValues || int64(count) >= v.Len {
break
}
}
}
type mapIterator struct {
v *Variable
numbuckets uint64
oldmask uint64
buckets *Variable
oldbuckets *Variable
b *Variable
bidx uint64
tophashes *Variable
keys *Variable
values *Variable
overflow *Variable
maxNumBuckets uint64 // maximum number of buckets to scan
idx int64
hashTophashEmptyOne uint64 // Go 1.12 and later has two sentinel tophash values for an empty cell, this is the second one (the first one hashTophashEmptyZero, the same as Go 1.11 and earlier)
hashMinTopHash uint64 // minimum value of tophash for a cell that isn't either evacuated or empty
}
// Code derived from go/src/runtime/hashmap.go
func (v *Variable) mapIterator() *mapIterator {
sv := v.clone()
sv.RealType = resolveTypedef(&(sv.RealType.(*godwarf.MapType).TypedefType))
sv = sv.maybeDereference()
v.Base = sv.Addr
maptype, ok := sv.RealType.(*godwarf.StructType)
if !ok {
v.Unreadable = fmt.Errorf("wrong real type for map")
return nil
}
it := &mapIterator{v: v, bidx: 0, b: nil, idx: 0}
if sv.Addr == 0 {
it.numbuckets = 0
return it
}
v.mem = cacheMemory(v.mem, v.Base, int(v.RealType.Size()))
for _, f := range maptype.Field {
var err error
field, _ := sv.toField(f)
switch f.Name {
case "count":
v.Len, err = field.asInt()
case "B":
var b uint64
b, err = field.asUint()
it.numbuckets = 1 << b
it.oldmask = (1 << (b - 1)) - 1
case "buckets":
it.buckets = field.maybeDereference()
case "oldbuckets":
it.oldbuckets = field.maybeDereference()
}
if err != nil {
v.Unreadable = err
return nil
}
}
if it.buckets.Kind != reflect.Struct || it.oldbuckets.Kind != reflect.Struct {
v.Unreadable = errMapBucketsNotStruct
return nil
}
it.hashTophashEmptyOne = hashTophashEmptyZero
it.hashMinTopHash = hashMinTopHashGo111
if producer := v.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 12) {
it.hashTophashEmptyOne = hashTophashEmptyOne
it.hashMinTopHash = hashMinTopHashGo112
}
return it
}
var errMapBucketContentsNotArray = errors.New("malformed map type: keys, values or tophash of a bucket is not an array")
var errMapBucketContentsInconsistentLen = errors.New("malformed map type: inconsistent array length in bucket")
var errMapBucketsNotStruct = errors.New("malformed map type: buckets, oldbuckets or overflow field not a struct")
func (it *mapIterator) nextBucket() bool {
if it.overflow != nil && it.overflow.Addr > 0 {
it.b = it.overflow
} else {
it.b = nil
if it.maxNumBuckets > 0 && it.bidx >= it.maxNumBuckets {
return false
}
for it.bidx < it.numbuckets {
it.b = it.buckets.clone()
it.b.Addr += uint64(it.buckets.DwarfType.Size()) * it.bidx
if it.oldbuckets.Addr <= 0 {
break
}
// if oldbuckets is not nil we are iterating through a map that is in
// the middle of a grow.
// if the bucket we are looking at hasn't been filled in we iterate
// instead through its corresponding "oldbucket" (i.e. the bucket the
// elements of this bucket are coming from) but only if this is the first
// of the two buckets being created from the same oldbucket (otherwise we
// would print some keys twice)
oldbidx := it.bidx & it.oldmask
oldb := it.oldbuckets.clone()
oldb.Addr += uint64(it.oldbuckets.DwarfType.Size()) * oldbidx
if it.mapEvacuated(oldb) {
break
}
if oldbidx == it.bidx {
it.b = oldb
break
}
// oldbucket origin for current bucket has not been evacuated but we have already
// iterated over it so we should just skip it
it.b = nil
it.bidx++
}
if it.b == nil {
return false
}
it.bidx++
}
if it.b.Addr <= 0 {
return false
}
it.b.mem = cacheMemory(it.b.mem, it.b.Addr, int(it.b.RealType.Size()))
it.tophashes = nil
it.keys = nil
it.values = nil
it.overflow = nil
for _, f := range it.b.DwarfType.(*godwarf.StructType).Field {
field, err := it.b.toField(f)
if err != nil {
it.v.Unreadable = err
return false
}
if field.Unreadable != nil {
it.v.Unreadable = field.Unreadable
return false
}
switch f.Name {
case "tophash":
it.tophashes = field
case "keys":
it.keys = field
case "values":
it.values = field
case "overflow":
it.overflow = field.maybeDereference()
}
}
// sanity checks
if it.tophashes == nil || it.keys == nil || it.values == nil {
it.v.Unreadable = fmt.Errorf("malformed map type")
return false
}
if it.tophashes.Kind != reflect.Array || it.keys.Kind != reflect.Array || it.values.Kind != reflect.Array {
it.v.Unreadable = errMapBucketContentsNotArray
return false
}
if it.tophashes.Len != it.keys.Len {
it.v.Unreadable = errMapBucketContentsInconsistentLen
return false
}
if it.values.fieldType.Size() > 0 && it.tophashes.Len != it.values.Len {
// if the type of the value is zero-sized (i.e. struct{}) then the values
// array's length is zero.
it.v.Unreadable = errMapBucketContentsInconsistentLen
return false
}
if it.overflow.Kind != reflect.Struct {
it.v.Unreadable = errMapBucketsNotStruct
return false
}
return true
}
func (it *mapIterator) next() bool {
for {
if it.b == nil || it.idx >= it.tophashes.Len {
r := it.nextBucket()
if !r {
return false
}
it.idx = 0
}
tophash, _ := it.tophashes.sliceAccess(int(it.idx))
h, err := tophash.asUint()
if err != nil {
it.v.Unreadable = fmt.Errorf("unreadable tophash: %v", err)
return false
}
it.idx++
if h != hashTophashEmptyZero && h != it.hashTophashEmptyOne {
return true
}
}
}
func (it *mapIterator) key() *Variable {
k, _ := it.keys.sliceAccess(int(it.idx - 1))
return k
}
func (it *mapIterator) value() *Variable {
v, _ := it.values.sliceAccess(int(it.idx - 1))
return v
}
func (it *mapIterator) mapEvacuated(b *Variable) bool {
if b.Addr == 0 {
return true
}
for _, f := range b.DwarfType.(*godwarf.StructType).Field {
if f.Name != "tophash" {
continue
}
tophashes, _ := b.toField(f)
tophash0var, _ := tophashes.sliceAccess(0)
tophash0, err := tophash0var.asUint()
if err != nil {
return true
}
//TODO: this needs to be > hashTophashEmptyOne for go >= 1.12
return tophash0 > it.hashTophashEmptyOne && tophash0 < it.hashMinTopHash
}
return true
}
func (v *Variable) readInterface() (_type, data *Variable, isnil bool) {
// An interface variable is implemented either by a runtime.iface
// struct or a runtime.eface struct. The difference being that empty
// interfaces (i.e. "interface {}") are represented by runtime.eface
// and non-empty interfaces by runtime.iface.
//
// For both runtime.ifaces and runtime.efaces the data is stored in v.data
//
// The concrete type however is stored in v.tab._type for non-empty
// interfaces and in v._type for empty interfaces.
//
// For nil empty interface variables _type will be nil, for nil
// non-empty interface variables tab will be nil
//
// In either case the _type field is a pointer to a runtime._type struct.
//
// The following code works for both runtime.iface and runtime.eface.
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
ityp := resolveTypedef(&v.RealType.(*godwarf.InterfaceType).TypedefType).(*godwarf.StructType)
for _, f := range ityp.Field {
switch f.Name {
case "tab": // for runtime.iface
tab, _ := v.toField(f)
tab = tab.maybeDereference()
isnil = tab.Addr == 0
if !isnil {
var err error
_type, err = tab.structMember("_type")
if err != nil {
v.Unreadable = fmt.Errorf("invalid interface type: %v", err)
return
}
}
case "_type": // for runtime.eface
_type, _ = v.toField(f)
isnil = _type.maybeDereference().Addr == 0
case "data":
data, _ = v.toField(f)
}
}
return
}
func (v *Variable) loadInterface(recurseLevel int, loadData bool, cfg LoadConfig) {
_type, data, isnil := v.readInterface()
if isnil {
// interface to nil
data = data.maybeDereference()
v.Children = []Variable{*data}
if loadData {
v.Children[0].loadValueInternal(recurseLevel, cfg)
}
return
}
if data == nil {
v.Unreadable = fmt.Errorf("invalid interface type")
return
}
typ, kind, err := runtimeTypeToDIE(_type, data.Addr)
if err != nil {
v.Unreadable = err
return
}
deref := false
if kind&kindDirectIface == 0 {
realtyp := resolveTypedef(typ)
if _, isptr := realtyp.(*godwarf.PtrType); !isptr {
typ = pointerTo(typ, v.bi.Arch)
deref = true
}
}
data = data.newVariable("data", data.Addr, typ, data.mem)
if deref {
data = data.maybeDereference()
data.Name = "data"
}
v.Children = []Variable{*data}
if loadData && recurseLevel <= cfg.MaxVariableRecurse {
v.Children[0].loadValueInternal(recurseLevel, cfg)
} else {
v.Children[0].OnlyAddr = true
}
}
// ConstDescr describes the value of v using constants.
func (v *Variable) ConstDescr() string {
if v.bi == nil || (v.Flags&VariableConstant != 0) {
return ""
}
ctyp := v.bi.consts.Get(v.DwarfType)
if ctyp == nil {
return ""
}
if typename := v.DwarfType.Common().Name; strings.Index(typename, ".") < 0 || strings.HasPrefix(typename, "C.") {
// only attempt to use constants for user defined type, otherwise every
// int variable with value 1 will be described with os.SEEK_CUR and other
// similar problems.
return ""
}
switch v.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n, _ := constant.Int64Val(v.Value)
return ctyp.describe(n)
}
return ""
}
// registerVariableTypeConv implements type conversions for CPU register variables (REGNAME.int8, etc)
func (v *Variable) registerVariableTypeConv(newtyp string) (*Variable, error) {
var n int = 0
for i := 0; i < len(v.reg.Bytes); i += n {
var child *Variable
switch newtyp {
case "int8":
child = newConstant(constant.MakeInt64(int64(int8(v.reg.Bytes[i]))), v.mem)
n = 1
case "int16":
child = newConstant(constant.MakeInt64(int64(int16(binary.LittleEndian.Uint16(v.reg.Bytes[i:])))), v.mem)
n = 2
case "int32":
child = newConstant(constant.MakeInt64(int64(int32(binary.LittleEndian.Uint32(v.reg.Bytes[i:])))), v.mem)
n = 4
case "int64":
child = newConstant(constant.MakeInt64(int64(binary.LittleEndian.Uint64(v.reg.Bytes[i:]))), v.mem)
n = 8
case "uint8":
child = newConstant(constant.MakeUint64(uint64(v.reg.Bytes[i])), v.mem)
n = 1
case "uint16":
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint16(v.reg.Bytes[i:]))), v.mem)
n = 2
case "uint32":
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint32(v.reg.Bytes[i:]))), v.mem)
n = 4
case "uint64":
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint64(v.reg.Bytes[i:]))), v.mem)
n = 8
case "float32":
a := binary.LittleEndian.Uint32(v.reg.Bytes[i:])
x := *(*float32)(unsafe.Pointer(&a))
child = newConstant(constant.MakeFloat64(float64(x)), v.mem)
n = 4
case "float64":
a := binary.LittleEndian.Uint64(v.reg.Bytes[i:])
x := *(*float64)(unsafe.Pointer(&a))
child = newConstant(constant.MakeFloat64(x), v.mem)
n = 8
default:
if n == 0 {
for _, pfx := range []string{"uint", "int"} {
if strings.HasPrefix(newtyp, pfx) {
n, _ = strconv.Atoi(newtyp[len(pfx):])
break
}
}
if n == 0 || popcnt(uint64(n)) != 1 {
return nil, fmt.Errorf("unknown CPU register type conversion to %q", newtyp)
}
n = n / 8
}
child = newConstant(constant.MakeString(fmt.Sprintf("%x", v.reg.Bytes[i:][:n])), v.mem)
}
v.Children = append(v.Children, *child)
}
v.loaded = true
v.Kind = reflect.Array
v.Len = int64(len(v.Children))
v.Base = fakeAddress
v.DwarfType = fakeArrayType(uint64(len(v.Children)), &godwarf.VoidType{CommonType: godwarf.CommonType{ByteSize: int64(n)}})
v.RealType = v.DwarfType
return v, nil
}
// popcnt is the number of bits set to 1 in x.
// It's the same as math/bits.OnesCount64, copied here so that we can build
// on versions of go that don't have math/bits.
func popcnt(x uint64) int {
const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
const m = 1<<64 - 1
x = x>>1&(m0&m) + x&(m0&m)
x = x>>2&(m1&m) + x&(m1&m)
x = (x>>4 + x) & (m2 & m)
x += x >> 8
x += x >> 16
x += x >> 32
return int(x) & (1<<7 - 1)
}
func isCgoType(bi *BinaryInfo, typ godwarf.Type) bool {
cu := bi.Images[typ.Common().Index].findCompileUnitForOffset(typ.Common().Offset)
if cu == nil {
return false
}
return !cu.isgo
}
func isCgoCharPtr(bi *BinaryInfo, typ *godwarf.PtrType) bool {
if !isCgoType(bi, typ) {
return false
}
fieldtyp := typ.Type
resolveQualTypedef:
for {
switch t := fieldtyp.(type) {
case *godwarf.QualType:
fieldtyp = t.Type
case *godwarf.TypedefType:
fieldtyp = t.Type
default:
break resolveQualTypedef
}
}
_, ischar := fieldtyp.(*godwarf.CharType)
_, isuchar := fieldtyp.(*godwarf.UcharType)
return ischar || isuchar
}
func (cm constantsMap) Get(typ godwarf.Type) *constantType {
ctyp := cm[dwarfRef{typ.Common().Index, typ.Common().Offset}]
if ctyp == nil {
return nil
}
typepkg := packageName(typ.String()) + "."
if !ctyp.initialized {
ctyp.initialized = true
sort.Sort(constantValuesByValue(ctyp.values))
for i := range ctyp.values {
if strings.HasPrefix(ctyp.values[i].name, typepkg) {
ctyp.values[i].name = ctyp.values[i].name[len(typepkg):]
}
if popcnt(uint64(ctyp.values[i].value)) == 1 {
ctyp.values[i].singleBit = true
}
}
}
return ctyp
}
func (ctyp *constantType) describe(n int64) string {
for _, val := range ctyp.values {
if val.value == n {
return val.name
}
}
if n == 0 {
return ""
}
// If all the values for this constant only have one bit set we try to
// represent the value as a bitwise or of constants.
fields := []string{}
for _, val := range ctyp.values {
if !val.singleBit {
continue
}
if n&val.value != 0 {
fields = append(fields, val.name)
n = n & ^val.value
}
}
if n == 0 {
return strings.Join(fields, "|")
}
return ""
}
type variablesByDepthAndDeclLine struct {
vars []*Variable
depths []int
}
func (v *variablesByDepthAndDeclLine) Len() int { return len(v.vars) }
func (v *variablesByDepthAndDeclLine) Less(i int, j int) bool {
if v.depths[i] == v.depths[j] {
return v.vars[i].DeclLine < v.vars[j].DeclLine
}
return v.depths[i] < v.depths[j]
}
func (v *variablesByDepthAndDeclLine) Swap(i int, j int) {
v.depths[i], v.depths[j] = v.depths[j], v.depths[i]
v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
}
type constantValuesByValue []constantValue
func (v constantValuesByValue) Len() int { return len(v) }
func (v constantValuesByValue) Less(i int, j int) bool { return v[i].value < v[j].value }
func (v constantValuesByValue) Swap(i int, j int) { v[i], v[j] = v[j], v[i] }