
TestStacktraceGoroutine failed intermittently on freebsd/amd64/go1.20. This happens because of two windows, in the scheduler (right after parking a goroutine and just before resuming a parked goroutine) where a thread is associated with a goroutine but running in the system stack and there is no systemstack_switch frame to connect the two stacks.
471 lines
15 KiB
Go
471 lines
15 KiB
Go
package proc
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"strings"
|
|
|
|
"github.com/go-delve/delve/pkg/dwarf/frame"
|
|
"github.com/go-delve/delve/pkg/dwarf/op"
|
|
"github.com/go-delve/delve/pkg/dwarf/regnum"
|
|
)
|
|
|
|
var amd64BreakInstruction = []byte{0xCC}
|
|
|
|
// AMD64Arch returns an initialized AMD64
|
|
// struct.
|
|
func AMD64Arch(goos string) *Arch {
|
|
return &Arch{
|
|
Name: "amd64",
|
|
ptrSize: 8,
|
|
maxInstructionLength: 15,
|
|
breakpointInstruction: amd64BreakInstruction,
|
|
breakInstrMovesPC: true,
|
|
derefTLS: goos == "windows",
|
|
prologues: prologuesAMD64,
|
|
fixFrameUnwindContext: amd64FixFrameUnwindContext,
|
|
switchStack: amd64SwitchStack,
|
|
regSize: amd64RegSize,
|
|
RegistersToDwarfRegisters: amd64RegistersToDwarfRegisters,
|
|
addrAndStackRegsToDwarfRegisters: amd64AddrAndStackRegsToDwarfRegisters,
|
|
DwarfRegisterToString: amd64DwarfRegisterToString,
|
|
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
|
|
asmDecode: amd64AsmDecode,
|
|
PCRegNum: regnum.AMD64_Rip,
|
|
SPRegNum: regnum.AMD64_Rsp,
|
|
BPRegNum: regnum.AMD64_Rbp,
|
|
ContextRegNum: regnum.AMD64_Rdx,
|
|
asmRegisters: amd64AsmRegisters,
|
|
RegisterNameToDwarf: nameToDwarfFunc(regnum.AMD64NameToDwarf),
|
|
RegnumToString: regnum.AMD64ToName,
|
|
debugCallMinStackSize: 256,
|
|
maxRegArgBytes: 9*8 + 15*8,
|
|
}
|
|
}
|
|
|
|
func amd64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
|
|
a := bi.Arch
|
|
if a.sigreturnfn == nil {
|
|
a.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
|
|
}
|
|
|
|
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
|
|
// When there's no frame descriptor entry use BP (the frame pointer) instead
|
|
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
|
|
// - cfa is bp + a.PtrSize()*2
|
|
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
|
|
// - sp is cfa
|
|
|
|
// When the signal handler runs it will move the execution to the signal
|
|
// handling stack (installed using the sigaltstack system call).
|
|
// This isn't a proper stack switch: the pointer to g in TLS will still
|
|
// refer to whatever g was executing on that thread before the signal was
|
|
// received.
|
|
// Since go did not execute a stack switch the previous value of sp, pc
|
|
// and bp is not saved inside g.sched, as it normally would.
|
|
// The only way to recover is to either read sp/pc from the signal context
|
|
// parameter (the ucontext_t* parameter) or to unconditionally follow the
|
|
// frame pointer when we get to runtime.sigreturn (which is what we do
|
|
// here).
|
|
|
|
return &frame.FrameContext{
|
|
RetAddrReg: regnum.AMD64_Rip,
|
|
Regs: map[uint64]frame.DWRule{
|
|
regnum.AMD64_Rip: {
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-a.PtrSize()),
|
|
},
|
|
regnum.AMD64_Rbp: {
|
|
Rule: frame.RuleOffset,
|
|
Offset: int64(-2 * a.PtrSize()),
|
|
},
|
|
regnum.AMD64_Rsp: {
|
|
Rule: frame.RuleValOffset,
|
|
Offset: 0,
|
|
},
|
|
},
|
|
CFA: frame.DWRule{
|
|
Rule: frame.RuleCFA,
|
|
Reg: regnum.AMD64_Rbp,
|
|
Offset: int64(2 * a.PtrSize()),
|
|
},
|
|
}
|
|
}
|
|
|
|
if a.crosscall2fn == nil {
|
|
a.crosscall2fn = bi.lookupOneFunc("crosscall2")
|
|
}
|
|
|
|
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
|
|
rule := fctxt.CFA
|
|
if rule.Offset == crosscall2SPOffsetBad {
|
|
switch bi.GOOS {
|
|
case "windows":
|
|
rule.Offset += crosscall2SPOffsetWindowsAMD64
|
|
default:
|
|
rule.Offset += crosscall2SPOffset
|
|
}
|
|
}
|
|
fctxt.CFA = rule
|
|
}
|
|
|
|
// We assume that RBP is the frame pointer and we want to keep it updated,
|
|
// so that we can use it to unwind the stack even when we encounter frames
|
|
// without descriptor entries.
|
|
// If there isn't a rule already we emit one.
|
|
if fctxt.Regs[regnum.AMD64_Rbp].Rule == frame.RuleUndefined {
|
|
fctxt.Regs[regnum.AMD64_Rbp] = frame.DWRule{
|
|
Rule: frame.RuleFramePointer,
|
|
Reg: regnum.AMD64_Rbp,
|
|
Offset: 0,
|
|
}
|
|
}
|
|
|
|
return fctxt
|
|
}
|
|
|
|
// cgocallSPOffsetSaveSlot is the offset from systemstack.SP where
|
|
// (goroutine.SP - StackHi) is saved in runtime.asmcgocall after the stack
|
|
// switch happens.
|
|
const amd64cgocallSPOffsetSaveSlot = 0x28
|
|
|
|
func amd64SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
|
|
if it.frame.Current.Fn == nil {
|
|
if it.systemstack && it.g != nil && it.top {
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
switch it.frame.Current.Fn.Name {
|
|
case "runtime.asmcgocall":
|
|
if it.top || !it.systemstack {
|
|
return false
|
|
}
|
|
|
|
// This function is called by a goroutine to execute a C function and
|
|
// switches from the goroutine stack to the system stack.
|
|
// Since we are unwinding the stack from callee to caller we have to switch
|
|
// from the system stack to the goroutine stack.
|
|
off, _ := readIntRaw(it.mem, uint64(it.regs.SP()+amd64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize())) // reads "offset of SP from StackHi" from where runtime.asmcgocall saved it
|
|
oldsp := it.regs.SP()
|
|
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(it.stackhi) - off)
|
|
|
|
// runtime.asmcgocall can also be called from inside the system stack,
|
|
// in that case no stack switch actually happens
|
|
if it.regs.SP() == oldsp {
|
|
return false
|
|
}
|
|
it.systemstack = false
|
|
|
|
// advances to the next frame in the call stack
|
|
addrret := uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()))
|
|
it.frame.Ret, _ = readUintRaw(it.mem, addrret, int64(it.bi.Arch.PtrSize()))
|
|
it.pc = it.frame.Ret
|
|
|
|
it.top = false
|
|
return true
|
|
|
|
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
|
|
// For a detailed description of how this works read the long comment at
|
|
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
|
|
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_amd64.s
|
|
//
|
|
// When a C functions calls back into go it will eventually call into
|
|
// runtime.cgocallback_gofunc which is the function that does the stack
|
|
// switch from the system stack back into the goroutine stack
|
|
// Since we are going backwards on the stack here we see the transition
|
|
// as goroutine stack -> system stack.
|
|
if it.top || it.systemstack {
|
|
return false
|
|
}
|
|
|
|
it.loadG0SchedSP()
|
|
if it.g0_sched_sp <= 0 {
|
|
return false
|
|
}
|
|
// entering the system stack
|
|
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g0_sched_sp
|
|
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
|
|
it.g0_sched_sp, _ = readUintRaw(it.mem, uint64(it.regs.SP()), int64(it.bi.Arch.PtrSize()))
|
|
it.top = false
|
|
callFrameRegs, ret, retaddr := it.advanceRegs()
|
|
frameOnSystemStack := it.newStackframe(ret, retaddr)
|
|
it.pc = frameOnSystemStack.Ret
|
|
it.regs = callFrameRegs
|
|
it.systemstack = true
|
|
|
|
return true
|
|
|
|
case "runtime.goexit", "runtime.rt0_go":
|
|
// Look for "top of stack" functions.
|
|
it.atend = true
|
|
return true
|
|
|
|
case "runtime.mcall":
|
|
if it.systemstack && it.g != nil {
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
}
|
|
it.atend = true
|
|
return true
|
|
|
|
case "runtime.mstart":
|
|
// Calls to runtime.systemstack will switch to the systemstack then:
|
|
// 1. alter the goroutine stack so that it looks like systemstack_switch
|
|
// was called
|
|
// 2. alter the system stack so that it looks like the bottom-most frame
|
|
// belongs to runtime.mstart
|
|
// If we find a runtime.mstart frame on the system stack of a goroutine
|
|
// parked on runtime.systemstack_switch we assume runtime.systemstack was
|
|
// called and continue tracing from the parked position.
|
|
|
|
if it.top || !it.systemstack || it.g == nil {
|
|
return false
|
|
}
|
|
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
|
|
return false
|
|
}
|
|
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
|
|
case "runtime.newstack", "runtime.systemstack":
|
|
if it.systemstack && it.g != nil {
|
|
it.switchToGoroutineStack()
|
|
return true
|
|
}
|
|
|
|
return false
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// amd64RegSize returns the size (in bytes) of register regnum.
|
|
// The mapping between hardware registers and DWARF registers is specified
|
|
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
|
|
// figure 3.36
|
|
// https://www.uclibc.org/docs/psABI-x86_64.pdf
|
|
func amd64RegSize(rn uint64) int {
|
|
// XMM registers
|
|
if rn > regnum.AMD64_Rip && rn <= 32 {
|
|
return 16
|
|
}
|
|
// x87 registers
|
|
if rn >= 33 && rn <= 40 {
|
|
return 10
|
|
}
|
|
return 8
|
|
}
|
|
|
|
func amd64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
|
|
dregs := initDwarfRegistersFromSlice(int(regnum.AMD64MaxRegNum()), regs, regnum.AMD64NameToDwarf)
|
|
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
|
|
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.AMD64NameToDwarf))
|
|
return dr
|
|
}
|
|
|
|
func initDwarfRegistersFromSlice(maxRegs int, regs Registers, nameToDwarf map[string]int) []*op.DwarfRegister {
|
|
dregs := make([]*op.DwarfRegister, maxRegs+1)
|
|
regslice, _ := regs.Slice(false)
|
|
for _, reg := range regslice {
|
|
if dwarfReg, ok := nameToDwarf[strings.ToLower(reg.Name)]; ok {
|
|
dregs[dwarfReg] = reg.Reg
|
|
}
|
|
}
|
|
return dregs
|
|
}
|
|
|
|
func loadMoreDwarfRegistersFromSliceFunc(dr *op.DwarfRegisters, regs Registers, nameToDwarf map[string]int) func() {
|
|
return func() {
|
|
regslice, err := regs.Slice(true)
|
|
dr.FloatLoadError = err
|
|
for _, reg := range regslice {
|
|
name := strings.ToLower(reg.Name)
|
|
if dwarfReg, ok := nameToDwarf[name]; ok {
|
|
dr.AddReg(uint64(dwarfReg), reg.Reg)
|
|
} else if reg.Reg.Bytes != nil && (strings.HasPrefix(name, "ymm") || strings.HasPrefix(name, "zmm")) {
|
|
xmmIdx, ok := nameToDwarf["x"+name[1:]]
|
|
if !ok {
|
|
continue
|
|
}
|
|
xmmReg := dr.Reg(uint64(xmmIdx))
|
|
if xmmReg == nil || xmmReg.Bytes == nil {
|
|
continue
|
|
}
|
|
nb := make([]byte, 0, len(xmmReg.Bytes)+len(reg.Reg.Bytes))
|
|
nb = append(nb, xmmReg.Bytes...)
|
|
nb = append(nb, reg.Reg.Bytes...)
|
|
xmmReg.Bytes = nb
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func amd64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
|
|
dregs := make([]*op.DwarfRegister, regnum.AMD64_Rip+1)
|
|
dregs[regnum.AMD64_Rip] = op.DwarfRegisterFromUint64(pc)
|
|
dregs[regnum.AMD64_Rsp] = op.DwarfRegisterFromUint64(sp)
|
|
dregs[regnum.AMD64_Rbp] = op.DwarfRegisterFromUint64(bp)
|
|
|
|
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
|
|
}
|
|
|
|
func amd64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
|
|
name = regnum.AMD64ToName(uint64(i))
|
|
|
|
if reg == nil {
|
|
return name, false, ""
|
|
}
|
|
|
|
switch n := strings.ToLower(name); n {
|
|
case "rflags":
|
|
return name, false, eflagsDescription.Describe(reg.Uint64Val, 64)
|
|
|
|
case "cw", "sw", "tw", "fop":
|
|
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
|
|
|
|
case "mxcsr_mask":
|
|
return name, true, fmt.Sprintf("%#08x", reg.Uint64Val)
|
|
|
|
case "mxcsr":
|
|
return name, true, mxcsrDescription.Describe(reg.Uint64Val, 32)
|
|
|
|
default:
|
|
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
|
|
return name, true, formatSSEReg(name, reg.Bytes)
|
|
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
|
|
return name, true, formatX87Reg(reg.Bytes)
|
|
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
|
|
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
|
|
} else {
|
|
return name, false, fmt.Sprintf("%#x", reg.Bytes)
|
|
}
|
|
}
|
|
}
|
|
|
|
func formatSSEReg(name string, reg []byte) string {
|
|
out := new(bytes.Buffer)
|
|
formatSSERegInternal(reg, out)
|
|
if len(reg) < 32 {
|
|
return out.String()
|
|
}
|
|
|
|
fmt.Fprintf(out, "\n\t[%sh] ", "Y"+name[1:])
|
|
formatSSERegInternal(reg[16:], out)
|
|
|
|
if len(reg) < 64 {
|
|
return out.String()
|
|
}
|
|
|
|
fmt.Fprintf(out, "\n\t[%shl] ", "Z"+name[1:])
|
|
formatSSERegInternal(reg[32:], out)
|
|
fmt.Fprintf(out, "\n\t[%shh] ", "Z"+name[1:])
|
|
formatSSERegInternal(reg[48:], out)
|
|
|
|
return out.String()
|
|
}
|
|
|
|
func formatSSERegInternal(xmm []byte, out *bytes.Buffer) {
|
|
buf := bytes.NewReader(xmm)
|
|
|
|
var vi [16]uint8
|
|
for i := range vi {
|
|
binary.Read(buf, binary.LittleEndian, &vi[i])
|
|
}
|
|
|
|
fmt.Fprintf(out, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8], vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
|
|
|
|
fmt.Fprintf(out, "\tv2_int={ %02x%02x%02x%02x%02x%02x%02x%02x %02x%02x%02x%02x%02x%02x%02x%02x }", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0], vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
|
|
|
|
fmt.Fprintf(out, "\tv4_int={ %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x }", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4], vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
|
|
|
|
fmt.Fprintf(out, "\tv8_int={ %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x }", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6], vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
|
|
|
|
fmt.Fprintf(out, "\tv16_int={ %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x }", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7], vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
|
|
|
|
buf.Seek(0, io.SeekStart)
|
|
var v2 [2]float64
|
|
for i := range v2 {
|
|
binary.Read(buf, binary.LittleEndian, &v2[i])
|
|
}
|
|
fmt.Fprintf(out, "\tv2_float={ %g %g }", v2[0], v2[1])
|
|
|
|
buf.Seek(0, io.SeekStart)
|
|
var v4 [4]float32
|
|
for i := range v4 {
|
|
binary.Read(buf, binary.LittleEndian, &v4[i])
|
|
}
|
|
fmt.Fprintf(out, "\tv4_float={ %g %g %g %g }", v4[0], v4[1], v4[2], v4[3])
|
|
}
|
|
|
|
func formatX87Reg(b []byte) string {
|
|
if len(b) < 10 {
|
|
return fmt.Sprintf("%#x", b)
|
|
}
|
|
mantissa := binary.LittleEndian.Uint64(b[:8])
|
|
exponent := uint16(binary.LittleEndian.Uint16(b[8:]))
|
|
|
|
var f float64
|
|
fset := false
|
|
|
|
const (
|
|
_SIGNBIT = 1 << 15
|
|
_EXP_BIAS = (1 << 14) - 1 // 2^(n-1) - 1 = 16383
|
|
_SPECIALEXP = (1 << 15) - 1 // all bits set
|
|
_HIGHBIT = 1 << 63
|
|
_QUIETBIT = 1 << 62
|
|
)
|
|
|
|
sign := 1.0
|
|
if exponent&_SIGNBIT != 0 {
|
|
sign = -1.0
|
|
}
|
|
exponent &= ^uint16(_SIGNBIT)
|
|
|
|
NaN := math.NaN()
|
|
Inf := math.Inf(+1)
|
|
|
|
switch exponent {
|
|
case 0:
|
|
switch {
|
|
case mantissa == 0:
|
|
f = sign * 0.0
|
|
fset = true
|
|
case mantissa&_HIGHBIT != 0:
|
|
f = NaN
|
|
fset = true
|
|
}
|
|
case _SPECIALEXP:
|
|
switch {
|
|
case mantissa&_HIGHBIT == 0:
|
|
f = sign * Inf
|
|
fset = true
|
|
default:
|
|
f = NaN // signaling NaN
|
|
fset = true
|
|
}
|
|
default:
|
|
if mantissa&_HIGHBIT == 0 {
|
|
f = NaN
|
|
fset = true
|
|
}
|
|
}
|
|
|
|
if !fset {
|
|
significand := float64(mantissa) / (1 << 63)
|
|
f = sign * math.Ldexp(significand, int(exponent-_EXP_BIAS))
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, exponent)
|
|
binary.Write(&buf, binary.LittleEndian, mantissa)
|
|
|
|
return fmt.Sprintf("%#04x%016x\t%g", exponent, mantissa, f)
|
|
}
|