delve/pkg/proc/arm64_arch.go
Alessandro Arzilli c5d58f494a
proc: add way to use CPU registers in expressions (#2446)
Changes the expression evaluation code so that register names, when not
shadowed by local or global variables, will evaluate to the current
value of the corresponding CPU register.

This allows a greater flexibility with displaying CPU registers than is
possible with using the ListRegisters API call. Also it allows
debuggers users to view register values even if the frontend they are
using does not implement a register view.
2021-05-04 12:56:17 -07:00

320 lines
13 KiB
Go

package proc
import (
"bytes"
"encoding/binary"
"fmt"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var arm64BreakInstruction = []byte{0x0, 0x0, 0x20, 0xd4}
// ARM64Arch returns an initialized ARM64
// struct.
func ARM64Arch(goos string) *Arch {
return &Arch{
Name: "arm64",
ptrSize: 8,
maxInstructionLength: 4,
breakpointInstruction: arm64BreakInstruction,
breakInstrMovesPC: false,
derefTLS: false,
prologues: prologuesARM64,
fixFrameUnwindContext: arm64FixFrameUnwindContext,
switchStack: arm64SwitchStack,
regSize: arm64RegSize,
RegistersToDwarfRegisters: arm64RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: arm64AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: arm64DwarfRegisterToString,
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
asmDecode: arm64AsmDecode,
usesLR: true,
PCRegNum: regnum.ARM64_PC,
SPRegNum: regnum.ARM64_SP,
asmRegisters: arm64AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.ARM64NameToDwarf),
}
}
func arm64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
a := bi.Arch
if a.sigreturnfn == nil {
a.sigreturnfn = bi.LookupFunc["runtime.sigreturn"]
}
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
// - cfa is bp + a.PtrSize()*2
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't a proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute a stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.ARM64_PC,
Regs: map[uint64]frame.DWRule{
regnum.ARM64_PC: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-a.PtrSize()),
},
regnum.ARM64_BP: frame.DWRule{
Rule: frame.RuleOffset,
Offset: int64(-2 * a.PtrSize()),
},
regnum.ARM64_SP: frame.DWRule{
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.ARM64_BP,
Offset: int64(2 * a.PtrSize()),
},
}
}
if a.crosscall2fn == nil {
a.crosscall2fn = bi.LookupFunc["crosscall2"]
}
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
rule := fctxt.CFA
if rule.Offset == crosscall2SPOffsetBad {
switch bi.GOOS {
case "windows":
rule.Offset += crosscall2SPOffsetWindows
default:
rule.Offset += crosscall2SPOffsetNonWindows
}
}
fctxt.CFA = rule
}
// We assume that RBP is the frame pointer and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't a rule already we emit one.
if fctxt.Regs[regnum.ARM64_BP].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.ARM64_BP] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.ARM64_BP,
Offset: 0,
}
}
if fctxt.Regs[regnum.ARM64_LR].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.ARM64_LR] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.ARM64_LR,
Offset: 0,
}
}
return fctxt
}
const arm64cgocallSPOffsetSaveSlot = 0x8
const prevG0schedSPOffsetSaveSlot = 0x10
func arm64SwitchStack(it *stackIterator, callFrameRegs *op.DwarfRegisters) bool {
if it.frame.Current.Fn != nil {
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall", "runtime.cgocallback_gofunc", "runtime.sigpanic", "runtime.cgocallback":
//do nothing
case "runtime.goexit", "runtime.rt0_go", "runtime.mcall":
// Look for "top of stack" functions.
it.atend = true
return true
case "crosscall2":
//The offsets get from runtime/cgo/asm_arm64.s:10
newsp, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*24), int64(it.bi.Arch.PtrSize()))
newbp, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*14), int64(it.bi.Arch.PtrSize()))
newlr, _ := readUintRaw(it.mem, uint64(it.regs.SP()+8*15), int64(it.bi.Arch.PtrSize()))
if it.regs.Reg(it.regs.BPRegNum) != nil {
it.regs.Reg(it.regs.BPRegNum).Uint64Val = uint64(newbp)
} else {
reg, _ := it.readRegisterAt(it.regs.BPRegNum, it.regs.SP()+8*14)
it.regs.AddReg(it.regs.BPRegNum, reg)
}
it.regs.Reg(it.regs.LRRegNum).Uint64Val = uint64(newlr)
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(newsp)
it.pc = newlr
return true
default:
if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.fatalthrow" {
// The runtime switches to the system stack in multiple places.
// This usually happens through a call to runtime.systemstack but there
// are functions that switch to the system stack manually (for example
// runtime.morestack).
// Since we are only interested in printing the system stack for cgo
// calls we switch directly to the goroutine stack if we detect that the
// function at the top of the stack is a runtime function.
it.switchToGoroutineStack()
return true
}
}
}
fn := it.bi.PCToFunc(it.frame.Ret)
if fn == nil {
return false
}
switch fn.Name {
case "runtime.asmcgocall":
if !it.systemstack {
return false
}
// This function is called by a goroutine to execute a C function and
// switches from the goroutine stack to the system stack.
// Since we are unwinding the stack from callee to caller we have to switch
// from the system stack to the goroutine stack.
off, _ := readIntRaw(it.mem, uint64(callFrameRegs.SP()+arm64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize()))
oldsp := callFrameRegs.SP()
newsp := uint64(int64(it.stackhi) - off)
// runtime.asmcgocall can also be called from inside the system stack,
// in that case no stack switch actually happens
if newsp == oldsp {
return false
}
it.systemstack = false
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = uint64(int64(newsp))
return false
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
// For a detailed description of how this works read the long comment at
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_arm64.s
//
// When a C functions calls back into go it will eventually call into
// runtime.cgocallback_gofunc which is the function that does the stack
// switch from the system stack back into the goroutine stack
// Since we are going backwards on the stack here we see the transition
// as goroutine stack -> system stack.
if it.systemstack {
return false
}
it.loadG0SchedSP()
if it.g0_sched_sp <= 0 {
return false
}
// entering the system stack
callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = it.g0_sched_sp
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
it.g0_sched_sp, _ = readUintRaw(it.mem, uint64(callFrameRegs.SP()+prevG0schedSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize()))
it.systemstack = true
return false
}
return false
}
func arm64RegSize(regnum uint64) int {
// fp registers
if regnum >= 64 && regnum <= 95 {
return 16
}
return 8 // general registers
}
var arm64NameToDwarf = func() map[string]int {
r := make(map[string]int)
for i := 0; i <= 30; i++ {
r[fmt.Sprintf("x%d", i)] = i
}
r["pc"] = int(regnum.ARM64_PC)
r["lr"] = int(regnum.ARM64_LR)
r["sp"] = 31
for i := 0; i <= 31; i++ {
r[fmt.Sprintf("v%d", i)] = i + 64
}
return r
}()
func arm64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(int(regnum.ARM64MaxRegNum()), regs, regnum.ARM64NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, arm64NameToDwarf))
return dr
}
func arm64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.ARM64_PC+1)
dregs[regnum.ARM64_PC] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.ARM64_SP] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.ARM64_BP] = op.DwarfRegisterFromUint64(bp)
dregs[regnum.ARM64_LR] = op.DwarfRegisterFromUint64(lr)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.ARM64_PC, regnum.ARM64_SP, regnum.ARM64_BP, regnum.ARM64_LR)
}
func arm64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.ARM64ToName(uint64(i))
if reg == nil {
return name, false, ""
}
if reg.Bytes != nil && name[0] == 'V' {
buf := bytes.NewReader(reg.Bytes)
var out bytes.Buffer
var vi [16]uint8
for i := range vi {
_ = binary.Read(buf, binary.LittleEndian, &vi[i])
}
//D
fmt.Fprintf(&out, " {\n\tD = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x,", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x%02x%02x%02x%02x}},", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
//S
fmt.Fprintf(&out, " \n\tS = {u = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x,0x%02x%02x%02x%02x,", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4])
fmt.Fprintf(&out, " 0x%02x%02x%02x%02x,0x%02x%02x%02x%02x}},", vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
//H
fmt.Fprintf(&out, " \n\tH = {u = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
fmt.Fprintf(&out, " s = {0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x,", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6])
fmt.Fprintf(&out, " 0x%02x%02x,0x%02x%02x,0x%02x%02x,0x%02x%02x}},", vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
//B
fmt.Fprintf(&out, " \n\tB = {u = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x},", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
fmt.Fprintf(&out, " s = {0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7])
fmt.Fprintf(&out, " 0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x,0x%02x}}", vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
//Q
fmt.Fprintf(&out, " \n\tQ = {u = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x},", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(&out, " s = {0x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(&out, "%02x%02x%02x%02x%02x%02x%02x%02x}}\n\t}", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
return name, true, out.String()
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) < 16) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
}
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}