delve/pkg/proc/fncall.go
Alessandro Arzilli b53fcbe43a
proc: fix RFLAGS corruption after call injection on amd64 (#3002)
debugCallV2 for amd64 has a bug where it corrupts the flags registers
every time it is called, this commit works around that problem by
restoring flags one extra time to its original value after stepping out
of debugCallV2.

Fixes #2985
2022-05-05 08:41:40 -07:00

1310 lines
41 KiB
Go

package proc
import (
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"reflect"
"sort"
"strconv"
"strings"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/dwarf/regnum"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
)
// This file implements the function call injection introduced in go1.11.
//
// The protocol is described in $GOROOT/src/runtime/asm_amd64.s in the
// comments for function runtime·debugCallV1.
//
// The main entry point is EvalExpressionWithCalls which will start a goroutine to
// evaluate the provided expression.
// This goroutine can either return immediately, if no function calls were
// needed, or write a continue request to the scope.callCtx.continueRequest
// channel. When this happens EvalExpressionWithCalls will call Continue and
// return.
//
// The Continue loop will write to scope.callCtx.continueCompleted when it
// hits a breakpoint in the call injection protocol.
//
// The work of setting up the function call and executing the protocol is
// done by evalFunctionCall and funcCallStep.
const (
debugCallFunctionNamePrefix1 = "debugCall"
debugCallFunctionNamePrefix2 = "runtime.debugCall"
maxDebugCallVersion = 2
maxArgFrameSize = 65535
)
var (
errFuncCallUnsupported = errors.New("function calls not supported by this version of Go")
errFuncCallUnsupportedBackend = errors.New("backend does not support function calls")
errFuncCallInProgress = errors.New("cannot call function while another function call is already in progress")
errNoGoroutine = errors.New("no goroutine selected")
errGoroutineNotRunning = errors.New("selected goroutine not running")
errNotEnoughStack = errors.New("not enough stack space")
errTooManyArguments = errors.New("too many arguments")
errNotEnoughArguments = errors.New("not enough arguments")
errNotAGoFunction = errors.New("not a Go function")
errFuncCallNotAllowed = errors.New("function calls not allowed without using 'call'")
errFuncCallNotAllowedStrAlloc = errors.New("literal string can not be allocated because function calls are not allowed without using 'call'")
)
type functionCallState struct {
// savedRegs contains the saved registers
savedRegs Registers
// err contains a saved error
err error
// expr is the expression being evaluated
expr *ast.CallExpr
// fn is the function that is being called
fn *Function
// receiver is the receiver argument for the function
receiver *Variable
// closureAddr is the address of the closure being called
closureAddr uint64
// formalArgs are the formal arguments of fn
formalArgs []funcCallArg
// argFrameSize contains the size of the arguments
argFrameSize int64
// retvars contains the return variables after the function call terminates without panic'ing
retvars []*Variable
// panicvar is a variable used to store the value of the panic, if the
// called function panics.
panicvar *Variable
// lateCallFailure is set to true if the function call could not be
// completed after we started evaluating the arguments.
lateCallFailure bool
}
type callContext struct {
p *Target
// checkEscape is true if the escape check should be performed.
// See service/api.DebuggerCommand.UnsafeCall in service/api/types.go.
checkEscape bool
// retLoadCfg is the load configuration used to load return values
retLoadCfg LoadConfig
// Write to continueRequest to request a call to Continue from the
// debugger's main goroutine.
// Read from continueCompleted to wait for the target process to stop at
// one of the interaction point of the function call protocol.
// To signal that evaluation is completed a value will be written to
// continueRequest having cont == false and the return values in ret.
continueRequest chan<- continueRequest
continueCompleted <-chan *G
// injectionThread is the thread to use for nested call injections if the
// original injection goroutine isn't running (because we are in Go 1.15)
injectionThread Thread
// stacks is a slice of known goroutine stacks used to check for
// inappropriate escapes
stacks []stack
}
type continueRequest struct {
cont bool
err error
ret *Variable
}
type callInjection struct {
// if continueCompleted is not nil it means we are in the process of
// executing an injected function call, see comments throughout
// pkg/proc/fncall.go for a description of how this works.
continueCompleted chan<- *G
continueRequest <-chan continueRequest
startThreadID int
endCallInjection func()
}
func (callCtx *callContext) doContinue() *G {
callCtx.continueRequest <- continueRequest{cont: true}
return <-callCtx.continueCompleted
}
func (callCtx *callContext) doReturn(ret *Variable, err error) {
if callCtx == nil {
return
}
callCtx.continueRequest <- continueRequest{cont: false, ret: ret, err: err}
}
// EvalExpressionWithCalls is like EvalExpression but allows function calls in 'expr'.
// Because this can only be done in the current goroutine, unlike
// EvalExpression, EvalExpressionWithCalls is not a method of EvalScope.
func EvalExpressionWithCalls(t *Target, g *G, expr string, retLoadCfg LoadConfig, checkEscape bool) error {
bi := t.BinInfo()
if !t.SupportsFunctionCalls() {
return errFuncCallUnsupportedBackend
}
// check that the target goroutine is running
if g == nil {
return errNoGoroutine
}
if g.Status != Grunning || g.Thread == nil {
return errGoroutineNotRunning
}
if callinj := t.fncallForG[g.ID]; callinj != nil && callinj.continueCompleted != nil {
return errFuncCallInProgress
}
dbgcallfn, _ := debugCallFunction(bi)
if dbgcallfn == nil {
return errFuncCallUnsupported
}
scope, err := GoroutineScope(t, g.Thread)
if err != nil {
return err
}
continueRequest := make(chan continueRequest)
continueCompleted := make(chan *G)
scope.callCtx = &callContext{
p: t,
checkEscape: checkEscape,
retLoadCfg: retLoadCfg,
continueRequest: continueRequest,
continueCompleted: continueCompleted,
}
endCallInjection, err := t.proc.StartCallInjection()
if err != nil {
return err
}
t.fncallForG[g.ID] = &callInjection{
continueCompleted: continueCompleted,
continueRequest: continueRequest,
startThreadID: 0,
endCallInjection: endCallInjection,
}
go scope.EvalExpression(expr, retLoadCfg)
contReq, ok := <-continueRequest
if contReq.cont {
return t.Continue()
}
return finishEvalExpressionWithCalls(t, g, contReq, ok)
}
func finishEvalExpressionWithCalls(t *Target, g *G, contReq continueRequest, ok bool) error {
fncallLog("stashing return values for %d in thread=%d", g.ID, g.Thread.ThreadID())
g.Thread.Common().CallReturn = true
var err error
if !ok {
err = errors.New("internal error EvalExpressionWithCalls didn't return anything")
} else if contReq.err != nil {
if fpe, ispanic := contReq.err.(fncallPanicErr); ispanic {
g.Thread.Common().returnValues = []*Variable{fpe.panicVar}
} else {
err = contReq.err
}
} else if contReq.ret == nil {
g.Thread.Common().returnValues = nil
} else if contReq.ret.Addr == 0 && contReq.ret.DwarfType == nil && contReq.ret.Kind == reflect.Invalid {
// this is a variable returned by a function call with multiple return values
r := make([]*Variable, len(contReq.ret.Children))
for i := range contReq.ret.Children {
r[i] = &contReq.ret.Children[i]
}
g.Thread.Common().returnValues = r
} else {
g.Thread.Common().returnValues = []*Variable{contReq.ret}
}
close(t.fncallForG[g.ID].continueCompleted)
callinj := t.fncallForG[g.ID]
for goid := range t.fncallForG {
if t.fncallForG[goid] == callinj {
delete(t.fncallForG, goid)
}
}
callinj.endCallInjection()
return err
}
// evalFunctionCall evaluates a function call.
// If this is a built-in function it's evaluated directly.
// Otherwise this will start the function call injection protocol and
// request that the target process resumes.
// See the comment describing the field EvalScope.callCtx for a description
// of the preconditions that make starting the function call protocol
// possible.
// See runtime.debugCallV1 in $GOROOT/src/runtime/asm_amd64.s for a
// description of the protocol.
func evalFunctionCall(scope *EvalScope, node *ast.CallExpr) (*Variable, error) {
r, err := scope.evalBuiltinCall(node)
if r != nil || err != nil {
// it was a builtin call
return r, err
}
if scope.callCtx == nil {
return nil, errFuncCallNotAllowed
}
thread := scope.g.Thread
stacklo := scope.g.stack.lo
if thread == nil {
// We are doing a nested function call and using Go 1.15, the original
// injection goroutine was suspended and now we are using a different
// goroutine, evaluation still happened on the original goroutine but we
// need to use a different thread to do the nested call injection.
thread = scope.callCtx.injectionThread
g2, err := GetG(thread)
if err != nil {
return nil, err
}
stacklo = g2.stack.lo
}
if thread == nil {
return nil, errGoroutineNotRunning
}
p := scope.callCtx.p
bi := scope.BinInfo
if !p.SupportsFunctionCalls() {
return nil, errFuncCallUnsupportedBackend
}
dbgcallfn, dbgcallversion := debugCallFunction(bi)
if dbgcallfn == nil {
return nil, errFuncCallUnsupported
}
// check that there are at least 256 bytes free on the stack
regs, err := thread.Registers()
if err != nil {
return nil, err
}
regs, err = regs.Copy()
if err != nil {
return nil, err
}
if regs.SP()-bi.Arch.debugCallMinStackSize <= stacklo {
return nil, errNotEnoughStack
}
protocolReg, ok := debugCallProtocolReg(bi.Arch.Name, dbgcallversion)
if !ok {
return nil, errFuncCallUnsupported
}
if bi.Arch.RegistersToDwarfRegisters(0, regs).Reg(protocolReg) == nil {
return nil, errFuncCallUnsupportedBackend
}
fncall := functionCallState{
expr: node,
savedRegs: regs,
}
err = funcCallEvalFuncExpr(scope, &fncall, false)
if err != nil {
return nil, err
}
switch bi.Arch.Name {
case "amd64":
if err := callOP(bi, thread, regs, dbgcallfn.Entry); err != nil {
return nil, err
}
// write the desired argument frame size at SP-(2*pointer_size) (the extra pointer is the saved PC)
if err := writePointer(bi, scope.Mem, regs.SP()-3*uint64(bi.Arch.PtrSize()), uint64(fncall.argFrameSize)); err != nil {
return nil, err
}
case "arm64":
// debugCallV2 on arm64 needs a special call sequence, callOP can not be used
sp := regs.SP()
sp -= 2 * uint64(bi.Arch.PtrSize())
if err := setSP(thread, sp); err != nil {
return nil, err
}
if err := writePointer(bi, scope.Mem, sp, regs.LR()); err != nil {
return nil, err
}
if err := setLR(thread, regs.PC()); err != nil {
return nil, err
}
if err := writePointer(bi, scope.Mem, sp-uint64(2*bi.Arch.PtrSize()), uint64(fncall.argFrameSize)); err != nil {
return nil, err
}
regs, err = thread.Registers()
if err != nil {
return nil, err
}
regs, err = regs.Copy()
if err != nil {
return nil, err
}
fncall.savedRegs = regs
err = setPC(thread, dbgcallfn.Entry)
if err != nil {
return nil, err
}
}
fncallLog("function call initiated %v frame size %d goroutine %d (thread %d)", fncall.fn, fncall.argFrameSize, scope.g.ID, thread.ThreadID())
thread.Breakpoint().Clear() // since we moved address in PC the thread is no longer stopped at a breakpoint, leaving the breakpoint set will confuse Continue
p.fncallForG[scope.g.ID].startThreadID = thread.ThreadID()
spoff := int64(scope.Regs.Uint64Val(scope.Regs.SPRegNum)) - int64(scope.g.stack.hi)
bpoff := int64(scope.Regs.Uint64Val(scope.Regs.BPRegNum)) - int64(scope.g.stack.hi)
fboff := scope.Regs.FrameBase - int64(scope.g.stack.hi)
for {
scope.callCtx.injectionThread = nil
g := scope.callCtx.doContinue()
// Go 1.15 will move call injection execution to a different goroutine,
// but we want to keep evaluation on the original goroutine.
if g.ID == scope.g.ID {
scope.g = g
} else {
// We are in Go 1.15 and we switched to a new goroutine, the original
// goroutine is now parked and therefore does not have a thread
// associated.
scope.g.Thread = nil
scope.g.Status = Gwaiting
scope.callCtx.injectionThread = g.Thread
}
// adjust the value of registers inside scope
pcreg, bpreg, spreg := scope.Regs.Reg(scope.Regs.PCRegNum), scope.Regs.Reg(scope.Regs.BPRegNum), scope.Regs.Reg(scope.Regs.SPRegNum)
scope.Regs.ClearRegisters()
scope.Regs.AddReg(scope.Regs.PCRegNum, pcreg)
scope.Regs.AddReg(scope.Regs.BPRegNum, bpreg)
scope.Regs.AddReg(scope.Regs.SPRegNum, spreg)
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = uint64(spoff + int64(scope.g.stack.hi))
scope.Regs.Reg(scope.Regs.BPRegNum).Uint64Val = uint64(bpoff + int64(scope.g.stack.hi))
scope.Regs.FrameBase = fboff + int64(scope.g.stack.hi)
scope.Regs.CFA = scope.frameOffset + int64(scope.g.stack.hi)
finished := funcCallStep(scope, &fncall, g.Thread, protocolReg, dbgcallfn.Name)
if finished {
break
}
}
if fncall.err != nil {
return nil, fncall.err
}
if fncall.panicvar != nil {
return nil, fncallPanicErr{fncall.panicvar}
}
switch len(fncall.retvars) {
case 0:
r := newVariable("", 0, nil, scope.BinInfo, nil)
r.loaded = true
r.Unreadable = errors.New("no return values")
return r, nil
case 1:
return fncall.retvars[0], nil
default:
// create a fake variable without address or type to return multiple values
r := newVariable("", 0, nil, scope.BinInfo, nil)
r.loaded = true
r.Children = make([]Variable, len(fncall.retvars))
for i := range fncall.retvars {
r.Children[i] = *fncall.retvars[i]
}
return r, nil
}
}
// fncallPanicErr is the error returned if a called function panics
type fncallPanicErr struct {
panicVar *Variable
}
func (err fncallPanicErr) Error() string {
return "panic calling a function"
}
func fncallLog(fmtstr string, args ...interface{}) {
logflags.FnCallLogger().Infof(fmtstr, args...)
}
// writePointer writes val as an architecture pointer at addr in mem.
func writePointer(bi *BinaryInfo, mem MemoryReadWriter, addr, val uint64) error {
ptrbuf := make([]byte, bi.Arch.PtrSize())
// TODO: use target architecture endianness instead of LittleEndian
switch len(ptrbuf) {
case 4:
binary.LittleEndian.PutUint32(ptrbuf, uint32(val))
case 8:
binary.LittleEndian.PutUint64(ptrbuf, val)
default:
panic(fmt.Errorf("unsupported pointer size %d", len(ptrbuf)))
}
_, err := mem.WriteMemory(addr, ptrbuf)
return err
}
// callOP simulates a call instruction on the given thread:
// * pushes the current value of PC on the stack (adjusting SP)
// * changes the value of PC to callAddr
// Note: regs are NOT updated!
func callOP(bi *BinaryInfo, thread Thread, regs Registers, callAddr uint64) error {
switch bi.Arch.Name {
case "amd64":
sp := regs.SP()
// push PC on the stack
sp -= uint64(bi.Arch.PtrSize())
if err := setSP(thread, sp); err != nil {
return err
}
if err := writePointer(bi, thread.ProcessMemory(), sp, regs.PC()); err != nil {
return err
}
return setPC(thread, callAddr)
case "arm64":
if err := setLR(thread, regs.PC()); err != nil {
return err
}
return setPC(thread, callAddr)
default:
panic("not implemented")
}
}
// funcCallEvalFuncExpr evaluates expr.Fun and returns the function that we're trying to call.
// If allowCalls is false function calls will be disabled even if scope.callCtx != nil
func funcCallEvalFuncExpr(scope *EvalScope, fncall *functionCallState, allowCalls bool) error {
bi := scope.BinInfo
if !allowCalls {
callCtx := scope.callCtx
scope.callCtx = nil
defer func() {
scope.callCtx = callCtx
}()
}
fnvar, err := scope.evalAST(fncall.expr.Fun)
if err == errFuncCallNotAllowed {
// we can't determine the frame size because callexpr.Fun can't be
// evaluated without enabling function calls, just set up an argument
// frame for the maximum possible argument size.
fncall.argFrameSize = maxArgFrameSize
return nil
} else if err != nil {
return err
}
if fnvar.Kind != reflect.Func {
return fmt.Errorf("expression %q is not a function", exprToString(fncall.expr.Fun))
}
fnvar.loadValue(LoadConfig{false, 0, 0, 0, 0, 0})
if fnvar.Unreadable != nil {
return fnvar.Unreadable
}
if fnvar.Base == 0 {
return errors.New("nil pointer dereference")
}
fncall.fn = bi.PCToFunc(uint64(fnvar.Base))
if fncall.fn == nil {
return fmt.Errorf("could not find DIE for function %q", exprToString(fncall.expr.Fun))
}
if !fncall.fn.cu.isgo {
return errNotAGoFunction
}
fncall.closureAddr = fnvar.closureAddr
fncall.argFrameSize, fncall.formalArgs, err = funcCallArgs(fncall.fn, bi, false)
if err != nil {
return err
}
argnum := len(fncall.expr.Args)
// If the function variable has a child then that child is the method
// receiver. However, if the method receiver is not being used (e.g.
// func (_ X) Foo()) then it will not actually be listed as a formal
// argument. Ensure that we are really off by 1 to add the receiver to
// the function call.
if len(fnvar.Children) > 0 && argnum == (len(fncall.formalArgs)-1) {
argnum++
fncall.receiver = &fnvar.Children[0]
fncall.receiver.Name = exprToString(fncall.expr.Fun)
}
if argnum > len(fncall.formalArgs) {
return errTooManyArguments
}
if argnum < len(fncall.formalArgs) {
return errNotEnoughArguments
}
return nil
}
type funcCallArg struct {
name string
typ godwarf.Type
off int64
dwarfEntry *godwarf.Tree // non-nil if Go 1.17+
isret bool
}
// funcCallEvalArgs evaluates the arguments of the function call, copying
// them into the argument frame starting at argFrameAddr.
func funcCallEvalArgs(scope *EvalScope, fncall *functionCallState, formalScope *EvalScope) error {
if scope.g == nil {
// this should never happen
return errNoGoroutine
}
if fncall.receiver != nil {
err := funcCallCopyOneArg(scope, fncall, fncall.receiver, &fncall.formalArgs[0], formalScope)
if err != nil {
return err
}
fncall.formalArgs = fncall.formalArgs[1:]
}
for i := range fncall.formalArgs {
formalArg := &fncall.formalArgs[i]
actualArg, err := scope.evalAST(fncall.expr.Args[i])
if err != nil {
if _, ispanic := err.(fncallPanicErr); ispanic {
return err
}
return fmt.Errorf("error evaluating %q as argument %s in function %s: %v", exprToString(fncall.expr.Args[i]), formalArg.name, fncall.fn.Name, err)
}
actualArg.Name = exprToString(fncall.expr.Args[i])
err = funcCallCopyOneArg(scope, fncall, actualArg, formalArg, formalScope)
if err != nil {
return err
}
}
return nil
}
func funcCallCopyOneArg(scope *EvalScope, fncall *functionCallState, actualArg *Variable, formalArg *funcCallArg, formalScope *EvalScope) error {
if scope.callCtx.checkEscape {
//TODO(aarzilli): only apply the escapeCheck to leaking parameters.
if err := escapeCheck(actualArg, formalArg.name, scope.g.stack); err != nil {
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
}
for _, stack := range scope.callCtx.stacks {
if err := escapeCheck(actualArg, formalArg.name, stack); err != nil {
return fmt.Errorf("cannot use %s as argument %s in function %s: %v", actualArg.Name, formalArg.name, fncall.fn.Name, err)
}
}
}
//TODO(aarzilli): autmoatic wrapping in interfaces for cases not handled
// by convertToEface.
var formalArgVar *Variable
if formalArg.dwarfEntry != nil {
var err error
formalArgVar, err = extractVarInfoFromEntry(scope.target, formalScope.BinInfo, formalScope.image(), formalScope.Regs, formalScope.Mem, formalArg.dwarfEntry, 0)
if err != nil {
return err
}
} else {
formalArgVar = newVariable(formalArg.name, uint64(formalArg.off+int64(formalScope.Regs.CFA)), formalArg.typ, scope.BinInfo, scope.Mem)
}
if err := scope.setValue(formalArgVar, actualArg, actualArg.Name); err != nil {
return err
}
return nil
}
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
producer := bi.Producer()
trustArgOrder := producer != "" && goversion.ProducerAfterOrEqual(bi.Producer(), 1, 12)
if bi.regabi && fn.cu.optimized && fn.Name != "runtime.mallocgc" {
// Debug info for function arguments on optimized functions is currently
// too incomplete to attempt injecting calls to arbitrary optimized
// functions.
// Prior to regabi we could do this because the ABI was simple enough to
// manually encode it in Delve.
// Runtime.mallocgc is an exception, we specifically patch it's DIE to be
// correct for call injection purposes.
return 0, nil, fmt.Errorf("can not call optimized function %s when regabi is in use", fn.Name)
}
varEntries := reader.Variables(dwarfTree, fn.Entry, int(^uint(0)>>1), reader.VariablesSkipInlinedSubroutines)
// typechecks arguments, calculates argument frame size
for _, entry := range varEntries {
if entry.Tag != dwarf.TagFormalParameter {
continue
}
argname, typ, err := readVarEntry(entry.Tree, fn.cu.image)
if err != nil {
return 0, nil, err
}
typ = resolveTypedef(typ)
var formalArg *funcCallArg
if bi.regabi {
formalArg, err = funcCallArgRegABI(fn, bi, entry, argname, typ, &argFrameSize)
} else {
formalArg, err = funcCallArgOldABI(fn, bi, entry, argname, typ, trustArgOrder, &argFrameSize)
}
if err != nil {
return 0, nil, err
}
if !formalArg.isret || includeRet {
formalArgs = append(formalArgs, *formalArg)
}
}
if bi.regabi {
// The argument frame size is computed conservatively, assuming that
// there's space for each argument on the stack even if its passed in
// registers. Unfortunately this isn't quite enough because the register
// assignment algorithm Go uses can result in an amount of additional
// space used due to alignment requirements, bounded by the number of argument registers.
// Because we currently don't have an easy way to obtain the frame size,
// let's be even more conservative.
// A safe lower-bound on the size of the argument frame includes space for
// each argument plus the total bytes of register arguments.
// This is derived from worst-case alignment padding of up to
// (pointer-word-bytes - 1) per argument passed in registers.
// See: https://github.com/go-delve/delve/pull/2451#discussion_r665761531
// TODO: Make this generic for other platforms.
argFrameSize = alignAddr(argFrameSize, 8)
argFrameSize += int64(bi.Arch.maxRegArgBytes)
}
sort.Slice(formalArgs, func(i, j int) bool {
return formalArgs[i].off < formalArgs[j].off
})
return argFrameSize, formalArgs, nil
}
func funcCallArgOldABI(fn *Function, bi *BinaryInfo, entry reader.Variable, argname string, typ godwarf.Type, trustArgOrder bool, pargFrameSize *int64) (*funcCallArg, error) {
const CFA = 0x1000
var off int64
locprog, _, err := bi.locationExpr(entry, dwarf.AttrLocation, fn.Entry)
if err != nil {
err = fmt.Errorf("could not get argument location of %s: %v", argname, err)
} else {
var pieces []op.Piece
off, pieces, err = op.ExecuteStackProgram(op.DwarfRegisters{CFA: CFA, FrameBase: CFA}, locprog, bi.Arch.PtrSize(), nil)
if err != nil {
err = fmt.Errorf("unsupported location expression for argument %s: %v", argname, err)
}
if pieces != nil {
err = fmt.Errorf("unsupported location expression for argument %s (uses DW_OP_piece)", argname)
}
off -= CFA
}
if err != nil {
if !trustArgOrder {
return nil, err
}
// With Go version 1.12 or later we can trust that the arguments appear
// in the same order as declared, which means we can calculate their
// address automatically.
// With this we can call optimized functions (which sometimes do not have
// an argument address, due to a compiler bug) as well as runtime
// functions (which are always optimized).
off = *pargFrameSize
off = alignAddr(off, typ.Align())
}
if e := off + typ.Size(); e > *pargFrameSize {
*pargFrameSize = e
}
isret, _ := entry.Val(dwarf.AttrVarParam).(bool)
return &funcCallArg{name: argname, typ: typ, off: off, isret: isret}, nil
}
func funcCallArgRegABI(fn *Function, bi *BinaryInfo, entry reader.Variable, argname string, typ godwarf.Type, pargFrameSize *int64) (*funcCallArg, error) {
// Conservatively calculate the full stack argument space for ABI0.
*pargFrameSize = alignAddr(*pargFrameSize, typ.Align())
*pargFrameSize += typ.Size()
isret, _ := entry.Val(dwarf.AttrVarParam).(bool)
return &funcCallArg{name: argname, typ: typ, dwarfEntry: entry.Tree, isret: isret}, nil
}
// alignAddr rounds up addr to a multiple of align. Align must be a power of 2.
func alignAddr(addr, align int64) int64 {
return (addr + int64(align-1)) &^ int64(align-1)
}
func escapeCheck(v *Variable, name string, stack stack) error {
switch v.Kind {
case reflect.Ptr:
var w *Variable
if len(v.Children) == 1 {
// this branch is here to support pointers constructed with typecasts from ints or the '&' operator
w = &v.Children[0]
} else {
w = v.maybeDereference()
}
return escapeCheckPointer(w.Addr, name, stack)
case reflect.Chan, reflect.String, reflect.Slice:
return escapeCheckPointer(v.Base, name, stack)
case reflect.Map:
sv := v.clone()
sv.RealType = resolveTypedef(&(v.RealType.(*godwarf.MapType).TypedefType))
sv = sv.maybeDereference()
return escapeCheckPointer(sv.Addr, name, stack)
case reflect.Struct:
t := v.RealType.(*godwarf.StructType)
for _, field := range t.Field {
fv, _ := v.toField(field)
if err := escapeCheck(fv, fmt.Sprintf("%s.%s", name, field.Name), stack); err != nil {
return err
}
}
case reflect.Array:
for i := int64(0); i < v.Len; i++ {
sv, _ := v.sliceAccess(int(i))
if err := escapeCheck(sv, fmt.Sprintf("%s[%d]", name, i), stack); err != nil {
return err
}
}
case reflect.Func:
if err := escapeCheckPointer(v.funcvalAddr(), name, stack); err != nil {
return err
}
}
return nil
}
func escapeCheckPointer(addr uint64, name string, stack stack) error {
if uint64(addr) >= stack.lo && uint64(addr) < stack.hi {
return fmt.Errorf("stack object passed to escaping pointer: %s", name)
}
return nil
}
const (
debugCallRegPrecheckFailed = 8
debugCallRegCompleteCall = 0
debugCallRegReadReturn = 1
debugCallRegReadPanic = 2
debugCallRegRestoreRegisters = 16
)
// funcCallStep executes one step of the function call injection protocol.
func funcCallStep(callScope *EvalScope, fncall *functionCallState, thread Thread, protocolReg uint64, debugCallName string) bool {
p := callScope.callCtx.p
bi := p.BinInfo()
regs, err := thread.Registers()
if err != nil {
fncall.err = err
return true
}
regval := bi.Arch.RegistersToDwarfRegisters(0, regs).Uint64Val(protocolReg)
if logflags.FnCall() {
loc, _ := thread.Location()
var pc uint64
var fnname string
if loc != nil {
pc = loc.PC
if loc.Fn != nil {
fnname = loc.Fn.Name
}
}
fncallLog("function call interrupt gid=%d (original) thread=%d regval=%#x (PC=%#x in %s)", callScope.g.ID, thread.ThreadID(), regval, pc, fnname)
}
switch regval {
case debugCallRegPrecheckFailed: // 8
archoff := uint64(0)
if bi.Arch.Name == "arm64" {
archoff = 8
}
// get error from top of the stack and return it to user
errvar, err := readStackVariable(p, thread, regs, archoff, "string", loadFullValue)
if err != nil {
fncall.err = fmt.Errorf("could not get precheck error reason: %v", err)
break
}
errvar.Name = "err"
fncall.err = fmt.Errorf("%v", constant.StringVal(errvar.Value))
case debugCallRegCompleteCall: // 0
p.fncallForG[callScope.g.ID].startThreadID = 0
// evaluate arguments of the target function, copy them into its argument frame and call the function
if fncall.fn == nil || fncall.receiver != nil || fncall.closureAddr != 0 {
// if we couldn't figure out which function we are calling before
// (because the function we are calling is the return value of a call to
// another function) now we have to figure it out by recursively
// evaluating the function calls.
// This also needs to be done if the function call has a receiver
// argument or a closure address (because those addresses could be on the stack
// and have changed position between the start of the call and now).
err := funcCallEvalFuncExpr(callScope, fncall, true)
if err != nil {
fncall.err = err
fncall.lateCallFailure = true
break
}
//TODO: double check that function call size isn't too big
}
// instead of evaluating the arguments we start first by pushing the call
// on the stack, this is the opposite of what would happen normally but
// it's necessary because otherwise the GC wouldn't be able to deal with
// the argument frame.
if fncall.closureAddr != 0 {
// When calling a function pointer we must set the DX register to the
// address of the function pointer itself.
setClosureReg(thread, fncall.closureAddr)
}
cfa := regs.SP()
oldpc := regs.PC()
var oldlr uint64
if bi.Arch.Name == "arm64" {
oldlr = regs.LR()
}
callOP(bi, thread, regs, fncall.fn.Entry)
formalScope, err := GoroutineScope(callScope.target, thread)
if formalScope != nil && formalScope.Regs.CFA != int64(cfa) {
// This should never happen, checking just to avoid hard to figure out disasters.
err = fmt.Errorf("mismatch in CFA %#x (calculated) %#x (expected)", formalScope.Regs.CFA, int64(cfa))
}
if err == nil {
err = funcCallEvalArgs(callScope, fncall, formalScope)
}
if err != nil {
// rolling back the call, note: this works because we called regs.Copy() above
switch bi.Arch.Name {
case "amd64":
setSP(thread, cfa)
setPC(thread, oldpc)
case "arm64":
setLR(thread, oldlr)
setPC(thread, oldpc)
default:
panic("not implemented")
}
fncall.err = err
fncall.lateCallFailure = true
break
}
case debugCallRegRestoreRegisters: // 16
// runtime requests that we restore the registers (all except pc and sp),
// this is also the last step of the function call protocol.
pc, sp := regs.PC(), regs.SP()
if err := thread.RestoreRegisters(fncall.savedRegs); err != nil {
fncall.err = fmt.Errorf("could not restore registers: %v", err)
}
if err := setPC(thread, pc); err != nil {
fncall.err = fmt.Errorf("could not restore PC: %v", err)
}
if err := setSP(thread, sp); err != nil {
fncall.err = fmt.Errorf("could not restore SP: %v", err)
}
if err := stepInstructionOut(p, thread, debugCallName, debugCallName); err != nil {
fncall.err = fmt.Errorf("could not step out of %s: %v", debugCallName, err)
}
if bi.Arch.Name == "amd64" {
// The tail of debugCallV2 corrupts the state of RFLAGS, we must restore
// it one extra time after stepping out of it.
// See https://github.com/go-delve/delve/issues/2985 and
// TestCallInjectionFlagCorruption
rflags := bi.Arch.RegistersToDwarfRegisters(0, fncall.savedRegs).Uint64Val(regnum.AMD64_Rflags)
err := thread.SetReg(regnum.AMD64_Rflags, op.DwarfRegisterFromUint64(rflags))
if err != nil {
fncall.err = fmt.Errorf("could not restore RFLAGS register: %v", err)
}
}
return true
case debugCallRegReadReturn: // 1
// read return arguments from stack
if fncall.panicvar != nil || fncall.lateCallFailure {
break
}
retScope, err := ThreadScope(p, thread)
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
// pretend we are still inside the function we called
fakeFunctionEntryScope(retScope, fncall.fn, int64(regs.SP()), regs.SP()-uint64(bi.Arch.PtrSize()))
var flags localsFlags
flags |= localsNoDeclLineCheck // if the function we are calling is an autogenerated stub then declaration lines have no meaning
if !bi.regabi {
flags |= localsTrustArgOrder
}
fncall.retvars, err = retScope.Locals(flags)
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
fncall.retvars = filterVariables(fncall.retvars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
loadValues(fncall.retvars, callScope.callCtx.retLoadCfg)
for _, v := range fncall.retvars {
v.Flags |= VariableFakeAddress
}
// Store the stack span of the currently running goroutine (which in Go >=
// 1.15 might be different from the original injection goroutine) so that
// later on we can use it to perform the escapeCheck
if threadg, _ := GetG(thread); threadg != nil {
callScope.callCtx.stacks = append(callScope.callCtx.stacks, threadg.stack)
}
if bi.Arch.Name == "arm64" {
oldlr, err := readUintRaw(thread.ProcessMemory(), regs.SP(), int64(bi.Arch.PtrSize()))
if err != nil {
fncall.err = fmt.Errorf("could not restore LR: %v", err)
break
}
if err = setLR(thread, oldlr); err != nil {
fncall.err = fmt.Errorf("could not restore LR: %v", err)
break
}
}
case debugCallRegReadPanic: // 2
// read panic value from stack
archoff := uint64(0)
if bi.Arch.Name == "arm64" {
archoff = 8
}
fncall.panicvar, err = readStackVariable(p, thread, regs, archoff, "interface {}", callScope.callCtx.retLoadCfg)
if err != nil {
fncall.err = fmt.Errorf("could not get panic: %v", err)
break
}
fncall.panicvar.Name = "~panic"
default:
// Got an unknown protocol register value, this is probably bad but the safest thing
// possible is to ignore it and hope it didn't matter.
fncallLog("unknown value of protocol register %#x", regval)
}
return false
}
func readStackVariable(t *Target, thread Thread, regs Registers, off uint64, typename string, loadCfg LoadConfig) (*Variable, error) {
bi := thread.BinInfo()
scope, err := ThreadScope(t, thread)
if err != nil {
return nil, err
}
typ, err := bi.findType(typename)
if err != nil {
return nil, err
}
v := newVariable("", regs.SP()+off, typ, scope.BinInfo, scope.Mem)
v.loadValue(loadCfg)
if v.Unreadable != nil {
return nil, v.Unreadable
}
v.Flags |= VariableFakeAddress
return v, nil
}
// fakeEntryScope alters scope to pretend that we are at the entry point of
// fn and CFA and SP are the ones passed as argument.
// This function is used to create a scope for a call frame that doesn't
// exist anymore, to read the return variables of an injected function call,
// or after a stepout command.
func fakeFunctionEntryScope(scope *EvalScope, fn *Function, cfa int64, sp uint64) error {
scope.PC = fn.Entry
scope.Fn = fn
scope.File, scope.Line, _ = scope.BinInfo.PCToLine(fn.Entry)
scope.Regs.CFA = cfa
scope.Regs.Reg(scope.Regs.SPRegNum).Uint64Val = sp
scope.Regs.Reg(scope.Regs.PCRegNum).Uint64Val = fn.Entry
fn.cu.image.dwarfReader.Seek(fn.offset)
e, err := fn.cu.image.dwarfReader.Next()
if err != nil {
return err
}
scope.Regs.FrameBase, _, _, _ = scope.BinInfo.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs, nil)
return nil
}
// allocString allocates spaces for the contents of v if it needs to be allocated
func allocString(scope *EvalScope, v *Variable) error {
if v.Base != 0 || v.Len == 0 {
// already allocated
return nil
}
if scope.callCtx == nil {
return errFuncCallNotAllowedStrAlloc
}
savedLoadCfg := scope.callCtx.retLoadCfg
scope.callCtx.retLoadCfg = loadFullValue
defer func() {
scope.callCtx.retLoadCfg = savedLoadCfg
}()
mallocv, err := evalFunctionCall(scope, &ast.CallExpr{
Fun: &ast.SelectorExpr{
X: &ast.Ident{Name: "runtime"},
Sel: &ast.Ident{Name: "mallocgc"},
},
Args: []ast.Expr{
&ast.BasicLit{Kind: token.INT, Value: strconv.Itoa(int(v.Len))},
&ast.Ident{Name: "nil"},
&ast.Ident{Name: "false"},
},
})
if err != nil {
return err
}
if mallocv.Unreadable != nil {
return mallocv.Unreadable
}
if mallocv.DwarfType.String() != "*void" {
return fmt.Errorf("unexpected return type for mallocgc call: %v", mallocv.DwarfType.String())
}
if len(mallocv.Children) != 1 {
return errors.New("internal error, could not interpret return value of mallocgc call")
}
v.Base = mallocv.Children[0].Addr
_, err = scope.Mem.WriteMemory(v.Base, []byte(constant.StringVal(v.Value)))
return err
}
func isCallInjectionStop(t *Target, thread Thread, loc *Location) bool {
if loc.Fn == nil {
return false
}
if !strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix1) && !strings.HasPrefix(loc.Fn.Name, debugCallFunctionNamePrefix2) {
return false
}
if loc.PC == loc.Fn.Entry {
// call injection just started, did not make any progress before being interrupted by a concurrent breakpoint.
return false
}
off := int64(0)
if thread.BinInfo().Arch.breakInstrMovesPC {
off = -int64(len(thread.BinInfo().Arch.breakpointInstruction))
}
text, err := disassembleCurrentInstruction(t, thread, off)
if err != nil || len(text) <= 0 {
return false
}
return text[0].IsHardBreak()
}
// callInjectionProtocol is the function called from Continue to progress
// the injection protocol for all threads.
// Returns true if a call injection terminated
func callInjectionProtocol(t *Target, threads []Thread) (done bool, err error) {
if len(t.fncallForG) == 0 {
// we aren't injecting any calls, no need to check the threads.
return false, nil
}
for _, thread := range threads {
loc, err := thread.Location()
if err != nil {
continue
}
if !isCallInjectionStop(t, thread, loc) {
continue
}
g, callinj, err := findCallInjectionStateForThread(t, thread)
if err != nil {
return false, err
}
arch := thread.BinInfo().Arch
if !arch.breakInstrMovesPC {
setPC(thread, loc.PC+uint64(len(arch.breakpointInstruction)))
}
fncallLog("step for injection on goroutine %d (current) thread=%d (location %s)", g.ID, thread.ThreadID(), loc.Fn.Name)
callinj.continueCompleted <- g
contReq, ok := <-callinj.continueRequest
if !contReq.cont {
err := finishEvalExpressionWithCalls(t, g, contReq, ok)
if err != nil {
return done, err
}
done = true
}
}
return done, nil
}
func findCallInjectionStateForThread(t *Target, thread Thread) (*G, *callInjection, error) {
g, err := GetG(thread)
if err != nil {
return nil, nil, fmt.Errorf("could not determine running goroutine for thread %#x currently executing the function call injection protocol: %v", thread.ThreadID(), err)
}
fncallLog("findCallInjectionStateForThread thread=%d goroutine=%d", thread.ThreadID(), g.ID)
notfound := func() error {
return fmt.Errorf("could not recover call injection state for goroutine %d (thread %d)", g.ID, thread.ThreadID())
}
callinj := t.fncallForG[g.ID]
if callinj != nil {
if callinj.continueCompleted == nil {
return nil, nil, notfound()
}
return g, callinj, nil
}
// In Go 1.15 and later the call injection protocol will switch to a
// different goroutine.
// Here we try to recover the injection goroutine by checking the injection
// thread.
for goid, callinj := range t.fncallForG {
if callinj != nil && callinj.continueCompleted != nil && callinj.startThreadID != 0 && callinj.startThreadID == thread.ThreadID() {
t.fncallForG[g.ID] = callinj
fncallLog("goroutine %d is the goroutine executing the call injection started in goroutine %d", g.ID, goid)
return g, callinj, nil
}
}
return nil, nil, notfound()
}
// debugCallFunction searches for the debug call function in the binary and
// uses this search to detect the debug call version.
// Returns the debug call function and its version as an integer (the lowest
// valid version is 1) or nil and zero.
func debugCallFunction(bi *BinaryInfo) (*Function, int) {
for version := maxDebugCallVersion; version >= 1; version-- {
name := debugCallFunctionNamePrefix2 + "V" + strconv.Itoa(version)
fn, ok := bi.LookupFunc[name]
if ok && fn != nil {
return fn, version
}
}
return nil, 0
}
// debugCallProtocolReg returns the register ID (as defined in pkg/dwarf/regnum)
// of the register used in the debug call protocol, given the debug call version.
// Also returns a bool indicating whether the version is supported.
func debugCallProtocolReg(archName string, version int) (uint64, bool) {
switch archName {
case "amd64":
var protocolReg uint64
switch version {
case 1:
protocolReg = regnum.AMD64_Rax
case 2:
protocolReg = regnum.AMD64_R12
default:
return 0, false
}
return protocolReg, true
case "arm64":
if version == 2 {
return regnum.ARM64_X0 + 20, true
}
return 0, false
default:
return 0, false
}
}
type fakeEntry map[dwarf.Attr]interface{}
func (e fakeEntry) Val(attr dwarf.Attr) interface{} {
return e[attr]
}
func regabiMallocgcWorkaround(bi *BinaryInfo) ([]*godwarf.Tree, error) {
var err1 error
t := func(name string) godwarf.Type {
if err1 != nil {
return nil
}
typ, err := bi.findType(name)
if err != nil {
err1 = err
return nil
}
return typ
}
m := func(name string, typ godwarf.Type, reg int, isret bool) *godwarf.Tree {
if err1 != nil {
return nil
}
var e fakeEntry = map[dwarf.Attr]interface{}{
dwarf.AttrName: name,
dwarf.AttrType: typ.Common().Offset,
dwarf.AttrLocation: []byte{byte(op.DW_OP_reg0) + byte(reg)},
dwarf.AttrVarParam: isret,
}
return &godwarf.Tree{
Entry: e,
Tag: dwarf.TagFormalParameter,
}
}
switch bi.Arch.Name {
case "amd64":
r := []*godwarf.Tree{
m("size", t("uintptr"), regnum.AMD64_Rax, false),
m("typ", t("*runtime._type"), regnum.AMD64_Rbx, false),
m("needzero", t("bool"), regnum.AMD64_Rcx, false),
m("~r1", t("unsafe.Pointer"), regnum.AMD64_Rax, true),
}
return r, err1
case "arm64":
r := []*godwarf.Tree{
m("size", t("uintptr"), regnum.ARM64_X0, false),
m("typ", t("*runtime._type"), regnum.ARM64_X0+1, false),
m("needzero", t("bool"), regnum.ARM64_X0+2, false),
m("~r1", t("unsafe.Pointer"), regnum.ARM64_X0, true),
}
return r, err1
default:
// do nothing
return nil, nil
}
}