delve/pkg/proc/eval.go
Derek Parker a01fe73845
pkg/proc: do not check decl line for FunctionArguments (#3254)
Fixes a bug where we cannot get locals (including arguments and return
values) from a given scope because the line number state machine ends up
in an invalid state because of this parameter being set to false.
2023-01-24 15:56:05 +01:00

2489 lines
69 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"go/printer"
"go/scanner"
"go/token"
"reflect"
"sort"
"strconv"
"strings"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
)
var errOperationOnSpecialFloat = errors.New("operations on non-finite floats not implemented")
const goDictionaryName = ".dict"
// EvalScope is the scope for variable evaluation. Contains the thread,
// current location (PC), and canonical frame address.
type EvalScope struct {
Location
Regs op.DwarfRegisters
Mem MemoryReadWriter // Target's memory
g *G
BinInfo *BinaryInfo
target *Target
loadCfg *LoadConfig
frameOffset int64
// When the following pointer is not nil this EvalScope was created
// by CallFunction and the expression evaluation is executing on a
// different goroutine from the debugger's main goroutine.
// Under this circumstance the expression evaluator can make function
// calls by setting up the runtime.debugCallV1 call and then writing a
// value to the continueRequest channel.
// When a value is written to continueRequest the debugger's main goroutine
// will call Continue, when the runtime in the target process sends us a
// request in the function call protocol the debugger's main goroutine will
// write a value to the continueCompleted channel.
// The goroutine executing the expression evaluation shall signal that the
// evaluation is complete by closing the continueRequest channel.
callCtx *callContext
dictAddr uint64 // dictionary address for instantiated generic functions
}
type localsFlags uint8
const (
// If localsTrustArgOrder is set function arguments that don't have an
// address will have one assigned by looking at their position in the argument
// list.
localsTrustArgOrder localsFlags = 1 << iota
// If localsNoDeclLineCheck the declaration line isn't checked at
// all to determine if the variable is in scope.
localsNoDeclLineCheck
)
// ConvertEvalScope returns a new EvalScope in the context of the
// specified goroutine ID and stack frame.
// If deferCall is > 0 the eval scope will be relative to the specified deferred call.
func ConvertEvalScope(dbp *Target, gid int64, frame, deferCall int) (*EvalScope, error) {
if _, err := dbp.Valid(); err != nil {
return nil, err
}
ct := dbp.CurrentThread()
g, err := FindGoroutine(dbp, gid)
if err != nil {
return nil, err
}
var opts StacktraceOptions
if deferCall > 0 {
opts = StacktraceReadDefers
}
var locs []Stackframe
if g != nil {
locs, err = g.Stacktrace(frame+1, opts)
} else {
locs, err = ThreadStacktrace(ct, frame+1)
}
if err != nil {
return nil, err
}
if frame >= len(locs) {
return nil, fmt.Errorf("Frame %d does not exist in goroutine %d", frame, gid)
}
if deferCall > 0 {
if deferCall-1 >= len(locs[frame].Defers) {
return nil, fmt.Errorf("Frame %d only has %d deferred calls", frame, len(locs[frame].Defers))
}
d := locs[frame].Defers[deferCall-1]
if d.Unreadable != nil {
return nil, d.Unreadable
}
return d.EvalScope(dbp, ct)
}
return FrameToScope(dbp, dbp.Memory(), g, locs[frame:]...), nil
}
// FrameToScope returns a new EvalScope for frames[0].
// If frames has at least two elements all memory between
// frames[0].Regs.SP() and frames[1].Regs.CFA will be cached.
// Otherwise all memory between frames[0].Regs.SP() and frames[0].Regs.CFA
// will be cached.
func FrameToScope(t *Target, thread MemoryReadWriter, g *G, frames ...Stackframe) *EvalScope {
// Creates a cacheMem that will preload the entire stack frame the first
// time any local variable is read.
// Remember that the stack grows downward in memory.
minaddr := frames[0].Regs.SP()
var maxaddr uint64
if len(frames) > 1 && frames[0].SystemStack == frames[1].SystemStack {
maxaddr = uint64(frames[1].Regs.CFA)
} else {
maxaddr = uint64(frames[0].Regs.CFA)
}
if maxaddr > minaddr && maxaddr-minaddr < maxFramePrefetchSize {
thread = cacheMemory(thread, minaddr, int(maxaddr-minaddr))
}
s := &EvalScope{Location: frames[0].Call, Regs: frames[0].Regs, Mem: thread, g: g, BinInfo: t.BinInfo(), target: t, frameOffset: frames[0].FrameOffset()}
s.PC = frames[0].lastpc
return s
}
// ThreadScope returns an EvalScope for the given thread.
func ThreadScope(t *Target, thread Thread) (*EvalScope, error) {
locations, err := ThreadStacktrace(thread, 1)
if err != nil {
return nil, err
}
if len(locations) < 1 {
return nil, errors.New("could not decode first frame")
}
return FrameToScope(t, thread.ProcessMemory(), nil, locations...), nil
}
// GoroutineScope returns an EvalScope for the goroutine running on the given thread.
func GoroutineScope(t *Target, thread Thread) (*EvalScope, error) {
locations, err := ThreadStacktrace(thread, 1)
if err != nil {
return nil, err
}
if len(locations) < 1 {
return nil, errors.New("could not decode first frame")
}
g, err := GetG(thread)
if err != nil {
return nil, err
}
return FrameToScope(t, thread.ProcessMemory(), g, locations...), nil
}
// EvalExpression returns the value of the given expression.
func (scope *EvalScope) EvalExpression(expr string, cfg LoadConfig) (*Variable, error) {
if scope.callCtx != nil {
// makes sure that the other goroutine won't wait forever if we make a mistake
defer close(scope.callCtx.continueRequest)
}
t, err := parser.ParseExpr(expr)
if eqOff, isAs := isAssignment(err); scope.callCtx != nil && isAs {
lexpr := expr[:eqOff]
rexpr := expr[eqOff+1:]
err := scope.SetVariable(lexpr, rexpr)
scope.callCtx.doReturn(nil, err)
return nil, err
}
if err != nil {
scope.callCtx.doReturn(nil, err)
return nil, err
}
scope.loadCfg = &cfg
ev, err := scope.evalAST(t)
if err != nil {
scope.callCtx.doReturn(nil, err)
return nil, err
}
ev.loadValue(cfg)
if ev.Name == "" {
ev.Name = expr
}
scope.callCtx.doReturn(ev, nil)
return ev, nil
}
func isAssignment(err error) (int, bool) {
el, isScannerErr := err.(scanner.ErrorList)
if isScannerErr && el[0].Msg == "expected '==', found '='" {
return el[0].Pos.Offset, true
}
return 0, false
}
// Locals returns all variables in 'scope'.
func (scope *EvalScope) Locals(flags localsFlags) ([]*Variable, error) {
if scope.Fn == nil {
return nil, errors.New("unable to find function context")
}
trustArgOrder := (flags&localsTrustArgOrder != 0) && scope.BinInfo.Producer() != "" && goversion.ProducerAfterOrEqual(scope.BinInfo.Producer(), 1, 12) && scope.Fn != nil && (scope.PC == scope.Fn.Entry)
dwarfTree, err := scope.image().getDwarfTree(scope.Fn.offset)
if err != nil {
return nil, err
}
variablesFlags := reader.VariablesOnlyVisible
if flags&localsNoDeclLineCheck != 0 {
variablesFlags = reader.VariablesNoDeclLineCheck
}
if scope.BinInfo.Producer() != "" && goversion.ProducerAfterOrEqual(scope.BinInfo.Producer(), 1, 15) {
variablesFlags |= reader.VariablesTrustDeclLine
}
varEntries := reader.Variables(dwarfTree, scope.PC, scope.Line, variablesFlags)
// look for dictionary entry
if scope.dictAddr == 0 {
for _, entry := range varEntries {
name, _ := entry.Val(dwarf.AttrName).(string)
if name == goDictionaryName {
dictVar, err := extractVarInfoFromEntry(scope.target, scope.BinInfo, scope.image(), scope.Regs, scope.Mem, entry.Tree, 0)
if err != nil {
logflags.DebuggerLogger().Errorf("could not load %s variable: %v", name, err)
} else if dictVar.Unreadable != nil {
logflags.DebuggerLogger().Errorf("could not load %s variable: %v", name, dictVar.Unreadable)
} else {
scope.dictAddr, err = readUintRaw(dictVar.mem, dictVar.Addr, int64(scope.BinInfo.Arch.PtrSize()))
if err != nil {
logflags.DebuggerLogger().Errorf("could not load %s variable: %v", name, err)
}
}
break
}
}
}
vars := make([]*Variable, 0, len(varEntries))
depths := make([]int, 0, len(varEntries))
for _, entry := range varEntries {
if name, _ := entry.Val(dwarf.AttrName).(string); name == goDictionaryName {
continue
}
val, err := extractVarInfoFromEntry(scope.target, scope.BinInfo, scope.image(), scope.Regs, scope.Mem, entry.Tree, scope.dictAddr)
if err != nil {
// skip variables that we can't parse yet
continue
}
if trustArgOrder && ((val.Unreadable != nil && val.Addr == 0) || val.Flags&VariableFakeAddress != 0) && entry.Tag == dwarf.TagFormalParameter {
addr := afterLastArgAddr(vars)
if addr == 0 {
addr = uint64(scope.Regs.CFA)
}
addr = uint64(alignAddr(int64(addr), val.DwarfType.Align()))
val = newVariable(val.Name, addr, val.DwarfType, scope.BinInfo, scope.Mem)
}
vars = append(vars, val)
depth := entry.Depth
if entry.Tag == dwarf.TagFormalParameter {
if depth <= 1 {
depth = 0
}
isret, _ := entry.Val(dwarf.AttrVarParam).(bool)
if isret {
val.Flags |= VariableReturnArgument
} else {
val.Flags |= VariableArgument
}
}
depths = append(depths, depth)
}
if len(vars) <= 0 {
return vars, nil
}
sort.Stable(&variablesByDepthAndDeclLine{vars, depths})
lvn := map[string]*Variable{} // lvn[n] is the last variable we saw named n
for i, v := range vars {
if name := v.Name; len(name) > 1 && name[0] == '&' {
locationExpr := v.LocationExpr
declLine := v.DeclLine
v = v.maybeDereference()
if v.Addr == 0 && v.Unreadable == nil {
v.Unreadable = fmt.Errorf("no address for escaped variable")
}
v.Name = name[1:]
v.Flags |= VariableEscaped
// See https://github.com/go-delve/delve/issues/2049 for details
if locationExpr != nil {
locationExpr.isEscaped = true
v.LocationExpr = locationExpr
}
v.DeclLine = declLine
vars[i] = v
}
if otherv := lvn[v.Name]; otherv != nil {
otherv.Flags |= VariableShadowed
}
lvn[v.Name] = v
}
return vars, nil
}
func afterLastArgAddr(vars []*Variable) uint64 {
for i := len(vars) - 1; i >= 0; i-- {
v := vars[i]
if (v.Flags&VariableArgument != 0) || (v.Flags&VariableReturnArgument != 0) {
return v.Addr + uint64(v.DwarfType.Size())
}
}
return 0
}
// setValue writes the value of srcv to dstv.
// - If srcv is a numerical literal constant and srcv is of a compatible type
// the necessary type conversion is performed.
// - If srcv is nil and dstv is of a nil'able type then dstv is nilled.
// - If srcv is the empty string and dstv is a string then dstv is set to the
// empty string.
// - If dstv is an "interface {}" and srcv is either an interface (possibly
// non-empty) or a pointer shaped type (map, channel, pointer or struct
// containing a single pointer field) the type conversion to "interface {}"
// is performed.
// - If srcv and dstv have the same type and are both addressable then the
// contents of srcv are copied byte-by-byte into dstv
func (scope *EvalScope) setValue(dstv, srcv *Variable, srcExpr string) error {
srcv.loadValue(loadSingleValue)
typerr := srcv.isType(dstv.RealType, dstv.Kind)
if _, isTypeConvErr := typerr.(*typeConvErr); isTypeConvErr {
// attempt iface -> eface and ptr-shaped -> eface conversions.
return convertToEface(srcv, dstv)
}
if typerr != nil {
return typerr
}
if srcv.Unreadable != nil {
//lint:ignore ST1005 backwards compatibility
return fmt.Errorf("Expression \"%s\" is unreadable: %v", srcExpr, srcv.Unreadable)
}
// Numerical types
switch dstv.Kind {
case reflect.Float32, reflect.Float64:
f, _ := constant.Float64Val(srcv.Value)
return dstv.writeFloatRaw(f, dstv.RealType.Size())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n, _ := constant.Int64Val(srcv.Value)
return dstv.writeUint(uint64(n), dstv.RealType.Size())
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
n, _ := constant.Uint64Val(srcv.Value)
return dstv.writeUint(n, dstv.RealType.Size())
case reflect.Bool:
return dstv.writeBool(constant.BoolVal(srcv.Value))
case reflect.Complex64, reflect.Complex128:
real, _ := constant.Float64Val(constant.Real(srcv.Value))
imag, _ := constant.Float64Val(constant.Imag(srcv.Value))
return dstv.writeComplex(real, imag, dstv.RealType.Size())
case reflect.Func:
if dstv.RealType.Size() == 0 {
if dstv.Name != "" {
return fmt.Errorf("can not assign to %s", dstv.Name)
}
return errors.New("can not assign to function expression")
}
}
// nilling nillable variables
if srcv == nilVariable {
return dstv.writeZero()
}
if srcv.Kind == reflect.String {
if err := allocString(scope, srcv); err != nil {
return err
}
return dstv.writeString(uint64(srcv.Len), uint64(srcv.Base))
}
// slice assignment (this is not handled by the writeCopy below so that
// results of a reslice operation can be used here).
if srcv.Kind == reflect.Slice {
return dstv.writeSlice(srcv.Len, srcv.Cap, srcv.Base)
}
// allow any integer to be converted to any pointer
if t, isptr := dstv.RealType.(*godwarf.PtrType); isptr {
return dstv.writeUint(uint64(srcv.Children[0].Addr), int64(t.ByteSize))
}
// byte-by-byte copying for everything else, but the source must be addressable
if srcv.Addr != 0 {
return dstv.writeCopy(srcv)
}
return fmt.Errorf("can not set variables of type %s (not implemented)", dstv.Kind.String())
}
// SetVariable sets the value of the named variable
func (scope *EvalScope) SetVariable(name, value string) error {
t, err := parser.ParseExpr(name)
if err != nil {
return err
}
xv, err := scope.evalAST(t)
if err != nil {
return err
}
if xv.Addr == 0 {
//lint:ignore ST1005 backwards compatibility
return fmt.Errorf("Can not assign to \"%s\"", name)
}
if xv.Unreadable != nil {
//lint:ignore ST1005 backwards compatibility
return fmt.Errorf("Expression \"%s\" is unreadable: %v", name, xv.Unreadable)
}
t, err = parser.ParseExpr(value)
if err != nil {
return err
}
yv, err := scope.evalAST(t)
if err != nil {
return err
}
return scope.setValue(xv, yv, value)
}
// LocalVariables returns all local variables from the current function scope.
func (scope *EvalScope) LocalVariables(cfg LoadConfig) ([]*Variable, error) {
vars, err := scope.Locals(0)
if err != nil {
return nil, err
}
vars = filterVariables(vars, func(v *Variable) bool {
return (v.Flags & (VariableArgument | VariableReturnArgument)) == 0
})
cfg.MaxMapBuckets = maxMapBucketsFactor * cfg.MaxArrayValues
loadValues(vars, cfg)
return vars, nil
}
// FunctionArguments returns the name, value, and type of all current function arguments.
func (scope *EvalScope) FunctionArguments(cfg LoadConfig) ([]*Variable, error) {
vars, err := scope.Locals(localsNoDeclLineCheck)
if err != nil {
return nil, err
}
vars = filterVariables(vars, func(v *Variable) bool {
return (v.Flags & (VariableArgument | VariableReturnArgument)) != 0
})
cfg.MaxMapBuckets = maxMapBucketsFactor * cfg.MaxArrayValues
loadValues(vars, cfg)
return vars, nil
}
func filterVariables(vars []*Variable, pred func(v *Variable) bool) []*Variable {
r := make([]*Variable, 0, len(vars))
for i := range vars {
if pred(vars[i]) {
r = append(r, vars[i])
}
}
return r
}
func regsReplaceStaticBase(regs op.DwarfRegisters, image *Image) op.DwarfRegisters {
regs.StaticBase = image.StaticBase
return regs
}
// PackageVariables returns the name, value, and type of all package variables in the application.
func (scope *EvalScope) PackageVariables(cfg LoadConfig) ([]*Variable, error) {
pkgvars := make([]packageVar, len(scope.BinInfo.packageVars))
copy(pkgvars, scope.BinInfo.packageVars)
sort.Slice(pkgvars, func(i, j int) bool {
if pkgvars[i].cu.image.addr == pkgvars[j].cu.image.addr {
return pkgvars[i].offset < pkgvars[j].offset
}
return pkgvars[i].cu.image.addr < pkgvars[j].cu.image.addr
})
vars := make([]*Variable, 0, len(scope.BinInfo.packageVars))
for _, pkgvar := range pkgvars {
reader := pkgvar.cu.image.dwarfReader
reader.Seek(pkgvar.offset)
entry, err := reader.Next()
if err != nil {
return nil, err
}
// Ignore errors trying to extract values
val, err := extractVarInfoFromEntry(scope.target, scope.BinInfo, pkgvar.cu.image, regsReplaceStaticBase(scope.Regs, pkgvar.cu.image), scope.Mem, godwarf.EntryToTree(entry), 0)
if val != nil && val.Kind == reflect.Invalid {
continue
}
if err != nil {
continue
}
val.loadValue(cfg)
vars = append(vars, val)
}
return vars, nil
}
func (scope *EvalScope) findGlobal(pkgName, varName string) (*Variable, error) {
for _, pkgPath := range scope.BinInfo.PackageMap[pkgName] {
v, err := scope.findGlobalInternal(pkgPath + "." + varName)
if err != nil || v != nil {
return v, err
}
}
v, err := scope.findGlobalInternal(pkgName + "." + varName)
if err != nil || v != nil {
return v, err
}
return nil, fmt.Errorf("could not find symbol value for %s.%s", pkgName, varName)
}
func (scope *EvalScope) findGlobalInternal(name string) (*Variable, error) {
for _, pkgvar := range scope.BinInfo.packageVars {
if pkgvar.name == name || strings.HasSuffix(pkgvar.name, "/"+name) {
reader := pkgvar.cu.image.dwarfReader
reader.Seek(pkgvar.offset)
entry, err := reader.Next()
if err != nil {
return nil, err
}
return extractVarInfoFromEntry(scope.target, scope.BinInfo, pkgvar.cu.image, regsReplaceStaticBase(scope.Regs, pkgvar.cu.image), scope.Mem, godwarf.EntryToTree(entry), 0)
}
}
for _, fn := range scope.BinInfo.Functions {
if fn.Name == name || strings.HasSuffix(fn.Name, "/"+name) {
//TODO(aarzilli): convert function entry into a function type?
r := newVariable(fn.Name, fn.Entry, &godwarf.FuncType{}, scope.BinInfo, scope.Mem)
r.Value = constant.MakeString(fn.Name)
r.Base = fn.Entry
r.loaded = true
if fn.Entry == 0 {
r.Unreadable = fmt.Errorf("function %s is inlined", fn.Name)
}
return r, nil
}
}
for dwref, ctyp := range scope.BinInfo.consts {
for _, cval := range ctyp.values {
if cval.fullName == name || strings.HasSuffix(cval.fullName, "/"+name) {
t, err := scope.BinInfo.Images[dwref.imageIndex].Type(dwref.offset)
if err != nil {
return nil, err
}
v := newVariable(name, 0x0, t, scope.BinInfo, scope.Mem)
switch v.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
v.Value = constant.MakeInt64(cval.value)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
v.Value = constant.MakeUint64(uint64(cval.value))
default:
return nil, fmt.Errorf("unsupported constant kind %v", v.Kind)
}
v.Flags |= VariableConstant
v.loaded = true
return v, nil
}
}
}
return nil, nil
}
// image returns the image containing the current function.
func (scope *EvalScope) image() *Image {
return scope.BinInfo.funcToImage(scope.Fn)
}
// DwarfReader returns the DwarfReader containing the
// Dwarf information for the target process.
func (scope *EvalScope) DwarfReader() *reader.Reader {
return scope.image().DwarfReader()
}
// PtrSize returns the size of a pointer.
func (scope *EvalScope) PtrSize() int {
return scope.BinInfo.Arch.PtrSize()
}
func (scope *EvalScope) evalAST(t ast.Expr) (*Variable, error) {
switch node := t.(type) {
case *ast.CallExpr:
return scope.evalTypeCastOrFuncCall(node)
case *ast.Ident:
return scope.evalIdent(node)
case *ast.ParenExpr:
// otherwise just eval recursively
return scope.evalAST(node.X)
case *ast.SelectorExpr: // <expression>.<identifier>
// try to interpret the selector as a package variable
if maybePkg, ok := node.X.(*ast.Ident); ok {
if maybePkg.Name == "runtime" && node.Sel.Name == "curg" {
if scope.g == nil {
typ, err := scope.BinInfo.findType("runtime.g")
if err != nil {
return nil, fmt.Errorf("blah: %v", err)
}
gvar := newVariable("curg", fakeAddressUnresolv, typ, scope.BinInfo, scope.Mem)
gvar.loaded = true
gvar.Flags = VariableFakeAddress
gvar.Children = append(gvar.Children, *newConstant(constant.MakeInt64(0), scope.Mem))
gvar.Children[0].Name = "goid"
return gvar, nil
}
return scope.g.variable.clone(), nil
} else if maybePkg.Name == "runtime" && node.Sel.Name == "frameoff" {
return newConstant(constant.MakeInt64(scope.frameOffset), scope.Mem), nil
} else if v, err := scope.findGlobal(maybePkg.Name, node.Sel.Name); err == nil {
return v, nil
}
}
// try to accept "package/path".varname syntax for package variables
if maybePkg, ok := node.X.(*ast.BasicLit); ok && maybePkg.Kind == token.STRING {
pkgpath, err := strconv.Unquote(maybePkg.Value)
if err == nil {
if v, err := scope.findGlobal(pkgpath, node.Sel.Name); err == nil {
return v, nil
}
}
}
// if it's not a package variable then it must be a struct member access
return scope.evalStructSelector(node)
case *ast.TypeAssertExpr: // <expression>.(<type>)
return scope.evalTypeAssert(node)
case *ast.IndexExpr:
return scope.evalIndex(node)
case *ast.SliceExpr:
if node.Slice3 {
return nil, fmt.Errorf("3-index slice expressions not supported")
}
return scope.evalReslice(node)
case *ast.StarExpr:
// pointer dereferencing *<expression>
return scope.evalPointerDeref(node)
case *ast.UnaryExpr:
// The unary operators we support are +, - and & (note that unary * is parsed as ast.StarExpr)
switch node.Op {
case token.AND:
return scope.evalAddrOf(node)
default:
return scope.evalUnary(node)
}
case *ast.BinaryExpr:
return scope.evalBinary(node)
case *ast.BasicLit:
return newConstant(constant.MakeFromLiteral(node.Value, node.Kind, 0), scope.Mem), nil
default:
return nil, fmt.Errorf("expression %T not implemented", t)
}
}
func exprToString(t ast.Expr) string {
var buf bytes.Buffer
printer.Fprint(&buf, token.NewFileSet(), t)
return buf.String()
}
func removeParen(n ast.Expr) ast.Expr {
for {
p, ok := n.(*ast.ParenExpr)
if !ok {
break
}
n = p.X
}
return n
}
// evalTypeCastOrFuncCall evaluates a type cast or a function call
func (scope *EvalScope) evalTypeCastOrFuncCall(node *ast.CallExpr) (*Variable, error) {
if len(node.Args) != 1 {
// Things that have more or less than one argument are always function calls.
return evalFunctionCall(scope, node)
}
ambiguous := func() (*Variable, error) {
// Ambiguous, could be a function call or a type cast, if node.Fun can be
// evaluated then try to treat it as a function call, otherwise try the
// type cast.
_, err0 := scope.evalAST(node.Fun)
if err0 == nil {
return evalFunctionCall(scope, node)
}
v, err := scope.evalTypeCast(node)
if err == reader.ErrTypeNotFound {
return nil, fmt.Errorf("could not evaluate function or type %s: %v", exprToString(node.Fun), err0)
}
return v, err
}
fnnode := node.Fun
for {
fnnode = removeParen(fnnode)
n, _ := fnnode.(*ast.StarExpr)
if n == nil {
break
}
fnnode = n.X
}
switch n := fnnode.(type) {
case *ast.BasicLit:
// It can only be a ("type string")(x) type cast
return scope.evalTypeCast(node)
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
return scope.evalTypeCast(node)
case *ast.SelectorExpr:
if _, isident := n.X.(*ast.Ident); isident {
return ambiguous()
}
return evalFunctionCall(scope, node)
case *ast.Ident:
if supportedBuiltins[n.Name] {
return evalFunctionCall(scope, node)
}
return ambiguous()
case *ast.IndexExpr:
// Ambiguous, could be a parametric type
switch n.X.(type) {
case *ast.Ident, *ast.SelectorExpr:
// Do the type-cast first since evaluating node.Fun could be expensive.
v, err := scope.evalTypeCast(node)
if err == nil || err != reader.ErrTypeNotFound {
return v, err
}
return evalFunctionCall(scope, node)
default:
return evalFunctionCall(scope, node)
}
case *astIndexListExpr:
return scope.evalTypeCast(node)
default:
// All other expressions must be function calls
return evalFunctionCall(scope, node)
}
}
// Eval type cast expressions
func (scope *EvalScope) evalTypeCast(node *ast.CallExpr) (*Variable, error) {
argv, err := scope.evalAST(node.Args[0])
if err != nil {
return nil, err
}
fnnode := node.Fun
// remove all enclosing parenthesis from the type name
fnnode = removeParen(fnnode)
targetTypeStr := exprToString(removeParen(node.Fun))
styp, err := scope.BinInfo.findTypeExpr(fnnode)
if err != nil {
switch targetTypeStr {
case "[]byte", "[]uint8":
styp = fakeSliceType(fakeBasicType("uint", 8))
case "[]int32", "[]rune":
styp = fakeSliceType(fakeBasicType("int", 32))
default:
return nil, err
}
}
typ := resolveTypedef(styp)
converr := fmt.Errorf("can not convert %q to %s", exprToString(node.Args[0]), typ.String())
// compatible underlying types
if typeCastCompatibleTypes(argv.RealType, typ) {
if ptyp, isptr := typ.(*godwarf.PtrType); argv.Kind == reflect.Ptr && argv.loaded && len(argv.Children) > 0 && isptr {
cv := argv.Children[0]
argv.Children[0] = *newVariable(cv.Name, cv.Addr, ptyp.Type, cv.bi, cv.mem)
argv.Children[0].OnlyAddr = true
}
argv.RealType = typ
argv.DwarfType = styp
return argv, nil
}
v := newVariable("", 0, styp, scope.BinInfo, scope.Mem)
v.loaded = true
switch ttyp := typ.(type) {
case *godwarf.PtrType:
switch argv.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
// ok
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
// ok
default:
return nil, converr
}
argv.loadValue(loadSingleValue)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
n, _ := constant.Int64Val(argv.Value)
mem := scope.Mem
if scope.target != nil {
if mem2 := scope.target.findFakeMemory(uint64(n)); mem2 != nil {
mem = mem2
}
}
v.Children = []Variable{*(newVariable("", uint64(n), ttyp.Type, scope.BinInfo, mem))}
v.Children[0].OnlyAddr = true
return v, nil
case *godwarf.UintType:
argv.loadValue(loadSingleValue)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
switch argv.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n, _ := constant.Int64Val(argv.Value)
v.Value = constant.MakeUint64(convertInt(uint64(n), false, ttyp.Size()))
return v, nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
n, _ := constant.Uint64Val(argv.Value)
v.Value = constant.MakeUint64(convertInt(n, false, ttyp.Size()))
return v, nil
case reflect.Float32, reflect.Float64:
x, _ := constant.Float64Val(argv.Value)
v.Value = constant.MakeUint64(uint64(x))
return v, nil
case reflect.Ptr:
v.Value = constant.MakeUint64(uint64(argv.Children[0].Addr))
return v, nil
}
case *godwarf.IntType:
argv.loadValue(loadSingleValue)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
switch argv.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n, _ := constant.Int64Val(argv.Value)
v.Value = constant.MakeInt64(int64(convertInt(uint64(n), true, ttyp.Size())))
return v, nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
n, _ := constant.Uint64Val(argv.Value)
v.Value = constant.MakeInt64(int64(convertInt(n, true, ttyp.Size())))
return v, nil
case reflect.Float32, reflect.Float64:
x, _ := constant.Float64Val(argv.Value)
v.Value = constant.MakeInt64(int64(x))
return v, nil
}
case *godwarf.FloatType:
argv.loadValue(loadSingleValue)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
switch argv.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
fallthrough
case reflect.Float32, reflect.Float64:
v.Value = argv.Value
return v, nil
}
case *godwarf.ComplexType:
argv.loadValue(loadSingleValue)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
switch argv.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
fallthrough
case reflect.Float32, reflect.Float64:
v.Value = argv.Value
return v, nil
}
}
cfg := loadFullValue
if scope.loadCfg != nil {
cfg = *scope.loadCfg
}
argv.loadValue(cfg)
if argv.Unreadable != nil {
return nil, argv.Unreadable
}
switch ttyp := typ.(type) {
case *godwarf.SliceType:
switch ttyp.ElemType.Common().ReflectKind {
case reflect.Uint8:
if argv.Kind != reflect.String {
return nil, converr
}
for i, ch := range []byte(constant.StringVal(argv.Value)) {
e := newVariable("", argv.Addr+uint64(i), typ.(*godwarf.SliceType).ElemType, scope.BinInfo, argv.mem)
e.loaded = true
e.Value = constant.MakeInt64(int64(ch))
v.Children = append(v.Children, *e)
}
v.Len = int64(len(v.Children))
v.Cap = v.Len
return v, nil
case reflect.Int32:
if argv.Kind != reflect.String {
return nil, converr
}
for i, ch := range constant.StringVal(argv.Value) {
e := newVariable("", argv.Addr+uint64(i), typ.(*godwarf.SliceType).ElemType, scope.BinInfo, argv.mem)
e.loaded = true
e.Value = constant.MakeInt64(int64(ch))
v.Children = append(v.Children, *e)
}
v.Len = int64(len(v.Children))
v.Cap = v.Len
return v, nil
}
case *godwarf.StringType:
switch argv.Kind {
case reflect.String:
s := constant.StringVal(argv.Value)
v.Value = constant.MakeString(s)
v.Len = int64(len(s))
return v, nil
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
b, _ := constant.Int64Val(argv.Value)
s := string(rune(b))
v.Value = constant.MakeString(s)
v.Len = int64(len(s))
return v, nil
case reflect.Slice, reflect.Array:
var elem godwarf.Type
if argv.Kind == reflect.Slice {
elem = argv.RealType.(*godwarf.SliceType).ElemType
} else {
elem = argv.RealType.(*godwarf.ArrayType).Type
}
switch elemType := elem.(type) {
case *godwarf.UintType:
if elemType.Name != "uint8" && elemType.Name != "byte" {
return nil, converr
}
bytes := make([]byte, len(argv.Children))
for i := range argv.Children {
n, _ := constant.Int64Val(argv.Children[i].Value)
bytes[i] = byte(n)
}
v.Value = constant.MakeString(string(bytes))
case *godwarf.IntType:
if elemType.Name != "int32" && elemType.Name != "rune" {
return nil, converr
}
runes := make([]rune, len(argv.Children))
for i := range argv.Children {
n, _ := constant.Int64Val(argv.Children[i].Value)
runes[i] = rune(n)
}
v.Value = constant.MakeString(string(runes))
default:
return nil, converr
}
v.Len = int64(len(constant.StringVal(v.Value)))
return v, nil
}
}
return nil, converr
}
// typeCastCompatibleTypes returns true if typ1 and typ2 are compatible for
// a type cast where only the type of the variable is changed.
func typeCastCompatibleTypes(typ1, typ2 godwarf.Type) bool {
if typ1 == nil || typ2 == nil || typ1.Common().Size() != typ2.Common().Size() || typ1.Common().Align() != typ2.Common().Align() {
return false
}
if typ1.String() == typ2.String() {
return true
}
switch ttyp1 := typ1.(type) {
case *godwarf.PtrType:
if ttyp2, ok := typ2.(*godwarf.PtrType); ok {
_, isvoid1 := ttyp1.Type.(*godwarf.VoidType)
_, isvoid2 := ttyp2.Type.(*godwarf.VoidType)
if isvoid1 || isvoid2 {
return true
}
// pointer types are compatible if their element types are compatible
return typeCastCompatibleTypes(resolveTypedef(ttyp1.Type), resolveTypedef(ttyp2.Type))
}
case *godwarf.StringType:
if _, ok := typ2.(*godwarf.StringType); ok {
return true
}
case *godwarf.StructType:
if ttyp2, ok := typ2.(*godwarf.StructType); ok {
// struct types are compatible if they have the same fields
if len(ttyp1.Field) != len(ttyp2.Field) {
return false
}
for i := range ttyp1.Field {
if *ttyp1.Field[i] != *ttyp2.Field[i] {
return false
}
}
return true
}
case *godwarf.ComplexType:
if _, ok := typ2.(*godwarf.ComplexType); ok {
// size and alignment already checked above
return true
}
case *godwarf.FloatType:
if _, ok := typ2.(*godwarf.FloatType); ok {
// size and alignment already checked above
return true
}
case *godwarf.IntType:
if _, ok := typ2.(*godwarf.IntType); ok {
// size and alignment already checked above
return true
}
case *godwarf.UintType:
if _, ok := typ2.(*godwarf.UintType); ok {
// size and alignment already checked above
return true
}
case *godwarf.BoolType:
if _, ok := typ2.(*godwarf.BoolType); ok {
// size and alignment already checked above
return true
}
}
return false
}
func convertInt(n uint64, signed bool, size int64) uint64 {
bits := uint64(size) * 8
mask := uint64((1 << bits) - 1)
r := n & mask
if signed && (r>>(bits-1)) != 0 {
// sign extension
r |= ^uint64(0) &^ mask
}
return r
}
var supportedBuiltins = map[string]bool{"cap": true, "len": true, "complex": true, "imag": true, "real": true}
func (scope *EvalScope) evalBuiltinCall(node *ast.CallExpr) (*Variable, error) {
fnnode, ok := node.Fun.(*ast.Ident)
if !ok {
return nil, nil
}
callBuiltinWithArgs := func(builtin func([]*Variable, []ast.Expr) (*Variable, error)) (*Variable, error) {
args := make([]*Variable, len(node.Args))
for i := range node.Args {
v, err := scope.evalAST(node.Args[i])
if err != nil {
return nil, err
}
args[i] = v
}
return builtin(args, node.Args)
}
switch fnnode.Name {
case "cap":
return callBuiltinWithArgs(capBuiltin)
case "len":
return callBuiltinWithArgs(lenBuiltin)
case "complex":
return callBuiltinWithArgs(complexBuiltin)
case "imag":
return callBuiltinWithArgs(imagBuiltin)
case "real":
return callBuiltinWithArgs(realBuiltin)
}
return nil, nil
}
func capBuiltin(args []*Variable, nodeargs []ast.Expr) (*Variable, error) {
if len(args) != 1 {
return nil, fmt.Errorf("wrong number of arguments to cap: %d", len(args))
}
arg := args[0]
invalidArgErr := fmt.Errorf("invalid argument %s (type %s) for cap", exprToString(nodeargs[0]), arg.TypeString())
switch arg.Kind {
case reflect.Ptr:
arg = arg.maybeDereference()
if arg.Kind != reflect.Array {
return nil, invalidArgErr
}
fallthrough
case reflect.Array:
return newConstant(constant.MakeInt64(arg.Len), arg.mem), nil
case reflect.Slice:
return newConstant(constant.MakeInt64(arg.Cap), arg.mem), nil
case reflect.Chan:
arg.loadValue(loadFullValue)
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
if arg.Base == 0 {
return newConstant(constant.MakeInt64(0), arg.mem), nil
}
return newConstant(arg.Children[1].Value, arg.mem), nil
default:
return nil, invalidArgErr
}
}
func lenBuiltin(args []*Variable, nodeargs []ast.Expr) (*Variable, error) {
if len(args) != 1 {
return nil, fmt.Errorf("wrong number of arguments to len: %d", len(args))
}
arg := args[0]
invalidArgErr := fmt.Errorf("invalid argument %s (type %s) for len", exprToString(nodeargs[0]), arg.TypeString())
switch arg.Kind {
case reflect.Ptr:
arg = arg.maybeDereference()
if arg.Kind != reflect.Array {
return nil, invalidArgErr
}
fallthrough
case reflect.Array, reflect.Slice, reflect.String:
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
return newConstant(constant.MakeInt64(arg.Len), arg.mem), nil
case reflect.Chan:
arg.loadValue(loadFullValue)
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
if arg.Base == 0 {
return newConstant(constant.MakeInt64(0), arg.mem), nil
}
return newConstant(arg.Children[0].Value, arg.mem), nil
case reflect.Map:
it := arg.mapIterator()
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
if it == nil {
return newConstant(constant.MakeInt64(0), arg.mem), nil
}
return newConstant(constant.MakeInt64(arg.Len), arg.mem), nil
default:
return nil, invalidArgErr
}
}
func complexBuiltin(args []*Variable, nodeargs []ast.Expr) (*Variable, error) {
if len(args) != 2 {
return nil, fmt.Errorf("wrong number of arguments to complex: %d", len(args))
}
realev := args[0]
imagev := args[1]
realev.loadValue(loadSingleValue)
imagev.loadValue(loadSingleValue)
if realev.Unreadable != nil {
return nil, realev.Unreadable
}
if imagev.Unreadable != nil {
return nil, imagev.Unreadable
}
if realev.Value == nil || ((realev.Value.Kind() != constant.Int) && (realev.Value.Kind() != constant.Float)) {
return nil, fmt.Errorf("invalid argument 1 %s (type %s) to complex", exprToString(nodeargs[0]), realev.TypeString())
}
if imagev.Value == nil || ((imagev.Value.Kind() != constant.Int) && (imagev.Value.Kind() != constant.Float)) {
return nil, fmt.Errorf("invalid argument 2 %s (type %s) to complex", exprToString(nodeargs[1]), imagev.TypeString())
}
sz := int64(0)
if realev.RealType != nil {
sz = realev.RealType.(*godwarf.FloatType).Size()
}
if imagev.RealType != nil {
isz := imagev.RealType.(*godwarf.FloatType).Size()
if isz > sz {
sz = isz
}
}
if sz == 0 {
sz = 128
}
typ := fakeBasicType("complex", int(sz))
r := realev.newVariable("", 0, typ, nil)
r.Value = constant.BinaryOp(realev.Value, token.ADD, constant.MakeImag(imagev.Value))
return r, nil
}
func imagBuiltin(args []*Variable, nodeargs []ast.Expr) (*Variable, error) {
if len(args) != 1 {
return nil, fmt.Errorf("wrong number of arguments to imag: %d", len(args))
}
arg := args[0]
arg.loadValue(loadSingleValue)
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
if arg.Kind != reflect.Complex64 && arg.Kind != reflect.Complex128 {
return nil, fmt.Errorf("invalid argument %s (type %s) to imag", exprToString(nodeargs[0]), arg.TypeString())
}
return newConstant(constant.Imag(arg.Value), arg.mem), nil
}
func realBuiltin(args []*Variable, nodeargs []ast.Expr) (*Variable, error) {
if len(args) != 1 {
return nil, fmt.Errorf("wrong number of arguments to real: %d", len(args))
}
arg := args[0]
arg.loadValue(loadSingleValue)
if arg.Unreadable != nil {
return nil, arg.Unreadable
}
if arg.Value == nil || ((arg.Value.Kind() != constant.Int) && (arg.Value.Kind() != constant.Float) && (arg.Value.Kind() != constant.Complex)) {
return nil, fmt.Errorf("invalid argument %s (type %s) to real", exprToString(nodeargs[0]), arg.TypeString())
}
return newConstant(constant.Real(arg.Value), arg.mem), nil
}
// Evaluates identifier expressions
func (scope *EvalScope) evalIdent(node *ast.Ident) (*Variable, error) {
switch node.Name {
case "true", "false":
return newConstant(constant.MakeBool(node.Name == "true"), scope.Mem), nil
case "nil":
return nilVariable, nil
}
vars, err := scope.Locals(0)
if err != nil {
return nil, err
}
for i := range vars {
if vars[i].Name == node.Name && vars[i].Flags&VariableShadowed == 0 {
return vars[i], nil
}
}
// if it's not a local variable then it could be a package variable w/o explicit package name
if scope.Fn != nil {
if v, err := scope.findGlobal(scope.Fn.PackageName(), node.Name); err == nil {
v.Name = node.Name
return v, nil
}
}
// not a local variable, nor a global variable, try a CPU register
if s := validRegisterName(node.Name); s != "" {
if regnum, ok := scope.BinInfo.Arch.RegisterNameToDwarf(s); ok {
if reg := scope.Regs.Reg(uint64(regnum)); reg != nil {
reg.FillBytes()
var typ godwarf.Type
if len(reg.Bytes) <= 8 {
typ = fakeBasicType("uint", 64)
} else {
typ, err = scope.BinInfo.findType("string")
if err != nil {
return nil, err
}
}
v := newVariable(node.Name, 0, typ, scope.BinInfo, scope.Mem)
if v.Kind == reflect.String {
v.Len = int64(len(reg.Bytes) * 2)
v.Base = fakeAddressUnresolv
}
v.Addr = fakeAddressUnresolv
v.Flags = VariableCPURegister
v.reg = reg
return v, nil
}
}
}
return nil, fmt.Errorf("could not find symbol value for %s", node.Name)
}
// Evaluates expressions <subexpr>.<field name> where subexpr is not a package name
func (scope *EvalScope) evalStructSelector(node *ast.SelectorExpr) (*Variable, error) {
xv, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
// Prevent abuse, attempting to call "nil.member" directly.
if xv.Addr == 0 && xv.Name == "nil" {
return nil, fmt.Errorf("%s (type %s) is not a struct", xv.Name, xv.TypeString())
}
// Prevent abuse, attempting to call "\"fake\".member" directly.
if xv.Addr == 0 && xv.Name == "" && xv.DwarfType == nil && xv.RealType == nil {
return nil, fmt.Errorf("%s (type %s) is not a struct", xv.Value, xv.TypeString())
}
// Special type conversions for CPU register variables (REGNAME.int8, etc)
if xv.Flags&VariableCPURegister != 0 && !xv.loaded {
return xv.registerVariableTypeConv(node.Sel.Name)
}
rv, err := xv.findMethod(node.Sel.Name)
if err != nil {
return nil, err
}
if rv != nil {
return rv, nil
}
return xv.structMember(node.Sel.Name)
}
// Evaluates expressions <subexpr>.(<type>)
func (scope *EvalScope) evalTypeAssert(node *ast.TypeAssertExpr) (*Variable, error) {
xv, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xv.Kind != reflect.Interface {
return nil, fmt.Errorf("expression \"%s\" not an interface", exprToString(node.X))
}
xv.loadInterface(0, false, loadFullValue)
if xv.Unreadable != nil {
return nil, xv.Unreadable
}
if xv.Children[0].Unreadable != nil {
return nil, xv.Children[0].Unreadable
}
if xv.Children[0].Addr == 0 {
return nil, fmt.Errorf("interface conversion: %s is nil, not %s", xv.DwarfType.String(), exprToString(node.Type))
}
// Accept .(data) as a type assertion that always succeeds, so that users
// can access the data field of an interface without actually having to
// type the concrete type.
if idtyp, isident := node.Type.(*ast.Ident); !isident || idtyp.Name != "data" {
typ, err := scope.BinInfo.findTypeExpr(node.Type)
if err != nil {
return nil, err
}
if xv.Children[0].DwarfType.Common().Name != typ.Common().Name {
return nil, fmt.Errorf("interface conversion: %s is %s, not %s", xv.DwarfType.Common().Name, xv.Children[0].TypeString(), typ.Common().Name)
}
}
// loadInterface will set OnlyAddr for the data member since here we are
// passing false to loadData, however returning the variable with OnlyAddr
// set here would be wrong since, once the expression evaluation
// terminates, the value of this variable will be loaded.
xv.Children[0].OnlyAddr = false
return &xv.Children[0], nil
}
// Evaluates expressions <subexpr>[<subexpr>] (subscript access to arrays, slices and maps)
func (scope *EvalScope) evalIndex(node *ast.IndexExpr) (*Variable, error) {
xev, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xev.Unreadable != nil {
return nil, xev.Unreadable
}
if xev.Flags&VariableCPtr == 0 {
xev = xev.maybeDereference()
}
idxev, err := scope.evalAST(node.Index)
if err != nil {
return nil, err
}
cantindex := fmt.Errorf("expression \"%s\" (%s) does not support indexing", exprToString(node.X), xev.TypeString())
switch xev.Kind {
case reflect.Ptr:
if xev == nilVariable {
return nil, cantindex
}
if xev.Flags&VariableCPtr == 0 {
_, isarrptr := xev.RealType.(*godwarf.PtrType).Type.(*godwarf.ArrayType)
if !isarrptr {
return nil, cantindex
}
xev = xev.maybeDereference()
}
fallthrough
case reflect.Slice, reflect.Array, reflect.String:
if xev.Base == 0 {
return nil, fmt.Errorf("can not index \"%s\"", exprToString(node.X))
}
n, err := idxev.asInt()
if err != nil {
return nil, err
}
return xev.sliceAccess(int(n))
case reflect.Map:
idxev.loadValue(loadFullValue)
if idxev.Unreadable != nil {
return nil, idxev.Unreadable
}
return xev.mapAccess(idxev)
default:
return nil, cantindex
}
}
// Evaluates expressions <subexpr>[<subexpr>:<subexpr>]
// HACK: slicing a map expression with [0:0] will return the whole map
func (scope *EvalScope) evalReslice(node *ast.SliceExpr) (*Variable, error) {
xev, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xev.Unreadable != nil {
return nil, xev.Unreadable
}
var low, high int64
if node.Low != nil {
lowv, err := scope.evalAST(node.Low)
if err != nil {
return nil, err
}
low, err = lowv.asInt()
if err != nil {
return nil, fmt.Errorf("can not convert \"%s\" to int: %v", exprToString(node.Low), err)
}
}
if node.High == nil {
high = xev.Len
} else {
highv, err := scope.evalAST(node.High)
if err != nil {
return nil, err
}
high, err = highv.asInt()
if err != nil {
return nil, fmt.Errorf("can not convert \"%s\" to int: %v", exprToString(node.High), err)
}
}
switch xev.Kind {
case reflect.Slice, reflect.Array, reflect.String:
if xev.Base == 0 {
return nil, fmt.Errorf("can not slice \"%s\"", exprToString(node.X))
}
return xev.reslice(low, high)
case reflect.Map:
if node.High != nil {
return nil, fmt.Errorf("second slice argument must be empty for maps")
}
xev.mapSkip += int(low)
xev.mapIterator() // reads map length
if int64(xev.mapSkip) >= xev.Len {
return nil, fmt.Errorf("map index out of bounds")
}
return xev, nil
case reflect.Ptr:
if xev.Flags&VariableCPtr != 0 {
return xev.reslice(low, high)
}
fallthrough
default:
return nil, fmt.Errorf("can not slice \"%s\" (type %s)", exprToString(node.X), xev.TypeString())
}
}
// Evaluates a pointer dereference expression: *<subexpr>
func (scope *EvalScope) evalPointerDeref(node *ast.StarExpr) (*Variable, error) {
xev, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xev.Kind != reflect.Ptr {
return nil, fmt.Errorf("expression \"%s\" (%s) can not be dereferenced", exprToString(node.X), xev.TypeString())
}
if xev == nilVariable {
return nil, fmt.Errorf("nil can not be dereferenced")
}
if len(xev.Children) == 1 {
// this branch is here to support pointers constructed with typecasts from ints
xev.Children[0].OnlyAddr = false
return &(xev.Children[0]), nil
}
xev.loadPtr()
if xev.Unreadable != nil {
val, ok := constant.Uint64Val(xev.Value)
if ok && val == 0 {
return nil, fmt.Errorf("couldn't read pointer: %w", xev.Unreadable)
}
}
rv := &xev.Children[0]
if rv.Addr == 0 {
return nil, fmt.Errorf("nil pointer dereference")
}
return rv, nil
}
// Evaluates expressions &<subexpr>
func (scope *EvalScope) evalAddrOf(node *ast.UnaryExpr) (*Variable, error) {
xev, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xev.Addr == 0 || xev.DwarfType == nil {
return nil, fmt.Errorf("can not take address of \"%s\"", exprToString(node.X))
}
return xev.pointerToVariable(), nil
}
func (v *Variable) pointerToVariable() *Variable {
v.OnlyAddr = true
typename := "*" + v.DwarfType.Common().Name
rv := v.newVariable("", 0, &godwarf.PtrType{CommonType: godwarf.CommonType{ByteSize: int64(v.bi.Arch.PtrSize()), Name: typename}, Type: v.DwarfType}, v.mem)
rv.Children = []Variable{*v}
rv.loaded = true
return rv
}
func constantUnaryOp(op token.Token, y constant.Value) (r constant.Value, err error) {
defer func() {
if ierr := recover(); ierr != nil {
err = fmt.Errorf("%v", ierr)
}
}()
r = constant.UnaryOp(op, y, 0)
return
}
func constantBinaryOp(op token.Token, x, y constant.Value) (r constant.Value, err error) {
defer func() {
if ierr := recover(); ierr != nil {
err = fmt.Errorf("%v", ierr)
}
}()
switch op {
case token.SHL, token.SHR:
n, _ := constant.Uint64Val(y)
r = constant.Shift(x, op, uint(n))
default:
r = constant.BinaryOp(x, op, y)
}
return
}
func constantCompare(op token.Token, x, y constant.Value) (r bool, err error) {
defer func() {
if ierr := recover(); ierr != nil {
err = fmt.Errorf("%v", ierr)
}
}()
r = constant.Compare(x, op, y)
return
}
// Evaluates expressions: -<subexpr> and +<subexpr>
func (scope *EvalScope) evalUnary(node *ast.UnaryExpr) (*Variable, error) {
xv, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
xv.loadValue(loadSingleValue)
if xv.Unreadable != nil {
return nil, xv.Unreadable
}
if xv.FloatSpecial != 0 {
return nil, errOperationOnSpecialFloat
}
if xv.Value == nil {
return nil, fmt.Errorf("operator %s can not be applied to \"%s\"", node.Op.String(), exprToString(node.X))
}
rc, err := constantUnaryOp(node.Op, xv.Value)
if err != nil {
return nil, err
}
if xv.DwarfType != nil {
r := xv.newVariable("", 0, xv.DwarfType, scope.Mem)
r.Value = rc
return r, nil
}
return newConstant(rc, xv.mem), nil
}
func negotiateType(op token.Token, xv, yv *Variable) (godwarf.Type, error) {
if xv == nilVariable {
return nil, negotiateTypeNil(op, yv)
}
if yv == nilVariable {
return nil, negotiateTypeNil(op, xv)
}
if op == token.SHR || op == token.SHL {
if xv.Value == nil || xv.Value.Kind() != constant.Int {
return nil, fmt.Errorf("shift of type %s", xv.Kind)
}
switch yv.Kind {
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
// ok
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
if constant.Sign(yv.Value) < 0 {
return nil, fmt.Errorf("shift count must not be negative")
}
default:
return nil, fmt.Errorf("shift count type %s, must be unsigned integer", yv.Kind.String())
}
return xv.DwarfType, nil
}
if xv.DwarfType == nil && yv.DwarfType == nil {
return nil, nil
}
if xv.DwarfType != nil && yv.DwarfType != nil {
if xv.DwarfType.String() != yv.DwarfType.String() {
return nil, fmt.Errorf("mismatched types \"%s\" and \"%s\"", xv.DwarfType.String(), yv.DwarfType.String())
}
return xv.DwarfType, nil
} else if xv.DwarfType != nil && yv.DwarfType == nil {
if err := yv.isType(xv.DwarfType, xv.Kind); err != nil {
return nil, err
}
return xv.DwarfType, nil
} else if xv.DwarfType == nil && yv.DwarfType != nil {
if err := xv.isType(yv.DwarfType, yv.Kind); err != nil {
return nil, err
}
return yv.DwarfType, nil
}
panic("unreachable")
}
func negotiateTypeNil(op token.Token, v *Variable) error {
if op != token.EQL && op != token.NEQ {
return fmt.Errorf("operator %s can not be applied to \"nil\"", op.String())
}
switch v.Kind {
case reflect.Ptr, reflect.UnsafePointer, reflect.Chan, reflect.Map, reflect.Interface, reflect.Slice, reflect.Func:
return nil
default:
return fmt.Errorf("can not compare %s to nil", v.Kind.String())
}
}
func (scope *EvalScope) evalBinary(node *ast.BinaryExpr) (*Variable, error) {
switch node.Op {
case token.INC, token.DEC, token.ARROW:
return nil, fmt.Errorf("operator %s not supported", node.Op.String())
}
xv, err := scope.evalAST(node.X)
if err != nil {
return nil, err
}
if xv.Kind != reflect.String { // delay loading strings until we use them
xv.loadValue(loadFullValue)
}
if xv.Unreadable != nil {
return nil, xv.Unreadable
}
// short circuits logical operators
switch node.Op {
case token.LAND:
if !constant.BoolVal(xv.Value) {
return newConstant(xv.Value, xv.mem), nil
}
case token.LOR:
if constant.BoolVal(xv.Value) {
return newConstant(xv.Value, xv.mem), nil
}
}
yv, err := scope.evalAST(node.Y)
if err != nil {
return nil, err
}
if yv.Kind != reflect.String { // delay loading strings until we use them
yv.loadValue(loadFullValue)
}
if yv.Unreadable != nil {
return nil, yv.Unreadable
}
if xv.FloatSpecial != 0 || yv.FloatSpecial != 0 {
return nil, errOperationOnSpecialFloat
}
typ, err := negotiateType(node.Op, xv, yv)
if err != nil {
return nil, err
}
op := node.Op
if typ != nil && (op == token.QUO) {
_, isint := typ.(*godwarf.IntType)
_, isuint := typ.(*godwarf.UintType)
if isint || isuint {
// forces integer division if the result type is integer
op = token.QUO_ASSIGN
}
}
switch op {
case token.EQL, token.LSS, token.GTR, token.NEQ, token.LEQ, token.GEQ:
v, err := compareOp(op, xv, yv)
if err != nil {
return nil, err
}
return newConstant(constant.MakeBool(v), xv.mem), nil
default:
if xv.Kind == reflect.String {
xv.loadValue(loadFullValueLongerStrings)
}
if yv.Kind == reflect.String {
yv.loadValue(loadFullValueLongerStrings)
}
if xv.Value == nil {
return nil, fmt.Errorf("operator %s can not be applied to \"%s\"", node.Op.String(), exprToString(node.X))
}
if yv.Value == nil {
return nil, fmt.Errorf("operator %s can not be applied to \"%s\"", node.Op.String(), exprToString(node.Y))
}
rc, err := constantBinaryOp(op, xv.Value, yv.Value)
if err != nil {
return nil, err
}
if typ == nil {
return newConstant(rc, xv.mem), nil
}
r := xv.newVariable("", 0, typ, scope.Mem)
r.Value = rc
switch r.Kind {
case reflect.String:
r.Len = xv.Len + yv.Len
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n, _ := constant.Int64Val(r.Value)
r.Value = constant.MakeInt64(int64(convertInt(uint64(n), true, typ.Size())))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
n, _ := constant.Uint64Val(r.Value)
r.Value = constant.MakeUint64(convertInt(n, false, typ.Size()))
}
return r, nil
}
}
// Compares xv to yv using operator op
// Both xv and yv must be loaded and have a compatible type (as determined by negotiateType)
func compareOp(op token.Token, xv *Variable, yv *Variable) (bool, error) {
switch xv.Kind {
case reflect.Bool:
fallthrough
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
fallthrough
case reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return constantCompare(op, xv.Value, yv.Value)
case reflect.String:
if xv.Len != yv.Len {
switch op {
case token.EQL:
return false, nil
case token.NEQ:
return true, nil
}
}
if xv.Kind == reflect.String {
xv.loadValue(loadFullValueLongerStrings)
}
if yv.Kind == reflect.String {
yv.loadValue(loadFullValueLongerStrings)
}
if int64(len(constant.StringVal(xv.Value))) != xv.Len || int64(len(constant.StringVal(yv.Value))) != yv.Len {
return false, fmt.Errorf("string too long for comparison")
}
return constantCompare(op, xv.Value, yv.Value)
}
if op != token.EQL && op != token.NEQ {
return false, fmt.Errorf("operator %s not defined on %s", op.String(), xv.Kind.String())
}
var eql bool
var err error
if xv == nilVariable {
switch op {
case token.EQL:
return yv.isNil(), nil
case token.NEQ:
return !yv.isNil(), nil
}
}
if yv == nilVariable {
switch op {
case token.EQL:
return xv.isNil(), nil
case token.NEQ:
return !xv.isNil(), nil
}
}
switch xv.Kind {
case reflect.Ptr:
eql = xv.Children[0].Addr == yv.Children[0].Addr
case reflect.Array:
if int64(len(xv.Children)) != xv.Len || int64(len(yv.Children)) != yv.Len {
return false, fmt.Errorf("array too long for comparison")
}
eql, err = equalChildren(xv, yv, true)
case reflect.Struct:
if len(xv.Children) != len(yv.Children) {
return false, nil
}
if int64(len(xv.Children)) != xv.Len || int64(len(yv.Children)) != yv.Len {
return false, fmt.Errorf("structure too deep for comparison")
}
eql, err = equalChildren(xv, yv, false)
case reflect.Slice, reflect.Map, reflect.Func, reflect.Chan:
return false, fmt.Errorf("can not compare %s variables", xv.Kind.String())
case reflect.Interface:
if xv.Children[0].RealType.String() != yv.Children[0].RealType.String() {
eql = false
} else {
eql, err = compareOp(token.EQL, &xv.Children[0], &yv.Children[0])
}
default:
return false, fmt.Errorf("unimplemented comparison of %s variables", xv.Kind.String())
}
if op == token.NEQ {
return !eql, err
}
return eql, err
}
func (v *Variable) isNil() bool {
switch v.Kind {
case reflect.Ptr:
return v.Children[0].Addr == 0
case reflect.Interface:
return v.Children[0].Addr == 0 && v.Children[0].Kind == reflect.Invalid
case reflect.Slice, reflect.Map, reflect.Func, reflect.Chan:
return v.Base == 0
}
return false
}
func equalChildren(xv, yv *Variable, shortcircuit bool) (bool, error) {
r := true
for i := range xv.Children {
eql, err := compareOp(token.EQL, &xv.Children[i], &yv.Children[i])
if err != nil {
return false, err
}
r = r && eql
if !r && shortcircuit {
return false, nil
}
}
return r, nil
}
func (v *Variable) asInt() (int64, error) {
if v.DwarfType == nil {
if v.Value.Kind() != constant.Int {
return 0, fmt.Errorf("can not convert constant %s to int", v.Value)
}
} else {
v.loadValue(loadSingleValue)
if v.Unreadable != nil {
return 0, v.Unreadable
}
if _, ok := v.DwarfType.(*godwarf.IntType); !ok {
return 0, fmt.Errorf("can not convert value of type %s to int", v.DwarfType.String())
}
}
n, _ := constant.Int64Val(v.Value)
return n, nil
}
func (v *Variable) asUint() (uint64, error) {
if v.DwarfType == nil {
if v.Value.Kind() != constant.Int {
return 0, fmt.Errorf("can not convert constant %s to uint", v.Value)
}
} else {
v.loadValue(loadSingleValue)
if v.Unreadable != nil {
return 0, v.Unreadable
}
if _, ok := v.DwarfType.(*godwarf.UintType); !ok {
return 0, fmt.Errorf("can not convert value of type %s to uint", v.DwarfType.String())
}
}
n, _ := constant.Uint64Val(v.Value)
return n, nil
}
type typeConvErr struct {
srcType, dstType godwarf.Type
}
func (err *typeConvErr) Error() string {
return fmt.Sprintf("can not convert value of type %s to %s", err.srcType.String(), err.dstType.String())
}
func (v *Variable) isType(typ godwarf.Type, kind reflect.Kind) error {
if v.DwarfType != nil {
if typ == nil || !sameType(typ, v.RealType) {
return &typeConvErr{v.DwarfType, typ}
}
return nil
}
if typ == nil {
return nil
}
if v == nilVariable {
switch kind {
case reflect.Slice, reflect.Map, reflect.Func, reflect.Ptr, reflect.Chan, reflect.Interface:
return nil
default:
return fmt.Errorf("mismatched types nil and %s", typ.String())
}
}
converr := fmt.Errorf("can not convert %s constant to %s", v.Value, typ.String())
if v.Value == nil {
return converr
}
switch typ.(type) {
case *godwarf.IntType:
if v.Value.Kind() != constant.Int {
return converr
}
case *godwarf.UintType:
if v.Value.Kind() != constant.Int {
return converr
}
case *godwarf.FloatType:
if (v.Value.Kind() != constant.Int) && (v.Value.Kind() != constant.Float) {
return converr
}
case *godwarf.BoolType:
if v.Value.Kind() != constant.Bool {
return converr
}
case *godwarf.StringType:
if v.Value.Kind() != constant.String {
return converr
}
case *godwarf.ComplexType:
if v.Value.Kind() != constant.Complex && v.Value.Kind() != constant.Float && v.Value.Kind() != constant.Int {
return converr
}
default:
return converr
}
return nil
}
func sameType(t1, t2 godwarf.Type) bool {
// Because of a bug in the go linker a type that refers to another type
// (for example a pointer type) will usually use the typedef but rarely use
// the non-typedef entry directly.
// For types that we read directly from go this is fine because it's
// consistent, however we also synthesize some types ourselves
// (specifically pointers and slices) and we always use a reference through
// a typedef.
t1 = resolveTypedef(t1)
t2 = resolveTypedef(t2)
if tt1, isptr1 := t1.(*godwarf.PtrType); isptr1 {
tt2, isptr2 := t2.(*godwarf.PtrType)
if !isptr2 {
return false
}
return sameType(tt1.Type, tt2.Type)
}
if tt1, isslice1 := t1.(*godwarf.SliceType); isslice1 {
tt2, isslice2 := t2.(*godwarf.SliceType)
if !isslice2 {
return false
}
return sameType(tt1.ElemType, tt2.ElemType)
}
return t1.String() == t2.String()
}
func (v *Variable) sliceAccess(idx int) (*Variable, error) {
wrong := false
if v.Flags&VariableCPtr == 0 {
wrong = idx < 0 || int64(idx) >= v.Len
} else {
wrong = idx < 0
}
if wrong {
return nil, fmt.Errorf("index out of bounds")
}
if v.loaded {
if v.Kind == reflect.String {
s := constant.StringVal(v.Value)
if idx >= len(s) {
return nil, fmt.Errorf("index out of bounds")
}
r := v.newVariable("", v.Base+uint64(int64(idx)*v.stride), v.fieldType, v.mem)
r.loaded = true
r.Value = constant.MakeInt64(int64(s[idx]))
return r, nil
} else {
if idx >= len(v.Children) {
return nil, fmt.Errorf("index out of bounds")
}
return &v.Children[idx], nil
}
}
mem := v.mem
if v.Kind != reflect.Array {
mem = DereferenceMemory(mem)
}
return v.newVariable("", v.Base+uint64(int64(idx)*v.stride), v.fieldType, mem), nil
}
func (v *Variable) mapAccess(idx *Variable) (*Variable, error) {
it := v.mapIterator()
if it == nil {
return nil, fmt.Errorf("can not access unreadable map: %v", v.Unreadable)
}
lcfg := loadFullValue
if idx.Kind == reflect.String && int64(len(constant.StringVal(idx.Value))) == idx.Len && idx.Len > int64(lcfg.MaxStringLen) {
// If the index is a string load as much of the keys to at least match the length of the index.
//TODO(aarzilli): when struct literals are implemented this needs to be
//done recursively for literal struct fields.
lcfg.MaxStringLen = int(idx.Len)
}
first := true
for it.next() {
key := it.key()
key.loadValue(lcfg)
if key.Unreadable != nil {
return nil, fmt.Errorf("can not access unreadable map: %v", key.Unreadable)
}
if first {
first = false
if err := idx.isType(key.RealType, key.Kind); err != nil {
return nil, err
}
}
eql, err := compareOp(token.EQL, key, idx)
if err != nil {
return nil, err
}
if eql {
return it.value(), nil
}
}
if v.Unreadable != nil {
return nil, v.Unreadable
}
// go would return zero for the map value type here, we do not have the ability to create zeroes
return nil, fmt.Errorf("key not found")
}
// LoadResliced returns a new array, slice or map that starts at index start and contains
// up to cfg.MaxArrayValues children.
func (v *Variable) LoadResliced(start int, cfg LoadConfig) (newV *Variable, err error) {
switch v.Kind {
case reflect.Array, reflect.Slice:
low, high := int64(start), int64(start+cfg.MaxArrayValues)
if high > v.Len {
high = v.Len
}
newV, err = v.reslice(low, high)
if err != nil {
return nil, err
}
case reflect.Map:
newV = v.clone()
newV.Children = nil
newV.loaded = false
newV.mapSkip = start
default:
return nil, fmt.Errorf("variable to reslice is not an array, slice, or map")
}
newV.loadValue(cfg)
return newV, nil
}
func (v *Variable) reslice(low int64, high int64) (*Variable, error) {
wrong := false
cptrNeedsFakeSlice := false
if v.Flags&VariableCPtr == 0 {
wrong = low < 0 || low > v.Len || high < 0 || high > v.Len
} else {
wrong = low < 0 || high < 0
if high == 0 {
high = low
}
cptrNeedsFakeSlice = v.Kind != reflect.String
}
if wrong {
return nil, fmt.Errorf("index out of bounds")
}
base := v.Base + uint64(int64(low)*v.stride)
len := high - low
if high-low < 0 {
return nil, fmt.Errorf("index out of bounds")
}
typ := v.DwarfType
if _, isarr := v.DwarfType.(*godwarf.ArrayType); isarr || cptrNeedsFakeSlice {
typ = fakeSliceType(v.fieldType)
}
mem := v.mem
if v.Kind != reflect.Array {
mem = DereferenceMemory(mem)
}
r := v.newVariable("", 0, typ, mem)
r.Cap = len
r.Len = len
r.Base = base
r.stride = v.stride
r.fieldType = v.fieldType
r.Flags = v.Flags
r.reg = v.reg
return r, nil
}
// findMethod finds method mname in the type of variable v
func (v *Variable) findMethod(mname string) (*Variable, error) {
if _, isiface := v.RealType.(*godwarf.InterfaceType); isiface {
v.loadInterface(0, false, loadFullValue)
if v.Unreadable != nil {
return nil, v.Unreadable
}
return v.Children[0].findMethod(mname)
}
queue := []*Variable{v}
seen := map[string]struct{}{}
for len(queue) > 0 {
v := queue[0]
queue = append(queue[:0], queue[1:]...)
if _, isseen := seen[v.RealType.String()]; isseen {
continue
}
seen[v.RealType.String()] = struct{}{}
typ := v.DwarfType
ptyp, isptr := typ.(*godwarf.PtrType)
if isptr {
typ = ptyp.Type
}
typePath := typ.Common().Name
dot := strings.LastIndex(typePath, ".")
if dot < 0 {
// probably just a C type
continue
}
pkg := typePath[:dot]
receiver := typePath[dot+1:]
//TODO(aarzilli): support generic functions?
if fn, ok := v.bi.LookupFunc[fmt.Sprintf("%s.%s.%s", pkg, receiver, mname)]; ok {
r, err := functionToVariable(fn, v.bi, v.mem)
if err != nil {
return nil, err
}
if isptr {
r.Children = append(r.Children, *(v.maybeDereference()))
} else {
r.Children = append(r.Children, *v)
}
return r, nil
}
if fn, ok := v.bi.LookupFunc[fmt.Sprintf("%s.(*%s).%s", pkg, receiver, mname)]; ok {
r, err := functionToVariable(fn, v.bi, v.mem)
if err != nil {
return nil, err
}
if isptr {
r.Children = append(r.Children, *v)
} else {
r.Children = append(r.Children, *(v.pointerToVariable()))
}
return r, nil
}
// queue embedded fields for search
structVar := v.maybeDereference()
structVar.Name = v.Name
if structVar.Unreadable != nil {
return structVar, nil
}
switch t := structVar.RealType.(type) {
case *godwarf.StructType:
for _, field := range t.Field {
if field.Embedded {
embeddedVar, err := structVar.toField(field)
if err != nil {
return nil, err
}
queue = append(queue, embeddedVar)
}
}
}
}
return nil, nil
}
func functionToVariable(fn *Function, bi *BinaryInfo, mem MemoryReadWriter) (*Variable, error) {
typ, err := fn.fakeType(bi, true)
if err != nil {
return nil, err
}
v := newVariable(fn.Name, 0, typ, bi, mem)
v.Value = constant.MakeString(fn.Name)
v.loaded = true
v.Base = fn.Entry
return v, nil
}
func fakeBasicType(name string, bitSize int) godwarf.Type {
byteSize := bitSize / 8
szr := popcnt(uint64(byteSize^(byteSize-1))) - 1 // position of rightmost 1 bit, minus 1
basic := func(kind reflect.Kind) godwarf.BasicType {
return godwarf.BasicType{
CommonType: godwarf.CommonType{
ByteSize: int64(byteSize),
Name: fmt.Sprintf("%s%d", name, bitSize),
ReflectKind: kind,
},
BitSize: int64(bitSize),
BitOffset: 0,
}
}
switch name {
case "int":
return &godwarf.IntType{BasicType: basic(reflect.Int8 + reflect.Kind(szr))}
case "uint":
return &godwarf.UintType{BasicType: basic(reflect.Uint8 + reflect.Kind(szr))}
case "float":
return &godwarf.FloatType{BasicType: basic(reflect.Float32 + reflect.Kind(szr-2))}
case "complex":
return &godwarf.ComplexType{BasicType: basic(reflect.Complex64 + reflect.Kind(szr-3))}
default:
panic("unsupported")
}
}
func fakeSliceType(fieldType godwarf.Type) godwarf.Type {
return &godwarf.SliceType{
StructType: godwarf.StructType{
CommonType: godwarf.CommonType{
ByteSize: 24,
Name: "",
},
StructName: fmt.Sprintf("[]%s", fieldType.Common().Name),
Kind: "struct",
Field: nil,
},
ElemType: fieldType,
}
}
func fakeArrayType(n uint64, fieldType godwarf.Type) godwarf.Type {
stride := alignAddr(fieldType.Common().ByteSize, fieldType.Align())
return &godwarf.ArrayType{
CommonType: godwarf.CommonType{
ReflectKind: reflect.Array,
ByteSize: int64(n) * stride,
Name: fmt.Sprintf("[%d]%s", n, fieldType.String())},
Type: fieldType,
StrideBitSize: stride * 8,
Count: int64(n)}
}
var errMethodEvalUnsupported = errors.New("evaluating methods not supported on this version of Go")
func (fn *Function) fakeType(bi *BinaryInfo, removeReceiver bool) (*godwarf.FuncType, error) {
if producer := bi.Producer(); producer == "" || !goversion.ProducerAfterOrEqual(producer, 1, 10) {
// versions of Go prior to 1.10 do not distinguish between parameters and
// return values, therefore we can't use a subprogram DIE to derive a
// function type.
return nil, errMethodEvalUnsupported
}
_, formalArgs, err := funcCallArgs(fn, bi, true)
if err != nil {
return nil, err
}
// Only try and remove the receiver if it is actually being passed in as a formal argument.
// In the case of:
//
// func (_ X) Method() { ... }
//
// that would not be true, the receiver is not used and thus
// not being passed in as a formal argument.
//
// TODO(derekparker) This, I think, creates a new bug where
// if the receiver is not passed in as a formal argument but
// there are other arguments, such as:
//
// func (_ X) Method(i int) { ... }
//
// The first argument 'i int' will be removed. We must actually detect
// here if the receiver is being used. While this is a bug, it's not a
// functional bug, it only affects the string representation of the fake
// function type we create. It's not really easy to tell here if we use
// the receiver or not. Perhaps we should not perform this manipulation at all?
if removeReceiver && len(formalArgs) > 0 {
formalArgs = formalArgs[1:]
}
args := make([]string, 0, len(formalArgs))
rets := make([]string, 0, len(formalArgs))
for _, formalArg := range formalArgs {
var s string
if strings.HasPrefix(formalArg.name, "~") {
s = formalArg.typ.String()
} else {
s = fmt.Sprintf("%s %s", formalArg.name, formalArg.typ.String())
}
if formalArg.isret {
rets = append(rets, s)
} else {
args = append(args, s)
}
}
argstr := strings.Join(args, ", ")
var retstr string
switch len(rets) {
case 0:
retstr = ""
case 1:
retstr = " " + rets[0]
default:
retstr = " (" + strings.Join(rets, ", ") + ")"
}
return &godwarf.FuncType{
CommonType: godwarf.CommonType{
Name: "func(" + argstr + ")" + retstr,
ReflectKind: reflect.Func,
},
//TODO(aarzilli): at the moment we aren't using the ParamType and
// ReturnType fields of FuncType anywhere (when this is returned to the
// client it's first converted to a string and the function calling code
// reads the subroutine entry because it needs to know the stack offsets).
// If we start using them they should be filled here.
}, nil
}
func validRegisterName(s string) string {
for len(s) > 0 && s[0] == '_' {
s = s[1:]
}
for i := range s {
if (s[i] < '0' || s[i] > '9') && (s[i] < 'A' || s[i] > 'Z') {
return ""
}
}
return s
}