delve/pkg/proc/target_exec.go
Alessandro Arzilli bf627d0f7d
proc: fix TestCondBreakpointWithFrame flakes on 1.22rc1 (#3624)
The flake manifests as an error where the variable i can not be found in
frame 1 and happens in go1.22rc1 between 0.1% and 0.5% of the time (it is highly dependent on CPU contention)
This problem is caused by the new code in evalop.PushLocal referencing the
stale value of SelectedGoroutine. This happens because:

-  evalop.PushLocal calls ConvertEvalScope
- ConvertEvalScope calls FindGoroutine
- FindGoroutine checks the value of selectedGoroutine

When breakpoint conditions are evaluated both the value of selectedGoroutine
and currentThread are stale because we can only set their definitive value
*after* all breakpoint conditions have been evaluated.

The fact that it only happens in 1.22rc1 is coincidental, it's probably
caused by the fact that 1.22rc1 migrates goroutines between threads more in
this particular circumstance.

This commit fixes the problem in two ways:

1. selectedGoroutine and currentThread are given temprorary non-stale values
   before breakpoint conditions are evaluated
2. evalop.PushLocal is changed so it takes a stack trace of the current
   thread rather than resolving it through the selected goroutine.

Either one would suffice however I think we should do both, (2) ensures that
the runtime.frame(n).var will work even if the current thread is not running
any goroutine and (1) ensures that we don't accidentally reference a stale
selectedGoroutine in the future.
2024-01-10 06:53:16 -08:00

1398 lines
40 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/token"
"path/filepath"
"strings"
"golang.org/x/arch/ppc64/ppc64asm"
"github.com/go-delve/delve/pkg/astutil"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/logflags"
)
const maxSkipAutogeneratedWrappers = 5 // maximum recursion depth for skipAutogeneratedWrappers
// ErrNoSourceForPC is returned when the given address
// does not correspond with a source file location.
type ErrNoSourceForPC struct {
pc uint64
}
func (err *ErrNoSourceForPC) Error() string {
return fmt.Sprintf("no source for PC %#x", err.pc)
}
// Next resumes the processes in the group, continuing the selected target
// until the next source line.
func (grp *TargetGroup) Next() (err error) {
if _, err := grp.Valid(); err != nil {
return err
}
if grp.HasSteppingBreakpoints() {
return fmt.Errorf("next while nexting")
}
if err = next(grp.Selected, false, false); err != nil {
grp.Selected.ClearSteppingBreakpoints()
return
}
return grp.Continue()
}
// Continue continues execution of the debugged
// processes. It will continue until it hits a breakpoint
// or is otherwise stopped.
func (grp *TargetGroup) Continue() error {
if grp.numValid() == 0 {
_, err := grp.targets[0].Valid()
return err
}
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
for _, thread := range dbp.ThreadList() {
thread.Common().CallReturn = false
thread.Common().returnValues = nil
}
dbp.Breakpoints().WatchOutOfScope = nil
dbp.clearHardcodedBreakpoints()
}
grp.cctx.CheckAndClearManualStopRequest()
defer func() {
// Make sure we clear internal breakpoints if we simultaneously receive a
// manual stop request and hit a breakpoint.
if grp.cctx.CheckAndClearManualStopRequest() {
grp.finishManualStop()
}
}()
for {
if grp.cctx.CheckAndClearManualStopRequest() {
grp.finishManualStop()
return nil
}
for _, dbp := range grp.targets {
dbp.ClearCaches()
}
logflags.DebuggerLogger().Debugf("ContinueOnce")
trapthread, stopReason, contOnceErr := grp.procgrp.ContinueOnce(grp.cctx)
var traptgt *Target
if trapthread != nil {
traptgt = grp.TargetForThread(trapthread.ThreadID())
if traptgt == nil {
return fmt.Errorf("could not find target for thread %d", trapthread.ThreadID())
}
} else {
traptgt = grp.targets[0]
}
traptgt.StopReason = stopReason
it := ValidTargets{Group: grp}
for it.Next() {
// Both selectedGoroutine and current thread are stale here, since we can
// only set their definitive value *after* evaluating breakpoint
// conditions here we give them temporary non-stale values.
it.selectedGoroutine = nil
curthread := it.currentThread
for _, thread := range it.ThreadList() {
if thread.Breakpoint().Breakpoint != nil {
it.currentThread = thread
thread.Breakpoint().Breakpoint.checkCondition(it.Target, thread, thread.Breakpoint())
}
}
it.currentThread = curthread
}
if contOnceErr != nil {
// Attempt to refresh status of current thread/current goroutine, see
// Issue #2078.
// Errors are ignored because depending on why ContinueOnce failed this
// might very well not work.
_ = grp.setCurrentThreads(traptgt, trapthread)
if pe, ok := contOnceErr.(ErrProcessExited); ok {
traptgt.exitStatus = pe.Status
}
return contOnceErr
}
if stopReason == StopLaunched {
it.Reset()
for it.Next() {
it.Target.ClearSteppingBreakpoints()
}
}
var callInjectionDone bool
var callErr error
var hcbpErr error
it.Reset()
for it.Next() {
dbp := it.Target
threads := dbp.ThreadList()
if logflags.Debugger() {
log := logflags.DebuggerLogger()
log.Debugf("callInjection protocol on:")
for _, th := range threads {
regs, _ := th.Registers()
log.Debugf("\t%d PC=%#x", th.ThreadID(), regs.PC())
}
}
callInjectionDoneThis, callErrThis := callInjectionProtocol(dbp, threads)
callInjectionDone = callInjectionDone || callInjectionDoneThis
if callInjectionDoneThis {
dbp.StopReason = StopCallReturned
}
if callErrThis != nil && callErr == nil {
callErr = callErrThis
}
hcbpErrThis := dbp.handleHardcodedBreakpoints(grp, trapthread, threads)
if hcbpErrThis != nil && hcbpErr == nil {
hcbpErr = hcbpErrThis
}
}
// callErr and hcbpErr check delayed until after pickCurrentThread, which
// must always happen, otherwise the debugger could be left in an
// inconsistent state.
it = ValidTargets{Group: grp}
for it.Next() {
var th Thread = nil
if it.Target == traptgt {
th = trapthread
}
err := pickCurrentThread(it.Target, th)
if err != nil {
return err
}
}
grp.pickCurrentTarget(traptgt)
dbp := grp.Selected
if callErr != nil {
return callErr
}
if hcbpErr != nil {
return hcbpErr
}
curthread := dbp.CurrentThread()
curbp := curthread.Breakpoint()
switch {
case curbp.Active && curbp.Stepping:
if curbp.SteppingInto {
// See description of proc.(*Process).next for the meaning of StepBreakpoints
if err := conditionErrors(grp); err != nil {
return err
}
if grp.GetDirection() == Backward {
if err := dbp.ClearSteppingBreakpoints(); err != nil {
return err
}
return grp.StepInstruction()
}
} else {
curthread.Common().returnValues = curbp.Breakpoint.returnInfo.Collect(dbp, curthread)
if err := dbp.ClearSteppingBreakpoints(); err != nil {
return err
}
dbp.StopReason = StopNextFinished
return conditionErrors(grp)
}
case curbp.Active:
onNextGoroutine, err := onNextGoroutine(dbp, curthread, dbp.Breakpoints())
if err != nil {
return err
}
if onNextGoroutine &&
(!isTraceOrTraceReturn(curbp.Breakpoint) || grp.KeepSteppingBreakpoints&TracepointKeepsSteppingBreakpoints == 0) {
err := dbp.ClearSteppingBreakpoints()
if err != nil {
return err
}
}
if curbp.LogicalID() == unrecoveredPanicID {
dbp.ClearSteppingBreakpoints()
}
if curbp.LogicalID() != hardcodedBreakpointID {
dbp.StopReason = StopBreakpoint
}
if curbp.Breakpoint.WatchType != 0 {
dbp.StopReason = StopWatchpoint
}
return conditionErrors(grp)
case stopReason == StopLaunched:
return nil
default:
// not a manual stop, not on runtime.Breakpoint, not on a breakpoint, just repeat
}
if callInjectionDone {
// a call injection was finished, don't let a breakpoint with a failed
// condition or a step breakpoint shadow this.
return conditionErrors(grp)
}
}
}
func (grp *TargetGroup) finishManualStop() {
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
dbp.StopReason = StopManual
dbp.clearHardcodedBreakpoints()
if grp.KeepSteppingBreakpoints&HaltKeepsSteppingBreakpoints == 0 {
dbp.ClearSteppingBreakpoints()
}
}
}
// setCurrentThreads switches traptgt to trapthread, then for each target in
// the group if its current thread exists it refreshes the current
// goroutine, otherwise it switches it to a randomly selected thread.
func (grp *TargetGroup) setCurrentThreads(traptgt *Target, trapthread Thread) error {
var err error
if traptgt != nil && trapthread != nil {
err = traptgt.SwitchThread(trapthread.ThreadID())
}
for _, tgt := range grp.targets {
if isvalid, _ := tgt.Valid(); !isvalid {
continue
}
if _, ok := tgt.FindThread(tgt.currentThread.ThreadID()); ok {
tgt.selectedGoroutine, _ = GetG(tgt.currentThread)
} else {
threads := tgt.ThreadList()
if len(threads) > 0 {
err1 := tgt.SwitchThread(threads[0].ThreadID())
if err1 != nil && err == nil {
err = err1
}
}
}
}
return err
}
func isTraceOrTraceReturn(bp *Breakpoint) bool {
if bp.Logical == nil {
return false
}
return bp.Logical.Tracepoint || bp.Logical.TraceReturn
}
func conditionErrors(grp *TargetGroup) error {
var condErr error
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
for _, th := range dbp.ThreadList() {
if bp := th.Breakpoint(); bp.Breakpoint != nil && bp.CondError != nil {
if condErr == nil {
condErr = bp.CondError
} else {
return fmt.Errorf("multiple errors evaluating conditions")
}
}
}
}
return condErr
}
// pick a new dbp.currentThread, with the following priority:
//
// - a thread with an active stepping breakpoint
// - a thread with an active breakpoint, prioritizing trapthread
// - trapthread if it is not nil
// - the previous current thread if it still exists
// - a randomly selected thread
func pickCurrentThread(dbp *Target, trapthread Thread) error {
threads := dbp.ThreadList()
for _, th := range threads {
if bp := th.Breakpoint(); bp.Active && bp.Stepping {
return dbp.SwitchThread(th.ThreadID())
}
}
if trapthread != nil {
if bp := trapthread.Breakpoint(); bp.Active {
return dbp.SwitchThread(trapthread.ThreadID())
}
}
for _, th := range threads {
if bp := th.Breakpoint(); bp.Active {
return dbp.SwitchThread(th.ThreadID())
}
}
if trapthread != nil {
return dbp.SwitchThread(trapthread.ThreadID())
}
if _, ok := dbp.FindThread(dbp.currentThread.ThreadID()); ok {
dbp.selectedGoroutine, _ = GetG(dbp.currentThread)
return nil
}
if len(threads) > 0 {
return dbp.SwitchThread(threads[0].ThreadID())
}
return nil
}
// pickCurrentTarget picks a new current target, with the following property:
//
// - a target with an active stepping breakpoint
// - a target with StopReason == StopCallReturned
// - a target with an active breakpoint, prioritizing traptgt
// - traptgt
func (grp *TargetGroup) pickCurrentTarget(traptgt *Target) {
if len(grp.targets) == 1 {
grp.Selected = grp.targets[0]
return
}
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
bp := dbp.currentThread.Breakpoint()
if bp.Active && bp.Stepping {
grp.Selected = dbp
return
}
}
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
if dbp.StopReason == StopCallReturned {
grp.Selected = dbp
return
}
}
if traptgt.currentThread.Breakpoint().Active {
grp.Selected = traptgt
return
}
for _, dbp := range grp.targets {
if isvalid, _ := dbp.Valid(); !isvalid {
continue
}
bp := dbp.currentThread.Breakpoint()
if bp.Active {
grp.Selected = dbp
return
}
}
grp.Selected = traptgt
}
func disassembleCurrentInstruction(p Process, thread Thread, off int64) ([]AsmInstruction, error) {
regs, err := thread.Registers()
if err != nil {
return nil, err
}
pc := regs.PC() + uint64(off)
return disassemble(p.Memory(), regs, p.Breakpoints(), p.BinInfo(), pc, pc+uint64(p.BinInfo().Arch.MaxInstructionLength()), true)
}
// stepInstructionOut repeatedly calls StepInstruction until the current
// function is neither fnname1 or fnname2.
// This function is used to step out of runtime.Breakpoint as well as
// runtime.debugCallV1.
func stepInstructionOut(grp *TargetGroup, dbp *Target, curthread Thread, fnname1, fnname2 string) error {
defer dbp.ClearCaches()
for {
if err := grp.procgrp.StepInstruction(curthread.ThreadID()); err != nil {
return err
}
loc, err := curthread.Location()
var locFnName string
if loc.Fn != nil && !loc.Fn.cu.image.Stripped() {
locFnName = loc.Fn.Name
// Calls to runtime.Breakpoint are inlined in some versions of Go when
// inlining is enabled. Here we attempt to resolve any inlining.
dwarfTree, _ := loc.Fn.cu.image.getDwarfTree(loc.Fn.offset)
if dwarfTree != nil {
inlstack := reader.InlineStack(dwarfTree, loc.PC)
if len(inlstack) > 0 {
if locFnName2, ok := inlstack[0].Val(dwarf.AttrName).(string); ok {
locFnName = locFnName2
}
}
}
}
if err != nil || loc.Fn == nil || (locFnName != fnname1 && locFnName != fnname2) {
g, _ := GetG(curthread)
selg := dbp.SelectedGoroutine()
if g != nil && selg != nil && g.ID == selg.ID {
selg.CurrentLoc = *loc
}
return curthread.SetCurrentBreakpoint(true)
}
}
}
// Step resumes the processes in the group, continuing the selected target
// until the next source line. Will step into functions.
func (grp *TargetGroup) Step() (err error) {
if _, err := grp.Valid(); err != nil {
return err
}
if grp.HasSteppingBreakpoints() {
return fmt.Errorf("next while nexting")
}
if err = next(grp.Selected, true, false); err != nil {
_ = grp.Selected.ClearSteppingBreakpoints()
return err
}
if bpstate := grp.Selected.CurrentThread().Breakpoint(); bpstate.Breakpoint != nil && bpstate.Active && bpstate.SteppingInto && grp.GetDirection() == Backward {
grp.Selected.ClearSteppingBreakpoints()
return grp.StepInstruction()
}
return grp.Continue()
}
// sameGoroutineCondition returns an expression that evaluates to true when
// the current goroutine is g.
func sameGoroutineCondition(bi *BinaryInfo, g *G, threadID int) ast.Expr {
if g == nil {
if len(bi.Images[0].compileUnits) == 0 {
// It's unclear what the right behavior is here. We are probably
// debugging a process without debug info, this means we can't properly
// create a same goroutine condition (we don't have a description for the
// runtime.g type). If we don't set the condition then 'next' (and step,
// stepout) will work for single-threaded programs (in limited
// circumstances) but fail in presence of any concurrency.
// If we set a thread ID condition even single threaded programs can fail
// due to goroutine migration, but sometimes it will work even with
// concurrency.
return nil
}
return astutil.Eql(astutil.PkgVar("runtime", "threadid"), astutil.Int(int64(threadID)))
}
return astutil.Eql(astutil.Sel(astutil.PkgVar("runtime", "curg"), "goid"), astutil.Int(g.ID))
}
func frameoffCondition(frame *Stackframe) ast.Expr {
return astutil.Eql(astutil.PkgVar("runtime", "frameoff"), astutil.Int(frame.FrameOffset()))
}
// StepOut resumes the processes in the group, continuing the selected target
// until the current goroutine exits the function currently being
// executed or a deferred function is executed
func (grp *TargetGroup) StepOut() error {
backward := grp.GetDirection() == Backward
if _, err := grp.Valid(); err != nil {
return err
}
if grp.HasSteppingBreakpoints() {
return fmt.Errorf("next while nexting")
}
dbp := grp.Selected
selg := dbp.SelectedGoroutine()
curthread := dbp.CurrentThread()
topframe, retframe, err := topframe(dbp, selg, curthread)
if err != nil {
return err
}
success := false
defer func() {
if !success {
dbp.ClearSteppingBreakpoints()
}
}()
if topframe.Inlined {
if err := next(dbp, false, true); err != nil {
return err
}
success = true
return grp.Continue()
}
sameGCond := sameGoroutineCondition(dbp.BinInfo(), selg, curthread.ThreadID())
if backward {
if err := stepOutReverse(dbp, topframe, retframe, sameGCond); err != nil {
return err
}
success = true
return grp.Continue()
}
deferpc, err := setDeferBreakpoint(dbp, nil, topframe, sameGCond, false)
if err != nil {
return err
}
if topframe.Ret == 0 && deferpc == 0 {
return errors.New("nothing to stepout to")
}
if topframe.Ret != 0 {
topframe, retframe := skipAutogeneratedWrappersOut(grp.Selected, selg, curthread, &topframe, &retframe)
retFrameCond := astutil.And(sameGCond, frameoffCondition(retframe))
bp, err := allowDuplicateBreakpoint(dbp.SetBreakpoint(0, retframe.Current.PC, NextBreakpoint, retFrameCond))
if err != nil {
return err
}
if bp != nil {
configureReturnBreakpoint(dbp.BinInfo(), bp, topframe, retFrameCond)
}
}
if bp := curthread.Breakpoint(); bp.Breakpoint == nil {
curthread.SetCurrentBreakpoint(false)
}
success = true
return grp.Continue()
}
// StepInstruction will continue the current thread for exactly
// one instruction. This method affects only the thread
// associated with the selected goroutine. All other
// threads will remain stopped.
func (grp *TargetGroup) StepInstruction() (err error) {
dbp := grp.Selected
thread := dbp.CurrentThread()
g := dbp.SelectedGoroutine()
if g != nil {
if g.Thread == nil {
// Step called on parked goroutine
if _, err := dbp.SetBreakpoint(0, g.PC, NextBreakpoint,
sameGoroutineCondition(dbp.BinInfo(), dbp.SelectedGoroutine(), thread.ThreadID())); err != nil {
return err
}
return grp.Continue()
}
thread = g.Thread
}
dbp.ClearCaches()
if ok, err := dbp.Valid(); !ok {
return err
}
err = grp.procgrp.StepInstruction(thread.ThreadID())
if err != nil {
return err
}
thread.Breakpoint().Clear()
err = thread.SetCurrentBreakpoint(false)
if err != nil {
return err
}
if tg, _ := GetG(thread); tg != nil {
dbp.selectedGoroutine = tg
}
dbp.StopReason = StopNextFinished
return nil
}
// Set breakpoints at every line, and the return address. Also look for
// a deferred function and set a breakpoint there too.
// If stepInto is true it will also set breakpoints inside all
// functions called on the current source line, for non-absolute CALLs
// a breakpoint of kind StepBreakpoint is set on the CALL instruction,
// Continue will take care of setting a breakpoint to the destination
// once the CALL is reached.
//
// Regardless of stepInto the following breakpoints will be set:
// - a breakpoint on the first deferred function with NextDeferBreakpoint
// kind, the list of all the addresses to deferreturn calls in this function
// and condition checking that we remain on the same goroutine
// - a breakpoint on each line of the function, with a condition checking
// that we stay on the same stack frame and goroutine.
// - a breakpoint on the return address of the function, with a condition
// checking that we move to the previous stack frame and stay on the same
// goroutine.
//
// The breakpoint on the return address is *not* set if the current frame is
// an inlined call. For inlined calls topframe.Current.Fn is the function
// where the inlining happened and the second set of breakpoints will also
// cover the "return address".
//
// If inlinedStepOut is true this function implements the StepOut operation
// for an inlined function call. Everything works the same as normal except
// when removing instructions belonging to inlined calls we also remove all
// instructions belonging to the current inlined call.
func next(dbp *Target, stepInto, inlinedStepOut bool) error {
backward := dbp.recman.GetDirection() == Backward
selg := dbp.SelectedGoroutine()
curthread := dbp.CurrentThread()
topframe, retframe, err := topframe(dbp, selg, curthread)
if err != nil {
return err
}
if topframe.Current.Fn == nil {
return &ErrNoSourceForPC{topframe.Current.PC}
}
if backward && retframe.Current.Fn == nil {
return &ErrNoSourceForPC{retframe.Current.PC}
}
// sanity check
if inlinedStepOut && !topframe.Inlined {
panic("next called with inlinedStepOut but topframe was not inlined")
}
success := false
defer func() {
if !success {
dbp.ClearSteppingBreakpoints()
}
}()
ext := filepath.Ext(topframe.Current.File)
csource := ext != ".go" && ext != ".s"
var regs Registers
if selg != nil && selg.Thread != nil {
regs, err = selg.Thread.Registers()
if err != nil {
return err
}
}
sameGCond := sameGoroutineCondition(dbp.BinInfo(), selg, curthread.ThreadID())
var firstPCAfterPrologue uint64
if backward {
firstPCAfterPrologue, err = FirstPCAfterPrologue(dbp, topframe.Current.Fn, false)
if err != nil {
return err
}
if firstPCAfterPrologue == topframe.Current.PC {
// We don't want to step into the prologue so we just execute a reverse step out instead
if err := stepOutReverse(dbp, topframe, retframe, sameGCond); err != nil {
return err
}
success = true
return nil
}
topframe.Ret, err = findCallInstrForRet(dbp, dbp.Memory(), topframe.Ret, retframe.Current.Fn)
if err != nil {
return err
}
}
text, err := disassemble(dbp.Memory(), regs, dbp.Breakpoints(), dbp.BinInfo(), topframe.Current.Fn.Entry, topframe.Current.Fn.End, false)
if err != nil && stepInto {
return err
}
sameFrameCond := astutil.And(sameGCond, frameoffCondition(&topframe))
if stepInto && !backward {
err := setStepIntoBreakpoints(dbp, topframe.Current.Fn, text, topframe, sameGCond)
if err != nil {
return err
}
}
if !backward && !topframe.Current.Fn.cu.image.Stripped() {
_, err = setDeferBreakpoint(dbp, text, topframe, sameGCond, stepInto)
if err != nil {
return err
}
}
// Add breakpoints on all the lines in the current function
pcs, err := topframe.Current.Fn.AllPCs(topframe.Current.File, topframe.Current.Line)
if err != nil {
return err
}
if backward {
// Ensure that pcs contains firstPCAfterPrologue when reverse stepping.
found := false
for _, pc := range pcs {
if pc == firstPCAfterPrologue {
found = true
break
}
}
if !found {
pcs = append(pcs, firstPCAfterPrologue)
}
}
if !stepInto {
// Removing any PC range belonging to an inlined call
frame := topframe
if inlinedStepOut {
frame = retframe
}
pcs, err = removeInlinedCalls(pcs, frame)
if err != nil {
return err
}
}
if !csource {
var covered bool
for i := range pcs {
if topframe.Current.Fn.Entry <= pcs[i] && pcs[i] < topframe.Current.Fn.End {
covered = true
break
}
}
if !covered {
fn := dbp.BinInfo().PCToFunc(topframe.Ret)
if selg != nil && fn != nil && fn.Name == "runtime.goexit" {
return nil
}
}
}
for _, pc := range pcs {
if _, err := allowDuplicateBreakpoint(dbp.SetBreakpoint(0, pc, NextBreakpoint, sameFrameCond)); err != nil {
dbp.ClearSteppingBreakpoints()
return err
}
}
if stepInto && backward {
err := setStepIntoBreakpointsReverse(dbp, text, topframe, sameGCond)
if err != nil {
return err
}
}
if !topframe.Inlined {
topframe, retframe := skipAutogeneratedWrappersOut(dbp, selg, curthread, &topframe, &retframe)
retFrameCond := astutil.And(sameGCond, frameoffCondition(retframe))
// Add a breakpoint on the return address for the current frame.
// For inlined functions there is no need to do this, the set of PCs
// returned by the AllPCsBetween call above already cover all instructions
// of the containing function.
bp, _ := dbp.SetBreakpoint(0, retframe.Current.PC, NextBreakpoint, retFrameCond)
// Return address could be wrong, if we are unable to set a breakpoint
// there it's ok.
if bp != nil {
configureReturnBreakpoint(dbp.BinInfo(), bp, topframe, retFrameCond)
}
}
if bp := curthread.Breakpoint(); bp.Breakpoint == nil {
curthread.SetCurrentBreakpoint(false)
}
success = true
return nil
}
func setStepIntoBreakpoints(dbp *Target, curfn *Function, text []AsmInstruction, topframe Stackframe, sameGCond ast.Expr) error {
for _, instr := range text {
if instr.Loc.File != topframe.Current.File || instr.Loc.Line != topframe.Current.Line || !instr.IsCall() {
continue
}
if instr.DestLoc != nil {
if err := setStepIntoBreakpoint(dbp, curfn, []AsmInstruction{instr}, sameGCond); err != nil {
return err
}
} else {
// Non-absolute call instruction, set a StepBreakpoint here
bp, err := allowDuplicateBreakpoint(dbp.SetBreakpoint(0, instr.Loc.PC, StepBreakpoint, sameGCond))
if err != nil {
return err
}
breaklet := bp.Breaklets[len(bp.Breaklets)-1]
breaklet.callback = stepIntoCallback
}
}
return nil
}
// stepIntoCallback is a callback called when a StepBreakpoint is hit, it
// disassembles the current instruction to figure out its destination and
// sets a breakpoint on it.
func stepIntoCallback(curthread Thread, p *Target) (bool, error) {
if p.recman.GetDirection() != Forward {
// This should never happen, step into breakpoints with callbacks are only
// set when moving forward and direction changes are forbidden while
// breakpoints are set.
return true, nil
}
text, err := disassembleCurrentInstruction(p, curthread, 0)
if err != nil {
return false, err
}
var fn *Function
if loc, _ := curthread.Location(); loc != nil {
fn = loc.Fn
}
g, _ := GetG(curthread)
// here we either set a breakpoint into the destination of the CALL
// instruction or we determined that the called function is hidden,
// either way we need to resume execution
if err = setStepIntoBreakpoint(p, fn, text, sameGoroutineCondition(p.BinInfo(), g, curthread.ThreadID())); err != nil {
return false, err
}
return false, nil
}
func setStepIntoBreakpointsReverse(dbp *Target, text []AsmInstruction, topframe Stackframe, sameGCond ast.Expr) error {
bpmap := dbp.Breakpoints()
// Set a breakpoint after every CALL instruction
for i, instr := range text {
if instr.Loc.File != topframe.Current.File || !instr.IsCall() || instr.DestLoc == nil || instr.DestLoc.Fn == nil {
continue
}
if instr.DestLoc.Fn.privateRuntime() {
continue
}
if nextIdx := i + 1; nextIdx < len(text) {
_, ok := bpmap.M[text[nextIdx].Loc.PC]
if !ok {
if _, err := allowDuplicateBreakpoint(dbp.SetBreakpoint(0, text[nextIdx].Loc.PC, StepBreakpoint, sameGCond)); err != nil {
return err
}
}
}
}
return nil
}
func FindDeferReturnCalls(text []AsmInstruction) []uint64 {
const deferreturn = "runtime.deferreturn"
deferreturns := []uint64{}
// Find all runtime.deferreturn locations in the function
// See documentation of Breakpoint.DeferCond for why this is necessary
for _, instr := range text {
if instr.IsCall() && instr.DestLoc != nil && instr.DestLoc.Fn != nil && instr.DestLoc.Fn.Name == deferreturn {
deferreturns = append(deferreturns, instr.Loc.PC)
}
}
return deferreturns
}
// Removes instructions belonging to inlined calls of topframe from pcs.
// If includeCurrentFn is true it will also remove all instructions
// belonging to the current function.
func removeInlinedCalls(pcs []uint64, topframe Stackframe) ([]uint64, error) {
// TODO(derekparker) it should be possible to still use some internal
// runtime information to do this.
if topframe.Call.Fn == nil || topframe.Call.Fn.cu.image.Stripped() {
return pcs, nil
}
dwarfTree, err := topframe.Call.Fn.cu.image.getDwarfTree(topframe.Call.Fn.offset)
if err != nil {
return pcs, err
}
for _, e := range reader.InlineStack(dwarfTree, 0) {
if e.Offset == topframe.Call.Fn.offset {
continue
}
for _, rng := range e.Ranges {
pcs = removePCsBetween(pcs, rng[0], rng[1])
}
}
return pcs, nil
}
func removePCsBetween(pcs []uint64, start, end uint64) []uint64 {
out := pcs[:0]
for _, pc := range pcs {
if pc < start || pc >= end {
out = append(out, pc)
}
}
return out
}
func setStepIntoBreakpoint(dbp *Target, curfn *Function, text []AsmInstruction, cond ast.Expr) error {
if len(text) == 0 {
return nil
}
// If the current function is already a runtime function then
// setStepIntoBreakpoint is allowed to step into unexported runtime
// functions.
stepIntoUnexportedRuntime := curfn != nil && strings.HasPrefix(curfn.Name, "runtime.")
instr := text[0]
if instr.DestLoc == nil {
// Call destination couldn't be resolved because this was not the
// current instruction, therefore the step-into breakpoint can not be set.
return nil
}
pc := instr.DestLoc.PC
fn := instr.DestLoc.Fn
if dbp.BinInfo().Arch.Name == "ppc64le" && instr.Inst.OpcodeEquals(uint64(ppc64asm.BCLRL)) {
regs, err := dbp.CurrentThread().Registers()
if err != nil {
return err
}
lr := regs.LR()
fn = dbp.BinInfo().PCToFunc(lr)
}
// Skip unexported runtime functions
if !stepIntoUnexportedRuntime && fn != nil && fn.privateRuntime() {
return nil
}
//TODO(aarzilli): if we want to let users hide functions
// or entire packages from being stepped into with 'step'
// those extra checks should be done here.
// Skip InhibitStepInto functions for different arch.
if dbp.BinInfo().Arch.inhibitStepInto(dbp.BinInfo(), pc) {
return nil
}
fn, pc = skipAutogeneratedWrappersIn(dbp, fn, pc)
// We want to skip the function prologue but we should only do it if the
// destination address of the CALL instruction is the entry point of the
// function.
// Calls to runtime.duffzero and duffcopy inserted by the compiler can
// sometimes point inside the body of those functions, well after the
// prologue.
if fn != nil && fn.Entry == pc {
pc, _ = FirstPCAfterPrologue(dbp, fn, false)
}
// Set a breakpoint after the function's prologue
if _, err := allowDuplicateBreakpoint(dbp.SetBreakpoint(0, pc, NextBreakpoint, cond)); err != nil {
return err
}
return nil
}
func allowDuplicateBreakpoint(bp *Breakpoint, err error) (*Breakpoint, error) {
if err != nil {
//lint:ignore S1020 this is clearer
if _, isexists := err.(BreakpointExistsError); isexists {
return bp, nil
}
}
return bp, err
}
func isAutogenerated(loc Location) bool {
return (loc.File == "<autogenerated>" && loc.Line == 1) || (loc.Fn != nil && loc.Fn.trampoline)
}
func isAutogeneratedOrDeferReturn(loc Location) bool {
return isAutogenerated(loc) || (loc.Fn != nil && loc.Fn.Name == "runtime.deferreturn")
}
// skipAutogeneratedWrappersIn skips autogenerated wrappers when setting a
// step-into breakpoint.
// See genwrapper in: $GOROOT/src/cmd/compile/internal/gc/subr.go
func skipAutogeneratedWrappersIn(p Process, startfn *Function, startpc uint64) (*Function, uint64) {
if startfn == nil {
return nil, startpc
}
fn := startfn
for count := 0; count < maxSkipAutogeneratedWrappers; count++ {
if !fn.cu.isgo {
// can't exit Go
return startfn, startpc
}
text, err := Disassemble(p.Memory(), nil, p.Breakpoints(), p.BinInfo(), fn.Entry, fn.End)
if err != nil {
break
}
if len(text) == 0 {
break
}
if !isAutogenerated(text[0].Loc) {
return fn, fn.Entry
}
tgtfns := []*Function{}
// collect all functions called by the current destination function
for _, instr := range text {
switch {
case instr.IsCall():
if instr.DestLoc == nil {
return startfn, startpc
}
if p.BinInfo().Arch.inhibitStepInto(p.BinInfo(), instr.DestLoc.PC) {
// ignored
continue
}
if instr.DestLoc.Fn == nil {
return startfn, startpc
}
// calls to non private runtime functions
if !instr.DestLoc.Fn.privateRuntime() {
tgtfns = append(tgtfns, instr.DestLoc.Fn)
}
case instr.IsJmp():
// unconditional jumps to a different function that isn't a private runtime function
if instr.DestLoc != nil && instr.DestLoc.Fn != fn && !instr.DestLoc.Fn.privateRuntime() {
tgtfns = append(tgtfns, instr.DestLoc.Fn)
}
}
}
if len(tgtfns) != 1 {
// too many or not enough function calls
break
}
tgtfn := tgtfns[0]
if strings.TrimSuffix(tgtfn.BaseName(), "-fm") != strings.TrimSuffix(fn.BaseName(), "-fm") {
return startfn, startpc
}
fn = tgtfn
}
return startfn, startpc
}
// skipAutogeneratedWrappersOut skip autogenerated wrappers when setting a
// step out breakpoint.
// See genwrapper in: $GOROOT/src/cmd/compile/internal/gc/subr.go
// It also skips runtime.deferreturn frames (which are only ever on the stack on Go 1.18 or later)
func skipAutogeneratedWrappersOut(tgt *Target, g *G, thread Thread, startTopframe, startRetframe *Stackframe) (topframe, retframe *Stackframe) {
topframe, retframe = startTopframe, startRetframe
if startTopframe.Ret == 0 {
return
}
if !isAutogeneratedOrDeferReturn(startRetframe.Current) {
return
}
retfn := thread.BinInfo().PCToFunc(startTopframe.Ret)
if retfn == nil {
return
}
if !retfn.cu.isgo {
return
}
var err error
var frames []Stackframe
if g == nil {
frames, err = ThreadStacktrace(tgt, thread, maxSkipAutogeneratedWrappers)
} else {
frames, err = GoroutineStacktrace(tgt, g, maxSkipAutogeneratedWrappers, 0)
}
if err != nil {
return
}
for i := 1; i < len(frames); i++ {
frame := frames[i]
if frame.Current.Fn == nil {
return
}
file, line := g.Thread.BinInfo().EntryLineForFunc(frame.Current.Fn)
if !isAutogeneratedOrDeferReturn(Location{File: file, Line: line, Fn: frame.Current.Fn}) {
return &frames[i-1], &frames[i]
}
}
return
}
// setDeferBreakpoint is a helper function used by next and StepOut to set a
// breakpoint on the first deferred function.
func setDeferBreakpoint(p *Target, text []AsmInstruction, topframe Stackframe, sameGCond ast.Expr, stepInto bool) (uint64, error) {
// Set breakpoint on the most recently deferred function (if any)
var deferpc uint64
if topframe.TopmostDefer != nil && topframe.TopmostDefer.DwrapPC != 0 {
_, _, deferfn := topframe.TopmostDefer.DeferredFunc(p)
if deferfn != nil {
var err error
deferpc, err = FirstPCAfterPrologue(p, deferfn, false)
if err != nil {
return 0, err
}
}
}
if deferpc != 0 && deferpc != topframe.Current.PC {
bp, err := allowDuplicateBreakpoint(p.SetBreakpoint(0, deferpc, NextDeferBreakpoint, sameGCond))
if err != nil {
return 0, err
}
if bp != nil && stepInto {
// If DeferReturns is set then the breakpoint will also be triggered when
// called from runtime.deferreturn. We only do this for the step command,
// not for next or stepout.
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == NextDeferBreakpoint {
breaklet.DeferReturns = FindDeferReturnCalls(text)
break
}
}
}
}
return deferpc, nil
}
// findCallInstrForRet returns the PC address of the CALL instruction
// immediately preceding the instruction at ret.
func findCallInstrForRet(p Process, mem MemoryReadWriter, ret uint64, fn *Function) (uint64, error) {
text, err := disassemble(mem, nil, p.Breakpoints(), p.BinInfo(), fn.Entry, fn.End, false)
if err != nil {
return 0, err
}
var prevInstr AsmInstruction
for _, instr := range text {
if instr.Loc.PC == ret {
return prevInstr.Loc.PC, nil
}
prevInstr = instr
}
return 0, fmt.Errorf("could not find CALL instruction for address %#x in %s", ret, fn.Name)
}
// stepOutReverse sets a breakpoint on the CALL instruction that created the current frame, this is either:
// - the CALL instruction immediately preceding the return address of the
// current frame
// - the return address of the current frame if the current frame was
// created by a runtime.deferreturn run
// - the return address of the runtime.gopanic frame if the current frame
// was created by a panic
//
// This function is used to implement reversed StepOut
func stepOutReverse(p *Target, topframe, retframe Stackframe, sameGCond ast.Expr) error {
curthread := p.CurrentThread()
selg := p.SelectedGoroutine()
if selg != nil && selg.Thread != nil {
curthread = selg.Thread
}
callerText, err := disassemble(p.Memory(), nil, p.Breakpoints(), p.BinInfo(), retframe.Current.Fn.Entry, retframe.Current.Fn.End, false)
if err != nil {
return err
}
deferReturns := FindDeferReturnCalls(callerText)
var frames []Stackframe
if selg == nil {
frames, err = ThreadStacktrace(p, curthread, 3)
} else {
frames, err = GoroutineStacktrace(p, selg, 3, 0)
}
if err != nil {
return err
}
var callpc uint64
if ok, panicFrame := isPanicCall(frames); ok {
if len(frames) < panicFrame+2 || frames[panicFrame+1].Current.Fn == nil {
if panicFrame < len(frames) {
return &ErrNoSourceForPC{frames[panicFrame].Current.PC}
} else {
return &ErrNoSourceForPC{frames[0].Current.PC}
}
}
callpc, err = findCallInstrForRet(p, p.Memory(), frames[panicFrame].Ret, frames[panicFrame+1].Current.Fn)
if err != nil {
return err
}
} else {
callpc, err = findCallInstrForRet(p, p.Memory(), topframe.Ret, retframe.Current.Fn)
if err != nil {
return err
}
// check if the call instruction to this frame is a call to runtime.deferreturn
if len(frames) > 0 {
frames[0].Ret = callpc
}
if ok, pc := isDeferReturnCall(frames, deferReturns); ok && pc != 0 {
callpc = pc
}
}
_, err = allowDuplicateBreakpoint(p.SetBreakpoint(0, callpc, NextBreakpoint, sameGCond))
return err
}
// onNextGoroutine returns true if this thread is on the goroutine requested by the current 'next' command
func onNextGoroutine(tgt *Target, thread Thread, breakpoints *BreakpointMap) (bool, error) {
var breaklet *Breaklet
breakletSearch:
for i := range breakpoints.M {
for _, blet := range breakpoints.M[i].Breaklets {
if blet.Kind&steppingMask != 0 && blet.Cond != nil {
breaklet = blet
break breakletSearch
}
}
}
if breaklet == nil {
return false, nil
}
// Internal breakpoint conditions can take multiple different forms:
// Step into breakpoints:
// runtime.curg.goid == X
// Next or StepOut breakpoints:
// runtime.curg.goid == X && runtime.frameoff == Y
// Breakpoints that can be hit either by stepping on a line in the same
// function or by returning from the function:
// runtime.curg.goid == X && (runtime.frameoff == Y || runtime.frameoff == Z)
// Here we are only interested in testing the runtime.curg.goid clause.
w := onNextGoroutineWalker{tgt: tgt, thread: thread}
ast.Walk(&w, breaklet.Cond)
return w.ret, w.err
}
type onNextGoroutineWalker struct {
tgt *Target
thread Thread
ret bool
err error
}
func (w *onNextGoroutineWalker) Visit(n ast.Node) ast.Visitor {
if binx, isbin := n.(*ast.BinaryExpr); isbin && binx.Op == token.EQL {
x := exprToString(binx.X)
if x == "runtime.curg.goid" || x == "runtime.threadid" {
w.ret, w.err = evalBreakpointCondition(w.tgt, w.thread, n.(ast.Expr))
return nil
}
}
return w
}
func (t *Target) clearHardcodedBreakpoints() {
threads := t.ThreadList()
for _, thread := range threads {
if thread.Breakpoint().Breakpoint != nil && thread.Breakpoint().LogicalID() == hardcodedBreakpointID {
thread.Breakpoint().Active = false
thread.Breakpoint().Breakpoint = nil
}
}
}
// handleHardcodedBreakpoints looks for threads stopped at a hardcoded
// breakpoint (i.e. a breakpoint instruction, like INT 3, hardcoded in the
// program's text) and sets a fake breakpoint on them with logical id
// hardcodedBreakpointID.
// It checks trapthread and all threads that have SoftExc returning true.
func (t *Target) handleHardcodedBreakpoints(grp *TargetGroup, trapthread Thread, threads []Thread) error {
mem := t.Memory()
arch := t.BinInfo().Arch
recorded, _ := t.recman.Recorded()
isHardcodedBreakpoint := func(thread Thread, pc uint64) uint64 {
for _, bpinstr := range [][]byte{arch.BreakpointInstruction(), arch.AltBreakpointInstruction()} {
if bpinstr == nil {
continue
}
buf := make([]byte, len(bpinstr))
pc2 := pc
if arch.BreakInstrMovesPC() {
pc2 -= uint64(len(bpinstr))
}
_, _ = mem.ReadMemory(buf, pc2)
if bytes.Equal(buf, bpinstr) {
return uint64(len(bpinstr))
}
}
return 0
}
stepOverBreak := func(thread Thread, pc uint64) {
if arch.BreakInstrMovesPC() {
return
}
if recorded {
return
}
if bpsize := isHardcodedBreakpoint(thread, pc); bpsize > 0 {
setPC(thread, pc+bpsize)
}
}
setHardcodedBreakpoint := func(thread Thread, loc *Location) {
bpstate := thread.Breakpoint()
hcbp := &Breakpoint{}
bpstate.Active = true
bpstate.Breakpoint = hcbp
hcbp.FunctionName = loc.Fn.Name
hcbp.File = loc.File
hcbp.Line = loc.Line
hcbp.Addr = loc.PC
hcbp.Logical = &LogicalBreakpoint{}
hcbp.Logical.Name = HardcodedBreakpoint
hcbp.Breaklets = []*Breaklet{{Kind: UserBreakpoint, LogicalID: hardcodedBreakpointID}}
t.StopReason = StopHardcodedBreakpoint
}
for _, thread := range threads {
if thread.Breakpoint().Breakpoint != nil {
continue
}
if (thread.ThreadID() != trapthread.ThreadID()) && !thread.SoftExc() {
continue
}
if (thread.ThreadID() == trapthread.ThreadID()) && grp.cctx.GetManualStopRequested() {
continue
}
loc, err := thread.Location()
if err != nil || loc.Fn == nil {
continue
}
g, _ := GetG(thread)
switch {
case loc.Fn.Name == "runtime.breakpoint":
if recorded, _ := t.recman.Recorded(); recorded {
setHardcodedBreakpoint(thread, loc)
continue
}
stepOverBreak(thread, loc.PC)
// In linux-arm64, PtraceSingleStep seems cannot step over BRK instruction
// (linux-arm64 feature or kernel bug maybe).
if !arch.BreakInstrMovesPC() {
setPC(thread, loc.PC+uint64(arch.BreakpointSize()))
}
// Single-step current thread until we exit runtime.breakpoint and
// runtime.Breakpoint.
// On go < 1.8 it was sufficient to single-step twice on go1.8 a change
// to the compiler requires 4 steps.
if err := stepInstructionOut(grp, t, thread, "runtime.breakpoint", "runtime.Breakpoint"); err != nil {
return err
}
setHardcodedBreakpoint(thread, loc)
case g == nil || t.fncallForG[g.ID] == nil:
// Check that PC is inside a function (not the entry point) and the
// preceding instruction is a hardcoded breakpoint.
// We explicitly check for entry points of functions because the space
// between functions is usually filled with hardcoded breakpoints.
if (loc.Fn == nil || loc.Fn.Entry != loc.PC) && isHardcodedBreakpoint(thread, loc.PC) > 0 {
stepOverBreak(thread, loc.PC)
setHardcodedBreakpoint(thread, loc)
}
}
}
return nil
}